1
|
Comparative Study of Pine Reference Genomes Reveals Transposable Element Interconnected Gene Networks. Genes (Basel) 2020; 11:genes11101216. [PMID: 33081418 PMCID: PMC7602945 DOI: 10.3390/genes11101216] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022] Open
Abstract
Sequencing the giga-genomes of several pine species has enabled comparative genomic analyses of these outcrossing tree species. Previous studies have revealed the wide distribution and extraordinary diversity of transposable elements (TEs) that occupy the large intergenic spaces in conifer genomes. In this study, we analyzed the distribution of TEs in gene regions of the assembled genomes of Pinus taeda and Pinus lambertiana using high-performance computing resources. The quality of draft genomes and the genome annotation have significant consequences for the investigation of TEs and these aspects are discussed. Several TE families frequently inserted into genes or their flanks were identified in both species’ genomes. Potentially important sequence motifs were identified in TEs that could bind additional regulatory factors, promoting gene network formation with faster or enhanced transcription initiation. Node genes that contain many TEs were observed in multiple potential transposable element-associated networks. This study demonstrated the increased accumulation of TEs in the introns of stress-responsive genes of pines and suggests the possibility of rewiring them into responsive networks and sub-networks interconnected with node genes containing multiple TEs. Many such regulatory influences could lead to the adaptive environmental response clines that are characteristic of naturally spread pine populations.
Collapse
|
2
|
Bayless AM, Zapotocny RW, Han S, Grunwald DJ, Amundson KK, Bent AF. The rhg1-a ( Rhg1 low-copy) nematode resistance source harbors a copia-family retrotransposon within the Rhg1-encoded α-SNAP gene. PLANT DIRECT 2019; 3:e00164. [PMID: 31468029 PMCID: PMC6712407 DOI: 10.1002/pld3.164] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/13/2019] [Accepted: 08/02/2019] [Indexed: 05/14/2023]
Abstract
Soybean growers widely use the Resistance to Heterodera glycines 1 (Rhg1) locus to reduce yield losses caused by soybean cyst nematode (SCN). Rhg1 is a tandemly repeated four gene block. Two classes of SCN resistance-conferring Rhg1 haplotypes are recognized: rhg1-a ("Peking-type," low-copy number, three or fewer Rhg1 repeats) and rhg1-b ("PI 88788-type," high-copy number, four or more Rhg1 repeats). The rhg1-a and rhg1-b haplotypes encode α-SNAP (alpha-Soluble NSF Attachment Protein) variants α-SNAP Rhg1 LC and α-SNAP Rhg1 HC, respectively, with differing atypical C-terminal domains, that contribute to SCN resistance. Here we report that rhg1-a soybean accessions harbor a copia retrotransposon within their Rhg1 Glyma.18G022500 (α-SNAP-encoding) gene. We termed this retrotransposon "RAC," for Rhg1 alpha-SNAP copia. Soybean carries multiple RAC-like retrotransposon sequences. The Rhg1 RAC insertion is in the Glyma.18G022500 genes of all true rhg1-a haplotypes we tested and was not detected in any examined rhg1-b or Rhg1WT (single-copy) soybeans. RAC is an intact element residing within intron 1, anti-sense to the rhg1-a α-SNAP open reading frame. RAC has intrinsic promoter activities, but overt impacts of RAC on transgenic α-SNAP Rhg1 LC mRNA and protein abundance were not detected. From the native rhg1-a RAC+ genomic context, elevated α-SNAP Rhg1 LC protein abundance was observed in syncytium cells, as was previously observed for α-SNAP Rhg1 HC (whose rhg1-b does not carry RAC). Using a SoySNP50K SNP corresponding with RAC presence, just ~42% of USDA accessions bearing previously identified rhg1-a SoySNP50K SNP signatures harbor the RAC insertion. Subsequent analysis of several of these putative rhg1-a accessions lacking RAC revealed that none encoded α-SNAPRhg1LC, and thus, they are not rhg1-a. rhg1-a haplotypes are of rising interest, with Rhg4, for combating SCN populations that exhibit increased virulence against the widely used rhg1-b resistance. The present study reveals another unexpected structural feature of many Rhg1 loci, and a selectable feature that is predictive of rhg1-a haplotypes.
Collapse
Affiliation(s)
- Adam M. Bayless
- Department of Plant PathologyUniversity of Wisconsin – MadisonMadisonWIUSA
| | - Ryan W. Zapotocny
- Department of Plant PathologyUniversity of Wisconsin – MadisonMadisonWIUSA
| | - Shaojie Han
- Department of Plant PathologyUniversity of Wisconsin – MadisonMadisonWIUSA
| | | | - Kaela K. Amundson
- Department of Plant PathologyUniversity of Wisconsin – MadisonMadisonWIUSA
| | - Andrew F. Bent
- Department of Plant PathologyUniversity of Wisconsin – MadisonMadisonWIUSA
| |
Collapse
|
3
|
Negi P, Rai AN, Suprasanna P. Moving through the Stressed Genome: Emerging Regulatory Roles for Transposons in Plant Stress Response. FRONTIERS IN PLANT SCIENCE 2016; 7:1448. [PMID: 27777577 PMCID: PMC5056178 DOI: 10.3389/fpls.2016.01448] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 09/12/2016] [Indexed: 05/02/2023]
Abstract
The recognition of a positive correlation between organism genome size with its transposable element (TE) content, represents a key discovery of the field of genome biology. Considerable evidence accumulated since then suggests the involvement of TEs in genome structure, evolution and function. The global genome reorganization brought about by transposon activity might play an adaptive/regulatory role in the host response to environmental challenges, reminiscent of McClintock's original 'Controlling Element' hypothesis. This regulatory aspect of TEs is also garnering support in light of the recent evidences, which project TEs as "distributed genomic control modules." According to this view, TEs are capable of actively reprogramming host genes circuits and ultimately fine-tuning the host response to specific environmental stimuli. Moreover, the stress-induced changes in epigenetic status of TE activity may allow TEs to propagate their stress responsive elements to host genes; the resulting genome fluidity can permit phenotypic plasticity and adaptation to stress. Given their predominating presence in the plant genomes, nested organization in the genic regions and potential regulatory role in stress response, TEs hold unexplored potential for crop improvement programs. This review intends to present the current information about the roles played by TEs in plant genome organization, evolution, and function and highlight the regulatory mechanisms in plant stress responses. We will also briefly discuss the connection between TE activity, host epigenetic response and phenotypic plasticity as a critical link for traversing the translational bridge from a purely basic study of TEs, to the applied field of stress adaptation and crop improvement.
Collapse
Affiliation(s)
| | | | - Penna Suprasanna
- Plant Stress Physiology and Biotechnology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research CentreTrombay, India
| |
Collapse
|
4
|
Distribution patterns and impact of transposable elements in genes of green algae. Gene 2016; 594:151-159. [PMID: 27614292 DOI: 10.1016/j.gene.2016.09.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 09/01/2016] [Accepted: 09/06/2016] [Indexed: 11/23/2022]
Abstract
Transposable elements (TEs) are DNA sequences able to transpose in the host genome, a remarkable feature that enables them to influence evolutive trajectories of species. An investigation about the TE distribution and TE impact in different gene regions of the green algae species Chlamydomonas reinhardtii and Volvox carteri was performed. Our results indicate that TEs are very scarce near introns boundaries, suggesting that insertions in this region are negatively selected. This contrasts with previous results showing enrichment of tandem repeats in introns boundaries and suggests that different evolutionary forces are acting in these different classes of repeats. Despite the relatively low abundance of TEs in the genome of green algae when compared to mammals, the proportion of poly(A) sites derived from TEs found in C. reinhardtii was similar to that described in human and mice. This fact, associated with the enrichment of TEs in gene 5' and 3' flanks of C. reinhardtii, opens up the possibility that TEs may have considerably contributed for gene regulatory sequences evolution in this species. Moreover, it was possible identify several instances of TE exonization for C. reinhardtii, with a particularly interesting case from a gene coding for Condensin II, a protein involved in the maintenance of chromosomal structure, where the addition of a transposomal PHD finger may contribute to binding specificity of this protein. Taken together, our results suggest that the low abundance of TEs in green algae genomes is correlated with a strict negative selection process, combined with the retention of copies that contribute positively with gene structures.
Collapse
|
5
|
Hsu YC, Wang CS, Lin YR, Wu YP. Structural Diversity of a Novel LTR Retrotransposon, RTPOSON, in the Genus Oryza. Evol Bioinform Online 2016; 12:29-40. [PMID: 26819544 PMCID: PMC4718150 DOI: 10.4137/ebo.s35158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/08/2015] [Accepted: 11/16/2015] [Indexed: 11/16/2022] Open
Abstract
Retrotransposons with long terminal repeats (LTRs) are the most abundant transposable elements in plant genomes. A novel LTR retrotransposon named RTPOSON primarily occurs in the genus Oryza and in several species of the Poaceae family. RTPOSON has been identified in the Ty1-copia group of retrotransposons because two of its open reading frames encode an uncharacterized protein and UBN2_2 and zinc knuckle, respectively. More than 700 RTPOSONs were identified in Oryza genomes; 127 RTPOSONs with LTRs and gag-pol elements were classified into three subgroups. The subgroup RTPOSON_sub3 had the smallest DNA size and 97% (32/33) of RTPOSON elements from Oryza punctata are classified in this group. The insertion time of these RTPOSONs varied and their proliferation occurred within the last 8 Mya, with two bursting periods within the last 1.5–5.0 Mya. A total of 37 different orthologous insertions of RTPOSONs, with different nested transposable elements and gene fragments, were identified by comparing the genomes of ssp. japonica cv. Nipponbare and ssp. indica cv. 93–11. A part of intact RTPOSON elements was evolved independently after the divergence of indica and japonica. In addition, intact RTPOSONs and homologous fragments were preferentially retained or integrated in genic regions. This novel LTR retrotransposon, RTPOSON, might have an impact on genome evolution, genic innovation, and genetic variation.
Collapse
Affiliation(s)
- Yu-Chia Hsu
- Department of Agronomy, Chiayi Agricultural Experiment Station, Taiwan Agricultural Research Institute, Chiayi, Taiwan
| | - Chang-Sheng Wang
- Department of Agronomy, National Chung Hsing University, Taichung, Taiwan
| | - Yann-Rong Lin
- Department of Agronomy, National Taiwan University, Taipei, Taiwan
| | - Yong-Pei Wu
- Department of Agronomy, Chiayi Agricultural Experiment Station, Taiwan Agricultural Research Institute, Chiayi, Taiwan
| |
Collapse
|
6
|
Dhadi SR, Xu Z, Shaik R, Driscoll K, Ramakrishna W. Differential regulation of genes by retrotransposons in rice promoters. PLANT MOLECULAR BIOLOGY 2015; 87:603-13. [PMID: 25697955 DOI: 10.1007/s11103-015-0300-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 02/16/2015] [Indexed: 05/06/2023]
Abstract
Rice genome harbors genes and promoters with retrotransposon insertions. There is very little information about their function. The effect of retrotransposon insertions in four rice promoter regions on gene regulation, was investigated using promoter-reporter gene constructs with and without retrotransposons. Differences in expression levels of gus and egfp reporter genes in forward orientation and rfp in reverse orientation were evaluated in rice plants with transient expression employing quantitative RT-PCR analysis, histochemical GUS staining, and eGFP and RFP fluorescent microscopy. The presence of SINE in the promoter 1 (P1) resulted in higher expression levels of the reporter genes, whereas the presence of LINE in P2 or gypsy LTR retrotransposon in P3 reduced expression of the reporter genes. Furthermore, the SINE in P1 acts as an enhancer in contrast with the LINE in P2 and the gypsy LTR retrotransposon in P3 which act as silencers. CTAA and CGG motifs in these retrotransposons are the likely candidates for the downregulation compared to TCTT motif (SINE) which is a candidate for the upregulation of gene expression. The effect of retrotransposons on gene regulation correlated with the earlier investigation of conservation patterns of these four retrotransposon insertions in several rice accessions implying their evolutionary significance.
Collapse
Affiliation(s)
- Surendar Reddy Dhadi
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, 49931, USA
| | | | | | | | | |
Collapse
|
7
|
Oliver KR, McComb JA, Greene WK. Transposable elements: powerful contributors to angiosperm evolution and diversity. Genome Biol Evol 2014; 5:1886-901. [PMID: 24065734 PMCID: PMC3814199 DOI: 10.1093/gbe/evt141] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Transposable elements (TEs) are a dominant feature of most flowering plant genomes. Together with other accepted facilitators of evolution, accumulating data indicate that TEs can explain much about their rapid evolution and diversification. Genome size in angiosperms is highly correlated with TE content and the overwhelming bulk (>80%) of large genomes can be composed of TEs. Among retro-TEs, long terminal repeats (LTRs) are abundant, whereas DNA-TEs, which are often less abundant than retro-TEs, are more active. Much adaptive or evolutionary potential in angiosperms is due to the activity of TEs (active TE-Thrust), resulting in an extraordinary array of genetic changes, including gene modifications, duplications, altered expression patterns, and exaptation to create novel genes, with occasional gene disruption. TEs implicated in the earliest origins of the angiosperms include the exapted Mustang, Sleeper, and Fhy3/Far1 gene families. Passive TE-Thrust can create a high degree of adaptive or evolutionary potential by engendering ectopic recombination events resulting in deletions, duplications, and karyotypic changes. TE activity can also alter epigenetic patterning, including that governing endosperm development, thus promoting reproductive isolation. Continuing evolution of long-lived resprouter angiosperms, together with genetic variation in their multiple meristems, indicates that TEs can facilitate somatic evolution in addition to germ line evolution. Critical to their success, angiosperms have a high frequency of polyploidy and hybridization, with resultant increased TE activity and introgression, and beneficial gene duplication. Together with traditional explanations, the enhanced genomic plasticity facilitated by TE-Thrust, suggests a more complete and satisfactory explanation for Darwin's "abominable mystery": the spectacular success of the angiosperms.
Collapse
Affiliation(s)
- Keith R Oliver
- School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia
| | | | | |
Collapse
|
8
|
González LG, Deyholos MK. Identification, characterization and distribution of transposable elements in the flax (Linum usitatissimum L.) genome. BMC Genomics 2012; 13:644. [PMID: 23171245 PMCID: PMC3544724 DOI: 10.1186/1471-2164-13-644] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Accepted: 11/15/2012] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Flax (Linum usitatissimum L.) is an important crop for the production of bioproducts derived from its seed and stem fiber. Transposable elements (TEs) are widespread in plant genomes and are a key component of their evolution. The availability of a genome assembly of flax (Linum usitatissimum) affords new opportunities to explore the diversity of TEs and their relationship to genes and gene expression. RESULTS Four de novo repeat identification algorithms (PILER, RepeatScout, LTR_finder and LTR_STRUC) were applied to the flax genome assembly. The resulting library of flax repeats was combined with the RepBase Viridiplantae division and used with RepeatMasker to identify TEs coverage in the genome. LTR retrotransposons were the most abundant TEs (17.2% genome coverage), followed by Long Interspersed Nuclear Element (LINE) retrotransposons (2.10%) and Mutator DNA transposons (1.99%). Comparison of putative flax TEs to flax transcript databases indicated that TEs are not highly expressed in flax. However, the presence of recent insertions, defined by 100% intra-element LTR similarity, provided evidence for recent TE activity. Spatial analysis showed TE-rich regions, gene-rich regions as well as regions with similar genes and TE density. Monte Carlo simulations for the 71 largest scaffolds (≥ 1 Mb each) did not show any regional differences in the frequency of TE overlap with gene coding sequences. However, differences between TE superfamilies were found in their proximity to genes. Genes within TE-rich regions also appeared to have lower transcript expression, based on EST abundance. When LTR elements were compared, Copia showed more diversity, recent insertions and conserved domains than the Gypsy, demonstrating their importance in genome evolution. CONCLUSIONS The calculated 23.06% TE coverage of the flax WGS assembly is at the low end of the range of TE coverages reported in other eudicots, although this estimate does not include TEs likely found in unassembled repetitive regions of the genome. Since enrichment for TEs in genomic regions was associated with reduced expression of neighbouring genes, and many members of the Copia LTR superfamily are inserted close to coding regions, we suggest Copia elements have a greater influence on recent flax genome evolution while Gypsy elements have become residual and highly mutated.
Collapse
|
9
|
Krom N, Ramakrishna W. Retrotransposon insertions in rice gene pairs associated with reduced conservation of gene pairs in grass genomes. Genomics 2012; 99:308-14. [PMID: 22414560 DOI: 10.1016/j.ygeno.2012.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 02/15/2012] [Accepted: 02/24/2012] [Indexed: 12/26/2022]
Abstract
Small-scale changes in gene order and orientation are common in plant genomes, even across relatively short evolutionary distances. We investigated the association of retrotransposons in and near rice gene pairs with gene pair conservation, inversion, rearrangement, and deletion in sorghum, maize, and Brachypodium. Copia and Gypsy LTR-retrotransposon insertions were found to be primarily associated with reduced frequency of gene pair conservation and an increase in both gene pair rearrangement and gene deletions. SINEs are associated with gene pair rearrangement, while LINEs are associated with gene deletions. Despite being more frequently associated with retrotransposons than convergent and tandem pairs, divergent gene pairs showed the least effects from that association. In contrast, convergent pairs were least frequently associated with retrotransposons yet showed the greatest effects. Insertions between genes were associated with the greatest effects on gene pair arrangement, while insertions flanking gene pairs had significant effects only on divergent pairs.
Collapse
Affiliation(s)
- Nicholas Krom
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA
| | | |
Collapse
|
10
|
Xu Z, Rafi S, Ramakrishna W. Polymorphisms and evolutionary history of retrotransposon insertions in rice promoters. Genome 2011; 54:629-38. [DOI: 10.1139/g11-030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Retrotransposons are ubiquitous in higher plant genomes. The presence or absence of retrotransposons in whole genome and high throughput genomic sequence (HTGS) from cultivated and wild rice was investigated to understand the organization and evolution of retrotransposon insertions in promoter regions. Approximately half of the Oryza sativa subsp. japonica ‘Nipponbare’ promoters with retrotransposons conserved in Oryza sativa subsp. indica ‘93-11’ and four wild rice species showed higher sequence conservation in retrotransposon than nonretrotransposon regions. We further investigated, in detail, the evolutionary dynamics of five retrotransposons in the promoter regions of 95 rice genotypes. Our data suggest that four of five insertions (Rp2–Rp5) occurred in the ancestor of AA genome, while the other insertion (Rp1) predates the ancestral divergence of Oryza officinalis (CC genome). Four retrotransposons (Rp2–Rp5) were present in 52% (Rp2), 29% (Rp3), 53% (Rp4), and 43% (Rp5) of the rice genotypes with AA genome type, and the fifth retrotransposon (Rp1) was present in 95% of the rice genotypes with AA, BBCC, or CC genome types. Furthermore, most of these retrotransposons were found to evolve slower than flanking promoter regions, suggesting a role in promoter function for regulating downstream genes.
Collapse
Affiliation(s)
- Z. Xu
- Department of Biological Sciences, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA
| | - S. Rafi
- Department of Biological Sciences, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA
| | - W. Ramakrishna
- Department of Biological Sciences, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA
| |
Collapse
|
11
|
Schnurbusch T, Hayes J, Hrmova M, Baumann U, Ramesh SA, Tyerman SD, Langridge P, Sutton T. Boron toxicity tolerance in barley through reduced expression of the multifunctional aquaporin HvNIP2;1. PLANT PHYSIOLOGY 2010; 153:1706-15. [PMID: 20581256 PMCID: PMC2923888 DOI: 10.1104/pp.110.158832] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 06/21/2010] [Indexed: 05/18/2023]
Abstract
Boron (B) toxicity is a significant limitation to cereal crop production in a number of regions worldwide. Here we describe the cloning of a gene from barley (Hordeum vulgare), underlying the chromosome 6H B toxicity tolerance quantitative trait locus. It is the second B toxicity tolerance gene identified in barley. Previously, we identified the gene Bot1 that functions as an efflux transporter in B toxicity-tolerant barley to move B out of the plant. The gene identified in this work encodes HvNIP2;1, an aquaporin from the nodulin-26-like intrinsic protein (NIP) subfamily that was recently described as a silicon influx transporter in barley and rice (Oryza sativa). Here we show that a rice mutant for this gene also shows reduced B accumulation in leaf blades compared to wild type and that the mutant protein alters growth of yeast (Saccharomyces cerevisiae) under high B. HvNIP2;1 facilitates significant transport of B when expressed in Xenopus oocytes compared to controls and to another NIP (NOD26), and also in yeast plasma membranes that appear to have relatively high B permeability. We propose that tolerance to high soil B is mediated by reduced expression of HvNIP2;1 to limit B uptake, as well as by increased expression of Bot1 to remove B from roots and sensitive tissues. Together with Bot1, the multifunctional aquaporin HvNIP2;1 is an important determinant of B toxicity tolerance in barley.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Tim Sutton
- Australian Centre for Plant Functional Genomics (T. Schnurbusch, J.H., M.H., U.B., P.L., T. Sutton), and School of Agriculture, Food and Wine (S.A.R., S.D.T.), University of Adelaide, Waite Campus, Urrbrae, South Australia 5064, Australia
| |
Collapse
|
12
|
Unique functions of repetitive transcriptomes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 285:115-88. [PMID: 21035099 DOI: 10.1016/b978-0-12-381047-2.00003-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Repetitive sequences occupy a huge fraction of essentially every eukaryotic genome. Repetitive sequences cover more than 50% of mammalian genomic DNAs, whereas gene exons and protein-coding sequences occupy only ~3% and 1%, respectively. Numerous genomic repeats include genes themselves. They generally encode "selfish" proteins necessary for the proliferation of transposable elements (TEs) in the host genome. The major part of evolutionary "older" TEs accumulated mutations over time and fails to encode functional proteins. However, repeats have important functions also on the RNA level. Repetitive transcripts may serve as multifunctional RNAs by participating in the antisense regulation of gene activity and by competing with the host-encoded transcripts for cellular factors. In addition, genomic repeats include regulatory sequences like promoters, enhancers, splice sites, polyadenylation signals, and insulators, which actively reshape cellular transcriptomes. TE expression is tightly controlled by the host cells, and some mechanisms of this regulation were recently decoded. Finally, capacity of TEs to proliferate in the host genome led to the development of multiple biotechnological applications.
Collapse
|
13
|
Zou J, Gong H, Yang TJ, Meng J. Retrotransposons - a major driving force in plant genome evolution and a useful tool for genome analysis. ACTA ACUST UNITED AC 2009. [DOI: 10.1007/s12892-009-0070-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Prathepha P. Molecular analysis of utility of a retrotransposon, p-SINE1-r2 in the Asian wild rice and weedy rice populations. Pak J Biol Sci 2009; 12:270-5. [PMID: 19579957 DOI: 10.3923/pjbs.2009.270.275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The distribution of a retrotransposon, p-SINE1-r2 located at the waxy locus was analyzed by the PCR assay in the perennial wild rice (Oryza rufipogon) which inhabited in four isolated and six disturbed populations and in the weedy rice population. The level of clonality of the wild rice species was determined in populations subject to level of water supply and another disturbance. The results showed that all four isolated populations carried the genotype (-/-) and (-/+), while three genotypes (-/-), (-/+) and (+/+) was found on the six populations which grown near by rice fields. This finding was strongly supported the idea that the original wild rice populations of O. rufipogon exhibited prominent genotype (-/-) and (-/+) and mainly propagated by vegetative reproduction and the allele (+) which found in the wild rice plant with the genotype (+/+) may originated from gene flow from cultivated rice to wild rice. Weedy rice accessions used in this study showed the three genotypes based on this DNA locus. The distribution of this DNA locus in wild rice and weedy rice populations were deviated from the Hardy-Weinberg equilibrium. The perennial wild rice populations were annually under season drought (March to May of the year in Thailand, Laos and Cambodia), they tended to have small size clones with relatively high clonal diversity (i.e., number of genotypes), except for the population from Cambodia, which carried only the genotype (-/+). Although DNA maker used to detect genetic variation at population levels is too small, but this locus is very sensitive enough to be a useful indicator for genetic variation at the population level.
Collapse
Affiliation(s)
- Preecha Prathepha
- Rice Genetics Research Unit, Department of Biotechnology, Faculty of Technology, Mahasarakham University, Khamriang Sub-District, Kantarawichai District, Maha Sarakham Province 4400, Thailand
| |
Collapse
|