1
|
Chen A, Li Q, Liao P, Zhao Q, Tang S, Wang P, Meng G, Dong Z. Semaphorin-1a-like gene plays an important role in the embryonic development of silkworm, Bombyx mori. PLoS One 2020; 15:e0240193. [PMID: 33007004 PMCID: PMC7531805 DOI: 10.1371/journal.pone.0240193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 09/22/2020] [Indexed: 11/18/2022] Open
Abstract
Fuyin-lethal red egg (Fuyin-lre) is a red egg mutant discovered from the germplasm resource Fuyin of Bombyx mori. The embryo of Fuyin-lre stops developing at the late stage of gastrulation due to chromosome structural variation. In this work, precise mutation sites at both ends of the mutated region were determined, and two inserted sequences with lengths of 1232 bp and 1845 bp were obtained at both ends of the mutation region. Interestingly, a bmmar1 transposon was detected in the inserted 1845 bp sequence. Bmmar1 possesses features of the Tcl/mariner superfamily of transposable elements (TEs), which belongs to class II TEs that use a DNA-mediated "cut and paste" mechanism to transpose. This finding suggests that Fuyin-lre mutation might be related to the "cut and paste" action of bmmar1. The mutation resulted in the deletion of 9 genes in the mutation region, of which the red egg gene re (BMSK0002766) did not affect embryonic development of B. mori, and the BMSK0002765 gene was unexpressed during the early stage of embryonic development. The RNA interference results of the remaining 7 genes suggest that the semaphorin-1a-like gene (BMSK0002764) had a major contribution to the embryonic lethality of Fuyin-lre.
Collapse
Affiliation(s)
- Anli Chen
- The Sericultural and Apicultural Research Institute, Yunnan Academy of Agricultural Sciences, Mengzi Yunnan, China
- The Key Sericultural Laboratory of Shaanxi, Ankang University, Ankang Shaanxi, China
| | - Qiongyan Li
- The Sericultural and Apicultural Research Institute, Yunnan Academy of Agricultural Sciences, Mengzi Yunnan, China
| | - Pengfei Liao
- The Sericultural and Apicultural Research Institute, Yunnan Academy of Agricultural Sciences, Mengzi Yunnan, China
| | - Qiaoling Zhao
- The Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Shunming Tang
- The Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Pingyang Wang
- The Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Gang Meng
- The Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Zhanpeng Dong
- The Sericultural and Apicultural Research Institute, Yunnan Academy of Agricultural Sciences, Mengzi Yunnan, China
- * E-mail:
| |
Collapse
|
2
|
Cavalcante MG, Nagamachi CY, Pieczarka JC, Noronha RCR. Evolutionary insights in Amazonian turtles (Testudines, Podocnemididae): co-location of 5S rDNA and U2 snRNA and wide distribution of Tc1/Mariner. Biol Open 2020; 9:bio049817. [PMID: 32229487 PMCID: PMC7197720 DOI: 10.1242/bio.049817] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/18/2020] [Indexed: 12/29/2022] Open
Abstract
Eukaryotic genomes exhibit substantial accumulation of repetitive DNA sequences. These sequences can participate in chromosomal reorganization events and undergo molecular cooption to interfere with the function and evolution of genomes. In turtles, repetitive DNA sequences appear to be accumulated at probable break points and may participate in events such as non-homologous recombination and chromosomal rearrangements. In this study, repeated sequences of 5S rDNA, U2 snRNA and Tc1/Mariner transposons were amplified from the genomes of the turtles, Podocnemis expansa and Podocnemis unifilis, and mapped by fluorescence in situ hybridization. Our data confirm the 2n=28 chromosomes for these species (the second lowest 2n in the order Testudines). We observe high conservation of the co-located 5S rDNA and U2 snRNA genes on a small chromosome pair (pair 13), and surmise that this represents the ancestral condition. Our analysis reveals a wide distribution of the Tc1/Mariner transposons and we discuss how the mobility of these transposons can act on karyotypic reorganization events (contributing to the 2n decrease of those species). Our data add new information for the order Testudines and provide important insights into the dynamics and organization of these sequences in the chelonian genomes.
Collapse
Affiliation(s)
- Manoella Gemaque Cavalcante
- Centro de Estudos Avançados da Biodiversidade, Cytogenetics Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Cleusa Yoshiko Nagamachi
- Centro de Estudos Avançados da Biodiversidade, Cytogenetics Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Julio Cesar Pieczarka
- Centro de Estudos Avançados da Biodiversidade, Cytogenetics Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Renata Coelho Rodrigues Noronha
- Centro de Estudos Avançados da Biodiversidade, Cytogenetics Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| |
Collapse
|
3
|
Ustyantsev K, Biryukov M, Sukhikh I, Shatskaya NV, Fet V, Blinov A, Konopatskaia I. Diversity of <i>mariner</i>-like elements in Orthoptera. Vavilovskii Zhurnal Genet Selektsii 2020. [DOI: 10.18699/vj19.581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Mariner-like elements (MLEs) are among the most widespread DNA transposable elements in eukaryotes. Insects were the first organisms in which MLEs were identified, however the diversity of MLEs in the insect order Orthoptera has not yet been addressed. In the present study, we explore the diversity of MLEs elements in 16 species of Orthoptera belonging to three infraorders, Acridoidea (Caelifera), Grylloidea (Ensifera), and Tettigoniidea (Ensifera) by combining data mined from computational analysis of sequenced degenerative PCR MLE amplicons and available Orthoptera genomic scaffolds. In total, 75 MLE lineages (Ortmar) were identified in all the studied genomes. Automatic phylogeny-based classification suggested that the current known variability of MLEs can be assigned to seven statistically well-supported phylogenetic clusters (I–VII), and the identified Orthoptera lineages were distributed among all of them. The majority of the lineages (36 out of 75) belong to cluster I; 20 belong to cluster VI; and seven, six, four, one and one lineages belong to clusters II, IV, VII, III, and V, respectively. Two of the clusters (II and IV) were composed of a single Orthoptera MLE lineage each (Ortmar37 and Ortmar45, respectively) which were distributed in the vast majority of the studied Orthoptera genomes. Finally, for 16 Orthoptera MLE lineages, horizontal transfer from the distantly related taxa belonging to other insect orders may have occurred. We believe that our study can serve as a basis for future researches on the diversity, distribution, and evolution of MLEs in species of other taxa that are still lacking the sequenced genomes.
Collapse
Affiliation(s)
| | | | - I. Sukhikh
- Institute of Cytology and Genetics, SB RAS
| | | | | | - A. Blinov
- Institute of Cytology and Genetics, SB RAS; Institute of Molecular and Cellular Biology, SB RAS
| | | |
Collapse
|
4
|
Xie LQ, Wang PL, Jiang SH, Zhang Z, Zhang HH. Genome-wide identification and evolution of TC1/Mariner in the silkworm (Bombyx mori) genome. Genes Genomics 2018; 40:485-495. [PMID: 29892960 DOI: 10.1007/s13258-018-0648-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/03/2018] [Indexed: 10/18/2022]
Abstract
TC1/Mariner transposons belong to class II transposable elements (TEs) that use DNA-mediated "cut and paste" mechanism to transpose, and they have been identified in almost all organisms. Although silkworm (Bombyx mori) has a large amount of TC1/Mariner elements, the genome wide information of this superfamily in the silkworm is unknown. In this study, we have identified 2670 TC1/Mariner (Bmmar) elements in the silkworm genome. All the TEs were classified into 22 families by means of fgclust, a tool of repetitive sequence classification, seven of which was first reported in this study. Phylogenetic and structure analyses based on the catalytic domain (DDxD/E) of transposase sequences indicated that all members of TC1/Mariner were grouped into five subgroups: Mariner, Tc1, maT, DD40D and DD41D/E. Of these five subgroups, maT rather than Mariner possessed most members of TC1/Mariner (51.23%) in the silkworm genome. In particular, phylogenetic analysis and structure analysis revealed that Bmmar15 (DD40D) formed a new basal subgroup of TC1/Mariner element in insects, which was referred to as bmori. Furthermore, we concluded that DD40D appeared to intermediate between mariner and Tc1. Finally, we estimated the insertion time for each copy of TC1/Mariner in the silkworm and found that most of members were dramatically amplified during a period from 0 to 1 mya. Moreover, the detailed functional data analysis showed that Bmmar1, Bmmar6 and Bmmar9 had EST evidence and intact transposases. These implied that TC1/Mariner might have potential transpositional activity. In conclusion, this study provides some new insights into the landscape, origin and evolution of TC1/Mariner in the insect genomes.
Collapse
Affiliation(s)
- Li-Qin Xie
- College of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Ping-Lan Wang
- College of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Shen-Hua Jiang
- College of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Ze Zhang
- School of Life Sciences, Chongqing University, Chongqing, 400044, China.
| | - Hua-Hao Zhang
- College of Pharmacy and Life Science, Jiujiang University, Jiujiang, China.
| |
Collapse
|
5
|
Trubitsyna M, Michlewski G, Finnegan DJ, Elfick A, Rosser SJ, Richardson JM, French CE. Use of mariner transposases for one-step delivery and integration of DNA in prokaryotes and eukaryotes by transfection. Nucleic Acids Res 2017; 45:e89. [PMID: 28204586 PMCID: PMC5449632 DOI: 10.1093/nar/gkx113] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 02/06/2017] [Indexed: 11/20/2022] Open
Abstract
Delivery of DNA to cells and its subsequent integration into the host genome is a fundamental task in molecular biology, biotechnology and gene therapy. Here we describe an IP-free one-step method that enables stable genome integration into either prokaryotic or eukaryotic cells. A synthetic mariner transposon is generated by flanking a DNA sequence with short inverted repeats. When purified recombinant Mos1 or Mboumar-9 transposase is co-transfected with transposon-containing plasmid DNA, it penetrates prokaryotic or eukaryotic cells and integrates the target DNA into the genome. In vivo integrations by purified transposase can be achieved by electroporation, chemical transfection or Lipofection of the transposase:DNA mixture, in contrast to other published transposon-based protocols which require electroporation or microinjection. As in other transposome systems, no helper plasmids are required since transposases are not expressed inside the host cells, thus leading to generation of stable cell lines. Since it does not require electroporation or microinjection, this tool has the potential to be applied for automated high-throughput creation of libraries of random integrants for purposes including gene knock-out libraries, screening for optimal integration positions or safe genome locations in different organisms, selection of the highest production of valuable compounds for biotechnology, and sequencing.
Collapse
Affiliation(s)
- Maryia Trubitsyna
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FF, UK
| | - Gracjan Michlewski
- Institute of Cell Biology, School of Biological Sciences, Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - David J Finnegan
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FF, UK
| | - Alistair Elfick
- Institute of BioEngineering, School of Engineering, University of Edinburgh, Edinburgh EH9 3JL, UK
| | - Susan J Rosser
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, UK Centre for Mammalian Synthetic Biology, University of Edinburgh, Edinburgh EH9 3FF, UK
| | - Julia M Richardson
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FF, UK
| | - Christopher E French
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FF, UK
| |
Collapse
|
6
|
Bouallègue M, Filée J, Kharrat I, Mezghani-Khemakhem M, Rouault JD, Makni M, Capy P. Diversity and evolution of mariner-like elements in aphid genomes. BMC Genomics 2017; 18:494. [PMID: 28662628 PMCID: PMC5490172 DOI: 10.1186/s12864-017-3856-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 06/09/2017] [Indexed: 12/31/2022] Open
Abstract
Background Although transposons have been identified in almost all organisms, genome-wide information on mariner elements in Aphididae remains unknown. Genomes of Acyrthosiphon pisum, Diuraphis noxia and Myzus persicae belonging to the Macrosiphini tribe, actually available in databases, have been investigated. Results A total of 22 lineages were identified. Classification and phylogenetic analysis indicated that they were subdivided into three monophyletic groups, each of them containing at least one putative complete sequence, and several non-autonomous sublineages corresponding to Miniature Inverted-Repeat Transposable Elements (MITE), probably generated by internal deletions. A high proportion of truncated and dead copies was also detected. The three clusters can be defined from their catalytic site: (i) mariner DD34D, including three subgroups of the irritans subfamily (Macrosiphinimar, Batmar-like elements and Dnomar-like elements); (ii) rosa DD41D, found in A. pisum and D. noxia; (iii) a new clade which differs from rosa through long TIRs and thus designated LTIR-like elements. Based on its catalytic domain, this new clade is subdivided into DD40D and DD41D subgroups. Compared to other Tc1/mariner superfamily sequences, rosa DD41D and LTIR DD40-41D seem more related to maT DD37D family. Conclusion Overall, our results reveal three clades belonging to the irritans subfamily, rosa and new LTIR-like elements. Data on structure and specific distribution of these transposable elements in the Macrosiphini tribe contribute to the understanding of their evolutionary history and to that of their hosts. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3856-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maryem Bouallègue
- Laboratoire Evolution, Génomes, Comportement, Ecologie CNRS, Université Paris-Sud, IRD, Université Paris-Saclay, 1 avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France.,Faculté des Sciences de Tunis, UR11ES10 Génomique des Insectes Ravageurs de Cultures, Université de Tunis El Manar, 1002, Tunis, Tunisie
| | - Jonathan Filée
- Laboratoire Evolution, Génomes, Comportement, Ecologie CNRS, Université Paris-Sud, IRD, Université Paris-Saclay, 1 avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
| | - Imen Kharrat
- Faculté des Sciences de Tunis, UR11ES10 Génomique des Insectes Ravageurs de Cultures, Université de Tunis El Manar, 1002, Tunis, Tunisie
| | - Maha Mezghani-Khemakhem
- Faculté des Sciences de Tunis, UR11ES10 Génomique des Insectes Ravageurs de Cultures, Université de Tunis El Manar, 1002, Tunis, Tunisie
| | - Jacques-Deric Rouault
- Laboratoire Evolution, Génomes, Comportement, Ecologie CNRS, Université Paris-Sud, IRD, Université Paris-Saclay, 1 avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
| | - Mohamed Makni
- Faculté des Sciences de Tunis, UR11ES10 Génomique des Insectes Ravageurs de Cultures, Université de Tunis El Manar, 1002, Tunis, Tunisie
| | - Pierre Capy
- Laboratoire Evolution, Génomes, Comportement, Ecologie CNRS, Université Paris-Sud, IRD, Université Paris-Saclay, 1 avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France.
| |
Collapse
|
7
|
|
8
|
Trubitsyna M, Grey H, Houston DR, Finnegan DJ, Richardson JM. Structural Basis for the Inverted Repeat Preferences of mariner Transposases. J Biol Chem 2015; 290:13531-40. [PMID: 25869132 PMCID: PMC4505599 DOI: 10.1074/jbc.m115.636704] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Indexed: 11/10/2022] Open
Abstract
The inverted repeat (IR) sequences delimiting the left and right ends of many naturally active mariner DNA transposons are non-identical and have different affinities for their transposase. We have compared the preferences of two active mariner transposases, Mos1 and Mboumar-9, for their imperfect transposon IRs in each step of transposition: DNA binding, DNA cleavage, and DNA strand transfer. A 3.1 Å resolution crystal structure of the Mos1 paired-end complex containing the pre-cleaved left IR sequences reveals the molecular basis for the reduced affinity of the Mos1 transposase DNA-binding domain for the left IR as compared with the right IR. For both Mos1 and Mboumar-9, in vitro DNA transposition is most efficient when the preferred IR sequence is present at both transposon ends. We find that this is due to the higher efficiency of cleavage and strand transfer of the preferred transposon end. We show that the efficiency of Mboumar-9 transposition is improved almost 4-fold by changing the 3′ base of the preferred Mboumar-9 IR from guanine to adenine. This preference for adenine at the reactive 3′ end for both Mos1 and Mboumar-9 may be a general feature of mariner transposition.
Collapse
Affiliation(s)
| | - Heather Grey
- Institute of Structural and Molecular Biology, School of Biological Sciences, University of Edinburgh, The King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, Scotland, United Kingdom
| | - Douglas R Houston
- Institute of Structural and Molecular Biology, School of Biological Sciences, University of Edinburgh, The King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, Scotland, United Kingdom
| | | | - Julia M Richardson
- Institute of Structural and Molecular Biology, School of Biological Sciences, University of Edinburgh, The King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, Scotland, United Kingdom
| |
Collapse
|
9
|
Trubitsyna M, Morris ER, Finnegan DJ, Richardson JM. Biochemical characterization and comparison of two closely related active mariner transposases. Biochemistry 2014; 53:682-9. [PMID: 24404958 PMCID: PMC3922039 DOI: 10.1021/bi401193w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
![]()
Most DNA transposons move from one
genomic location to another
by a cut-and-paste mechanism and are useful tools for genomic manipulations.
Short inverted repeat (IR) DNA sequences marking each end of the transposon
are recognized by a DNA transposase (encoded by the transposon itself).
This enzyme cleaves the transposon ends and integrates them at a new
genomic location. We report here a comparison of the biophysical and
biochemical properties of two closely related and active mariner/Tc1 family DNA transposases: Mboumar-9 and Mos1. We compared the in vitro cleavage activities of the enzymes on their own
IR sequences, as well as cross-recognition of their inverted repeat
sequences. We found that, like Mos1, untagged recombinant Mboumar-9
transposase is a dimer and forms a stable complex with inverted repeat
DNA in the presence of Mg2+ ions. Mboumar-9 transposase
cleaves its inverted repeat DNA in the manner observed for Mos1 transposase.
There was minimal cross-recognition of IR sequences between Mos1 and
Mboumar-9 transposases, despite these enzymes having 68% identical
amino acid sequences. Transposases sharing common biophysical and
biochemical properties, but retaining recognition specificity toward
their own IR, are a promising platform for the design of chimeric
transposases with predicted and improved sequence recognition.
Collapse
Affiliation(s)
- Maryia Trubitsyna
- School of Biological Sciences, University of Edinburgh , The King's Buildings, Mayfield Road, Edinburgh EH9 3JR, United Kingdom
| | | | | | | |
Collapse
|
10
|
Oliveira SG, Cabral-de-Mello DC, Moura RC, Martins C. Chromosomal organization and evolutionary history of Mariner transposable elements in Scarabaeinae coleopterans. Mol Cytogenet 2013; 6:54. [PMID: 24286129 PMCID: PMC3906913 DOI: 10.1186/1755-8166-6-54] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 10/25/2013] [Indexed: 01/09/2023] Open
Abstract
Background With the aim to increase the knowledge on the evolution of coleopteran genomes, we investigated through cytogenetics and nucleotide sequence analysis Mariner transposons in three Scarabaeinae species (Coprophanaeus cyanescens, C. ensifer and Diabroctis mimas). Results The cytogenetic mapping revealed an accumulation of Mariner transposon in the pericentromeric repetitive regions characterized as rich in heterochromatin and C0t-1 DNA fraction (DNA enriched with high and moderately repeated sequences). Nucleotide sequence analysis of Mariner revealed the presence of two major groups of Mariner copies in the three investigated coleoptera species. Conclusions The Mariner is accumulated in the centromeric area of the coleopteran chromosomes probably as a consequence of the absence of recombination in the heterochromatic regions. Our analysis detected high diversification of Mariner sequences during the evolutionary history of the group. Furthermore, comparisons between the coleopterans sequences with other insects and mammals, suggest that the horizontal transfer (HT) could have acted in the spreading of the Mariner in diverse non-related animal groups.
Collapse
Affiliation(s)
| | | | | | - Cesar Martins
- Morphology Department, Biosciences Institute, UNESP - São Paulo State University, Botucatu, SP 18618-970, Brazil.
| |
Collapse
|
11
|
Gil E, Bosch A, Lampe D, Lizcano JM, Perales JC, Danos O, Chillon M. Functional characterization of the human mariner transposon Hsmar2. PLoS One 2013; 8:e73227. [PMID: 24039890 PMCID: PMC3770610 DOI: 10.1371/journal.pone.0073227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 07/19/2013] [Indexed: 12/23/2022] Open
Abstract
DNA transposons are mobile elements with the ability to mobilize and transport genetic information between different chromosomal loci. Unfortunately, most transposons copies are currently inactivated, little is known about mariner elements in humans despite their role in the evolution of the human genome, even though the Hsmar2 transposon is associated to hotspots for homologous recombination involved in human genetic disorders as Charcot–Marie–Tooth, Prader-Willi/Angelman, and Williams syndromes. This manuscript describes the functional characterization of the human HSMAR2 transposase generated from fossil sequences and shows that the native HSMAR2 is active in human cells, but also in bacteria, with an efficiency similar to other mariner elements. We observe that the sub-cellular localization of HSMAR2 is dependent on the host cell type, and is cytotoxic when overexpressed in HeLa cells. Finally, we also demonstrate that the binding of HSMAR2 to its own ITRs is specific, and that the excision reaction leaves non-canonical footprints both in bacteria and eukaryotic cells.
Collapse
Affiliation(s)
- Estel Gil
- Department of Biochemistry and Molecular Biology, Edifici H, Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Assumpcio Bosch
- Department of Biochemistry and Molecular Biology, Edifici H, Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - David Lampe
- Department of Biological Sciences, Bayer School of Natural and Environmental Sciences, Duquesne University, Pittsburgh, Pennsylvania, United States of America
| | - Jose M. Lizcano
- Department of Biochemistry and Molecular Biology, Institut de Neurociences, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Jose C. Perales
- Department of Physiological Sciences II, IDIBELL, University of Barcelona, Campus de Bellvitge, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Olivier Danos
- Institut National de la Sante et de la recherche Medicale U845, Hôpital Necker Enfants Malades, Université Paris Descartes, Paris, France
| | - Miguel Chillon
- Department of Biochemistry and Molecular Biology, Edifici H, Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain
- Institut Català de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- * E-mail:
| |
Collapse
|
12
|
Esnault C, Chénais B, Casse N, Delorme N, Louarn G, Pilard JF. Electrochemically Modified Carbon and Chromium Surfaces for AFM Imaging of Double-Strand DNA Interaction with Transposase Protein. Chemphyschem 2013; 14:338-45. [DOI: 10.1002/cphc.201200885] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Indexed: 11/08/2022]
|
13
|
|
14
|
Knyazhanskaya ES, Kondrashina OV, Gottikh MB. Approaches to site-directed DNA integration based on transposases and retroviral integrases. Mol Biol 2011. [DOI: 10.1134/s0026893311060069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|