1
|
Merritt J, Kreth J. Illuminating the oral microbiome and its host interactions: tools and approaches for molecular microbiology studies. FEMS Microbiol Rev 2023; 47:fuac050. [PMID: 36549660 PMCID: PMC10719069 DOI: 10.1093/femsre/fuac050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Advancements in DNA sequencing technologies within the last decade have stimulated an unprecedented interest in the human microbiome, largely due the broad diversity of human diseases found to correlate with microbiome dysbiosis. As a direct consequence of these studies, a vast number of understudied and uncharacterized microbes have been identified as potential drivers of mucosal health and disease. The looming challenge in the field is to transition these observations into defined molecular mechanistic studies of symbiosis and dysbiosis. In order to meet this challenge, many of these newly identified microbes will need to be adapted for use in experimental models. Consequently, this review presents a comprehensive overview of the molecular microbiology tools and techniques that have played crucial roles in genetic studies of the bacteria found within the human oral microbiota. Here, we will use specific examples from the oral microbiome literature to illustrate the biology supporting these techniques, why they are needed in the field, and how such technologies have been implemented. It is hoped that this information can serve as a useful reference guide to help catalyze molecular microbiology studies of the many new understudied and uncharacterized species identified at different mucosal sites in the body.
Collapse
Affiliation(s)
- Justin Merritt
- Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, United States
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, United States
| | - Jens Kreth
- Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, United States
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, United States
| |
Collapse
|
2
|
Nukagawa Y, Wakinaka T, Mogi Y, Watanabe J. Targeted Screening for Spontaneous Insertion Mutations in a Lactic Acid Bacterium, Tetragenococcus halophilus. Appl Environ Microbiol 2023; 89:e0200522. [PMID: 36809065 PMCID: PMC10056959 DOI: 10.1128/aem.02005-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/19/2023] [Indexed: 02/23/2023] Open
Abstract
Studies on the microorganisms used in food production are of interest because microbial genotypes are reflected in food qualities such as taste, flavor, and yield. However, several microbes are nonmodel organisms, and their analysis is often limited by the lack of genetic tools. Tetragenococcus halophilus, a halophilic lactic acid bacterium used in soy sauce fermentation starter culture, is one such microorganism. The lack of DNA transformation techniques for T. halophilus makes gene complementation and disruption assays difficult. Here, we report that the endogenous insertion sequence ISTeha4, belonging to the IS4 family, is translocated at an extremely high frequency in T. halophilus and causes insertional mutations at various loci. We developed a method named targeting spontaneous insertional mutations in genomes (TIMING), which combines high-frequency insertional mutations and efficient PCR screening, enabling the isolation of gene mutants of interest from a library. The method provides a reverse genetics and strain improvement tool, does not require the introduction of exogenous DNA constructs, and enables the analysis of nonmodel microorganisms lacking DNA transformation techniques. Our results highlight the important role of insertion sequences as a source of spontaneous mutagenesis and genetic diversity in bacteria. IMPORTANCE Genetic and strain improvement tools to manipulate a gene of interest are required for the nontransformable lactic acid bacterium Tetragenococcus halophilus. Here, we demonstrate that an endogenous transposable element, ISTeha4, is transposed into the host genome at an extremely high frequency. A genotype-based and non-genetically engineered screening system was constructed to isolate knockout mutants using this transposable element. The method described enables a better understanding of the genotype-phenotype relationship and serves as a tool to develop food-grade-appropriate mutants of T. halophilus.
Collapse
Affiliation(s)
- Yuya Nukagawa
- Faculty of Food and Agricultural Sciences, Fukushima University, Fukushima, Japan
| | | | - Yoshinobu Mogi
- Manufacturing Division, Yamasa Corporation, Choshi, Japan
| | - Jun Watanabe
- Faculty of Food and Agricultural Sciences, Fukushima University, Fukushima, Japan
- Manufacturing Division, Yamasa Corporation, Choshi, Japan
- Institute of Fermentation Sciences, Fukushima University, Fukushima, Japan
| |
Collapse
|
3
|
Zhou X, Xie J, Xu C, Cao X, Zou LH, Zhou M. Artificial optimization of bamboo Ppmar2 transposase and host factors effects on Ppmar2 transposition in yeast. FRONTIERS IN PLANT SCIENCE 2022; 13:1004732. [PMID: 36340339 PMCID: PMC9632168 DOI: 10.3389/fpls.2022.1004732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Mariner-like elements (MLEs) are promising tools for gene cloning, gene expression, and gene tagging. We have characterized two MLE transposons from moso bamboo, Ppmar1 and Ppmar2. Ppmar2, is smaller in size and has higher natural activities, thus making it a more potential genomic tool compared to Ppmar1. Using a two-component system consisting of a transposase expression cassette and a non-autonomous transposon cotransformed in yeast, we investigated the transposition activity of Ppmar2 and created hyperactive transposases. Five out of 19 amino acid mutations in Ppmar2 outperformed the wild-type in terms of catalytic activities, especially with the S347R mutant having 6.7-fold higher transposition activity. Moreover, 36 yeast mutants with single-gene deletion were chosen to screen the effects of the host factors on Ppmar2NA transposition. Compared to the control strain (his3Δ), the mobility of Ppmar2 was greatly increased in 9 mutants and dramatically decreased in 7 mutants. The transposition ability in the efm1Δ mutant was 15-fold higher than in the control, while it was lowered to 1/66 in the rtt10Δ mutant. Transcriptomic analysis exhibited that EFM1 defection led to the significantly impaired DDR2, HSP70 expression and dramatically boosted JEN1 expression, whereas RTT10 defection resulted in significantly suppressed expression of UTP20, RPA190 and RRP5. Protein methylation, chromatin and RNA transcription may affect the Ppmar2NA transposition efficiency in yeast. Overall, the findings provided evidence for transposition regulation and offered an alternative genomic tool for moso bamboo and other plants.
Collapse
|
4
|
Chen A, Li Q, Liao P, Zhao Q, Tang S, Wang P, Meng G, Dong Z. Semaphorin-1a-like gene plays an important role in the embryonic development of silkworm, Bombyx mori. PLoS One 2020; 15:e0240193. [PMID: 33007004 PMCID: PMC7531805 DOI: 10.1371/journal.pone.0240193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 09/22/2020] [Indexed: 11/18/2022] Open
Abstract
Fuyin-lethal red egg (Fuyin-lre) is a red egg mutant discovered from the germplasm resource Fuyin of Bombyx mori. The embryo of Fuyin-lre stops developing at the late stage of gastrulation due to chromosome structural variation. In this work, precise mutation sites at both ends of the mutated region were determined, and two inserted sequences with lengths of 1232 bp and 1845 bp were obtained at both ends of the mutation region. Interestingly, a bmmar1 transposon was detected in the inserted 1845 bp sequence. Bmmar1 possesses features of the Tcl/mariner superfamily of transposable elements (TEs), which belongs to class II TEs that use a DNA-mediated "cut and paste" mechanism to transpose. This finding suggests that Fuyin-lre mutation might be related to the "cut and paste" action of bmmar1. The mutation resulted in the deletion of 9 genes in the mutation region, of which the red egg gene re (BMSK0002766) did not affect embryonic development of B. mori, and the BMSK0002765 gene was unexpressed during the early stage of embryonic development. The RNA interference results of the remaining 7 genes suggest that the semaphorin-1a-like gene (BMSK0002764) had a major contribution to the embryonic lethality of Fuyin-lre.
Collapse
Affiliation(s)
- Anli Chen
- The Sericultural and Apicultural Research Institute, Yunnan Academy of Agricultural Sciences, Mengzi Yunnan, China
- The Key Sericultural Laboratory of Shaanxi, Ankang University, Ankang Shaanxi, China
| | - Qiongyan Li
- The Sericultural and Apicultural Research Institute, Yunnan Academy of Agricultural Sciences, Mengzi Yunnan, China
| | - Pengfei Liao
- The Sericultural and Apicultural Research Institute, Yunnan Academy of Agricultural Sciences, Mengzi Yunnan, China
| | - Qiaoling Zhao
- The Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Shunming Tang
- The Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Pingyang Wang
- The Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Gang Meng
- The Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Zhanpeng Dong
- The Sericultural and Apicultural Research Institute, Yunnan Academy of Agricultural Sciences, Mengzi Yunnan, China
- * E-mail:
| |
Collapse
|
5
|
Tellier M, Chalmers R. Compensating for over-production inhibition of the Hsmar1 transposon in Escherichia coli using a series of constitutive promoters. Mob DNA 2020; 11:5. [PMID: 31938044 PMCID: PMC6954556 DOI: 10.1186/s13100-020-0200-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 01/01/2020] [Indexed: 01/03/2023] Open
Abstract
Background Transposable elements (TEs) are a diverse group of self-mobilizing DNA elements. Transposition has been exploited as a powerful tool for molecular biology and genomics. However, transposition is sometimes limited because of auto-regulatory mechanisms that presumably allow them to cohabit within their hosts without causing excessive genomic damage. The papillation assay provides a powerful visual screen for hyperactive transposases. Transposition is revealed by the activation of a promoter-less lacZ gene when the transposon integrates into a non-essential gene on the host chromosome. Transposition events are detected as small blue speckles, or papillae, on the white background of the main Escherichia coli colony. Results We analysed the parameters of the papillation assay including the strength of the transposase transcriptional and translational signals. To overcome certain limitations of inducible promoters, we constructed a set of vectors based on constitutive promoters of different strengths to widen the range of transposase expression. We characterized and validated our expression vectors with Hsmar1, a member of the mariner transposon family. The highest rate of transposition was observed with the weakest promoters. We then took advantage of our approach to investigate how the level of transposition responds to selected point mutations and the effect of joining the transposase monomers into a single-chain dimer. Conclusions We generated a set of vectors to provide a wide range of transposase expression which will be useful for screening libraries of transposase mutants. The use of weak promoters should allow screening for truly hyperactive transposases rather than those that are simply resistant to auto-regulatory mechanisms, such as overproduction inhibition (OPI). We also found that mutations in the Hsmar1 dimer interface provide resistance to OPI in bacteria, which could be valuable for improving bacterial transposon mutagenesis techniques.
Collapse
Affiliation(s)
- Michael Tellier
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH UK.,2Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE UK
| | - Ronald Chalmers
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH UK
| |
Collapse
|
6
|
Chen SP, Wang HH. An Engineered Cas-Transposon System for Programmable and Site-Directed DNA Transpositions. CRISPR J 2019; 2:376-394. [PMID: 31742433 DOI: 10.1089/crispr.2019.0030] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Efficient site-directed insertion of heterologous DNA into a genome remains an outstanding challenge. Recombinases that can integrate kilobase-sized DNA constructs are difficult to reprogram to user-defined loci, while genomic insertion using CRISPR-Cas methods relies on inefficient host DNA repair machinery. Here, we describe a Cas-Transposon (CasTn) system for genomic insertions that uses a Himar1 transposase fused to a catalytically dead dCas9 nuclease to mediate programmable, site-directed transposition. Using cell-free in vitro assays, we demonstrated that the Himar-dCas9 fusion protein increased the frequency of transposon insertion at a single targeted TA dinucleotide by >300-fold compared to a random transposase, and that site-directed transposition is dependent on target choice while robust to log-fold variations in protein and DNA concentrations. We also showed that Himar-dCas9 mediates directed transposition into plasmids in Escherichia coli. This work highlights CasTn as a new modality for host-independent, programmable, site-directed DNA insertions.
Collapse
Affiliation(s)
- Sway P Chen
- Department of Systems Biology, Columbia University Medical Center, New York, New York.,Integrated Program in Cellular, Molecular and Biomedical Studies, Columbia University Medical Center, New York, New York
| | - Harris H Wang
- Department of Systems Biology, Columbia University Medical Center, New York, New York.,Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York
| |
Collapse
|
7
|
Abstract
Mutant libraries, generated by transposons and screened for various phenotypes, have led to many important discoveries regarding gene functions in various organisms. In this chapter we describe the use of plasmid pMN100, a transposon vector constructed to perform in vivo transposition primarily in oral streptococci. Compared to in vitro transposition systems the conditional replicative features of the plasmid, and the inducible expression of the mariner Himar1 transposase, makes pMN100 particularly useful for bacterial strains showing a low transformation frequency. We outline how to transform plasmid pMN100 into Streptococcus mutans, carry out transposon mutagenesis, and determine the chromosomal location of inserted transposons. It is our prospect that the protocols can be used as guidelines for transposon mutagenesis in S. mutans as well as other species of streptococci.
Collapse
Affiliation(s)
- Martin Nilsson
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark
| | - Michael Givskov
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark.,Singapore Center for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Tim Tolker-Nielsen
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
8
|
Xie LQ, Wang PL, Jiang SH, Zhang Z, Zhang HH. Genome-wide identification and evolution of TC1/Mariner in the silkworm (Bombyx mori) genome. Genes Genomics 2018; 40:485-495. [PMID: 29892960 DOI: 10.1007/s13258-018-0648-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/03/2018] [Indexed: 10/18/2022]
Abstract
TC1/Mariner transposons belong to class II transposable elements (TEs) that use DNA-mediated "cut and paste" mechanism to transpose, and they have been identified in almost all organisms. Although silkworm (Bombyx mori) has a large amount of TC1/Mariner elements, the genome wide information of this superfamily in the silkworm is unknown. In this study, we have identified 2670 TC1/Mariner (Bmmar) elements in the silkworm genome. All the TEs were classified into 22 families by means of fgclust, a tool of repetitive sequence classification, seven of which was first reported in this study. Phylogenetic and structure analyses based on the catalytic domain (DDxD/E) of transposase sequences indicated that all members of TC1/Mariner were grouped into five subgroups: Mariner, Tc1, maT, DD40D and DD41D/E. Of these five subgroups, maT rather than Mariner possessed most members of TC1/Mariner (51.23%) in the silkworm genome. In particular, phylogenetic analysis and structure analysis revealed that Bmmar15 (DD40D) formed a new basal subgroup of TC1/Mariner element in insects, which was referred to as bmori. Furthermore, we concluded that DD40D appeared to intermediate between mariner and Tc1. Finally, we estimated the insertion time for each copy of TC1/Mariner in the silkworm and found that most of members were dramatically amplified during a period from 0 to 1 mya. Moreover, the detailed functional data analysis showed that Bmmar1, Bmmar6 and Bmmar9 had EST evidence and intact transposases. These implied that TC1/Mariner might have potential transpositional activity. In conclusion, this study provides some new insights into the landscape, origin and evolution of TC1/Mariner in the insect genomes.
Collapse
Affiliation(s)
- Li-Qin Xie
- College of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Ping-Lan Wang
- College of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Shen-Hua Jiang
- College of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Ze Zhang
- School of Life Sciences, Chongqing University, Chongqing, 400044, China.
| | - Hua-Hao Zhang
- College of Pharmacy and Life Science, Jiujiang University, Jiujiang, China.
| |
Collapse
|
9
|
Zhou MB, Hu H, Miskey C, Lazarow K, Ivics Z, Kunze R, Yang G, Izsvák Z, Tang DQ. Transposition of the bamboo Mariner-like element Ppmar1 in yeast. Mol Phylogenet Evol 2017; 109:367-374. [PMID: 28189615 DOI: 10.1016/j.ympev.2017.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 01/26/2017] [Accepted: 02/03/2017] [Indexed: 12/30/2022]
Abstract
The moso bamboo genome contains the two structurally intact and thus potentially functional mariner-like elements Ppmar1 and Ppmar2. Both elements contain perfect terminal inverted repeats (TIRs) and a full-length intact transposase gene. Here we investigated whether Ppmar1 is functional in yeast (Saccharomyces cerevisiae). We have designed a two-component system consisting of a transposase expression cassette and a non-autonomous transposon on two separate plasmids. We demonstrate that the Ppmar1 transposase Pptpase1 catalyses excision of the non-autonomous Ppmar1NA element from the plasmid and reintegration at TA dinucleotide sequences in the yeast chromosomes. In addition, we generated 14 hyperactive Ppmar1 transposase variants by systematic single amino acid substitutions. The most active transposase variant, S171A, induces 10-fold more frequent Ppmar1NA excisions in yeast than the wild type transposase. The Ppmar1 transposon is a promising tool for insertion mutagenesis in moso bamboo and may be used in other plants as an alternative to the established transposon tagging systems.
Collapse
Affiliation(s)
- Ming-Bing Zhou
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, LinAn, China
| | - Hui Hu
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, LinAn, China
| | - Csaba Miskey
- Paul Ehrlich Institute, Paul Ehrlich Str. 51-59, 63225 Langen, Germany
| | - Katina Lazarow
- Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, 14195 Berlin, Germany
| | - Zoltán Ivics
- Paul Ehrlich Institute, Paul Ehrlich Str. 51-59, 63225 Langen, Germany
| | - Reinhard Kunze
- Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, 14195 Berlin, Germany
| | - Guojun Yang
- Department of Biology, University of Toronto, Mississauga, ON, Canada
| | - Zsuzsanna Izsvák
- Max Delbrück Center for Molecular Medicine in the Helmholtz Society, Berlin, Germany.
| | - Ding-Qin Tang
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, LinAn, China.
| |
Collapse
|
10
|
Abstract
DNA transposons are defined segments of DNA that are able to move from one genomic location to another. Movement is facilitated by one or more proteins, called the transposase, typically encoded by the mobile element itself. Here, we first provide an overview of the classification of such mobile elements in a variety of organisms. From a mechanistic perspective, we have focused on one particular group of DNA transposons that encode a transposase with a DD(E/D) catalytic domain that is topologically similar to RNase H. For these, a number of three-dimensional structures of transpososomes (transposase-nucleic acid complexes) are available, and we use these to describe the basics of their mechanisms. The DD(E/D) group, in addition to being the largest and most common among all DNA transposases, is the one whose members have been used for a wide variety of genomic applications. Therefore, a second focus of the article is to provide a nonexhaustive overview of transposon applications. Although several non-transposon-based approaches to site-directed genome modifications have emerged in the past decade, transposon-based applications are highly relevant when integration specificity is not sought. In fact, for many applications, the almost-perfect randomness and high frequency of integration make transposon-based approaches indispensable.
Collapse
Affiliation(s)
- Alison B. Hickman
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Fred Dyda
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
11
|
|
12
|
Transposase interaction with the β sliding clamp: effects on insertion sequence proliferation and transposition rate. Sci Rep 2015; 5:13329. [PMID: 26306550 PMCID: PMC4549789 DOI: 10.1038/srep13329] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 07/23/2015] [Indexed: 01/05/2023] Open
Abstract
Insertion sequences (ISs) are ubiquitous and abundant mobile genetic elements in prokaryotic genomes. ISs often encode only one protein, the transposase, which catalyzes their transposition. Recent studies have shown that transposases of many different IS families interact with the β sliding clamp, a DNA replication factor of the host. However, it was unclear to what extent this interaction limits or favors the ability of ISs to colonize a chromosome from a phylogenetically-distant organism, or if the strength of this interaction affects the transposition rate. Here we describe the proliferation of a member of the IS1634 family in Acidiphilium over ~600 generations of cultured growth. We demonstrate that the purified transposase binds to the β sliding clamp of Acidiphilium, Leptospirillum and E. coli. Further, we also demonstrate that the Acidiphilium IS1634 transposase binds to the archaeal sliding clamp (PCNA) from Methanosarcina, and that the transposase encoded by Methanosarcina IS1634 binds to Acidiphilium β. Finally, we demonstrate that increasing the strength of the interaction between β and transposase results in a higher transposition rate in vivo. Our results suggest that the interaction could determine the potential of ISs to be mobilized in bacterial populations and also their ability to proliferate within chromosomes.
Collapse
|
13
|
Francez-Charlot A, Kaczmarczyk A, Vorholt JA. The branched CcsA/CckA-ChpT-CtrA phosphorelay of Sphingomonas melonis controls motility and biofilm formation. Mol Microbiol 2015; 97:47-63. [PMID: 25825287 DOI: 10.1111/mmi.13011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2015] [Indexed: 11/29/2022]
Abstract
The CckA-ChpT-CtrA phosphorelay is central to the regulation of the cell cycle in Caulobacter crescentus. The three proteins are conserved in Alphaproteobacteria, but little is known about their roles in most members of this class. Here, we characterized the system in Sphingomonas melonis. We found that the transcription factor CtrA is the master regulator of flagella synthesis genes, the hierarchical transcriptional organization of which is herein described. CtrA also regulates genes involved in exopolysaccharide synthesis and cyclic-di-GMP signaling, and is important for biofilm formation. In addition, the ctrA mutant exhibits an aberrant morphology, suggesting a role for CtrA in cell division. An analysis of the regulation of CtrA indicates that the phosphorelay composed of CckA and ChpT is conserved and that the absence of the bifunctional kinase/phosphatase CckA apparently results in overactivation of CtrA through ChpT. Suppressors of this phenotype identified the hybrid histidine kinase CcsA. Phosphorelays initiated by CckA or CcsA were reconstituted in vitro, suggesting that in S. melonis, CtrA phosphorylation is controlled by a branched pathway upstream of ChpT. This study thus suggests that signals can directly converge at the level of ChpT phosphorylation through multiple hybrid kinases to coordinate a number of important physiological processes.
Collapse
Affiliation(s)
| | | | - Julia A Vorholt
- Institute of Microbiology, ETH Zurich, 8093, Zurich, Switzerland
| |
Collapse
|
14
|
Trubitsyna M, Grey H, Houston DR, Finnegan DJ, Richardson JM. Structural Basis for the Inverted Repeat Preferences of mariner Transposases. J Biol Chem 2015; 290:13531-40. [PMID: 25869132 PMCID: PMC4505599 DOI: 10.1074/jbc.m115.636704] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Indexed: 11/10/2022] Open
Abstract
The inverted repeat (IR) sequences delimiting the left and right ends of many naturally active mariner DNA transposons are non-identical and have different affinities for their transposase. We have compared the preferences of two active mariner transposases, Mos1 and Mboumar-9, for their imperfect transposon IRs in each step of transposition: DNA binding, DNA cleavage, and DNA strand transfer. A 3.1 Å resolution crystal structure of the Mos1 paired-end complex containing the pre-cleaved left IR sequences reveals the molecular basis for the reduced affinity of the Mos1 transposase DNA-binding domain for the left IR as compared with the right IR. For both Mos1 and Mboumar-9, in vitro DNA transposition is most efficient when the preferred IR sequence is present at both transposon ends. We find that this is due to the higher efficiency of cleavage and strand transfer of the preferred transposon end. We show that the efficiency of Mboumar-9 transposition is improved almost 4-fold by changing the 3′ base of the preferred Mboumar-9 IR from guanine to adenine. This preference for adenine at the reactive 3′ end for both Mos1 and Mboumar-9 may be a general feature of mariner transposition.
Collapse
Affiliation(s)
| | - Heather Grey
- Institute of Structural and Molecular Biology, School of Biological Sciences, University of Edinburgh, The King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, Scotland, United Kingdom
| | - Douglas R Houston
- Institute of Structural and Molecular Biology, School of Biological Sciences, University of Edinburgh, The King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, Scotland, United Kingdom
| | | | - Julia M Richardson
- Institute of Structural and Molecular Biology, School of Biological Sciences, University of Edinburgh, The King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, Scotland, United Kingdom
| |
Collapse
|
15
|
Dornan J, Grey H, Richardson JM. Structural role of the flanking DNA in mariner transposon excision. Nucleic Acids Res 2015; 43:2424-32. [PMID: 25662605 PMCID: PMC4344528 DOI: 10.1093/nar/gkv096] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 01/26/2015] [Accepted: 01/27/2015] [Indexed: 01/23/2023] Open
Abstract
During cut-and-paste mariner/Tc1 transposition, transposon DNA is cut precisely at its junction with flanking DNA, ensuring the transposon is neither shortened nor lengthened with each transposition event. Each transposon end is flanked by a TpA dinucleotide: the signature target site duplication of mariner/Tc1 transposition. To establish the role of this sequence in accurate DNA cleavage, we have determined the crystal structure of a pre-second strand cleavage mariner Mos1 transpososome. The structure reveals the route of an intact DNA strand through the transposase active site before second strand cleavage. The crossed architecture of this pre-second strand cleavage paired-end complex supports our proposal that second strand cleavage occurs in trans. The conserved mariner transposase WVPHEL and YSPDL motifs position the strand for accurate DNA cleavage. Base-specific recognition of the flanking DNA by conserved amino acids is revealed, defining a new role for the WVPHEL motif in mariner transposition and providing a molecular explanation for in vitro mutagenesis data. Comparison of the pre-TS cleavage and post-cleavage Mos1 transpososomes with structures of Prototype Foamy Virus intasomes suggests a binding mode for target DNA prior to Mos1 transposon integration.
Collapse
Affiliation(s)
- Jacqueline Dornan
- Institute of Structural and Molecular Biology, School of Biological Sciences, University of Edinburgh, The King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Heather Grey
- Institute of Structural and Molecular Biology, School of Biological Sciences, University of Edinburgh, The King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Julia M Richardson
- Institute of Structural and Molecular Biology, School of Biological Sciences, University of Edinburgh, The King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| |
Collapse
|
16
|
Claeys Bouuaert C, Walker N, Liu D, Chalmers R. Crosstalk between transposase subunits during cleavage of the mariner transposon. Nucleic Acids Res 2014; 42:5799-808. [PMID: 24623810 PMCID: PMC4027188 DOI: 10.1093/nar/gku172] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 02/10/2014] [Accepted: 02/11/2014] [Indexed: 12/18/2022] Open
Abstract
Mariner transposition is a complex reaction that involves three recombination sites and six strand breaking and joining reactions. This requires precise spatial and temporal coordination between the different components to ensure a productive outcome and minimize genomic instability. We have investigated how the cleavage events are orchestrated within the mariner transpososome. We find that cleavage of the non-transferred strand is completed at both transposon ends before the transferred strand is cleaved at either end. By introducing transposon-end mutations that interfere with cleavage, but leave transpososome assembly unaffected, we demonstrate that a structural transition preceding transferred strand cleavage is coordinated between the two halves of the transpososome. Since mariner lacks the DNA hairpin intermediate, this transition probably reflects a reorganization of the transpososome to allow the access of different monomers onto the second pair of strands, or the relocation of the DNA within the same active site between two successive hydrolysis events. Communication between transposase subunits also provides a failsafe mechanism that restricts the generation of potentially deleterious double-strand breaks at isolated sites. Finally, we identify transposase mutants that reveal that the conserved WVPHEL motif provides a structural determinant of the coordination mechanism.
Collapse
Affiliation(s)
- Corentin Claeys Bouuaert
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Neil Walker
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Danxu Liu
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Ronald Chalmers
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| |
Collapse
|
17
|
Nilsson M, Christiansen N, Høiby N, Twetman S, Givskov M, Tolker-Nielsen T. A mariner transposon vector adapted for mutagenesis in oral streptococci. Microbiologyopen 2014; 3:333-40. [PMID: 24753509 PMCID: PMC4082707 DOI: 10.1002/mbo3.171] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 02/26/2014] [Accepted: 02/28/2014] [Indexed: 11/06/2022] Open
Abstract
This article describes the construction and characterization of a mariner-based transposon vector designed for use in oral streptococci, but with a potential use in other Gram-positive bacteria. The new transposon vector, termed pMN100, contains the temperature-sensitive origin of replication repATs-pWV01, a selectable kanamycin resistance gene, a Himar1 transposase gene regulated by a xylose-inducible promoter, and an erythromycin resistance gene flanked by himar inverted repeats. The pMN100 plasmid was transformed into Streptococcus mutans UA159 and transposon mutagenesis was performed via a protocol established to perform high numbers of separate transpositions despite a low frequency of transposition. The distribution of transposon inserts in 30 randomly picked mutants suggested that mariner transposon mutagenesis is unbiased in S. mutans. A generated transposon mutant library containing 5000 mutants was used in a screen to identify genes involved in the production of sucrose-dependent extracellular matrix components. Mutants with transposon inserts in genes encoding glycosyltransferases and the competence-related secretory locus were predominantly found in this screen.
Collapse
Affiliation(s)
- Martin Nilsson
- Costerton Biofilm Center, Department of International Health, Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
18
|
Bouuaert CC, Tellier M, Chalmers R. One to rule them all: A highly conserved motif in mariner transposase controls multiple steps of transposition. Mob Genet Elements 2014; 4:e28807. [PMID: 24812590 PMCID: PMC4013102 DOI: 10.4161/mge.28807] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 04/01/2014] [Accepted: 04/07/2014] [Indexed: 01/16/2023] Open
Abstract
The development of transposon-based genome manipulation tools can benefit greatly from understanding transposons’ inherent regulatory mechanisms. The Tc1-mariner transposons, which are being widely used in biotechnological applications, are subject to a self-inhibitory mechanism whereby increasing transposase expression beyond a certain point decreases the rate of transposition. In a recent paper, Liu and Chalmers performed saturating mutagenesis on the highly conserved WVPHEL motif in the mariner-family transposase from the Hsmar1 element. Curiously, they found that the majority of all possible single mutations were hyperactive. Biochemical characterizations of the mutants revealed that the hyperactivity is due to a defect in communication between transposase subunits, which normally regulates transposition by reducing the rate of synapsis. This provides important clues for improving transposon-based tools. However, some WVPHEL mutants also showed features that would be undesirable for most biotechnological applications: they showed uncontrolled DNA cleavage activities and defects in the coordination of cleavage between the two transposon ends. The study illustrates how the knowledge of inhibitory mechanisms can help improve transposon tools but also highlights an important challenge, which is to specifically target a regulatory mechanism without affecting other important functions of the transposase.
Collapse
Affiliation(s)
- Corentin Claeys Bouuaert
- Molecular Biology Program; Howard Hughes Medical Institute; Memorial Sloan Kettering Cancer Center; New York, NY USA
| | - Michael Tellier
- School of Life Sciences; University of Nottingham; Queen's Medical Centre; Nottingham, UK
| | - Ronald Chalmers
- School of Life Sciences; University of Nottingham; Queen's Medical Centre; Nottingham, UK
| |
Collapse
|
19
|
Liu D, Chalmers R. Hyperactive mariner transposons are created by mutations that disrupt allosterism and increase the rate of transposon end synapsis. Nucleic Acids Res 2013; 42:2637-45. [PMID: 24319144 PMCID: PMC3936726 DOI: 10.1093/nar/gkt1218] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
New applications for transposons in vertebrate genetics have spurred efforts to develop hyperactive variants. Typically, a genetic screen is used to identify several hyperactive point mutations, which are then incorporated in a single transposase gene. However, the mechanisms responsible for the increased activity are unknown. Here we show that several point mutations in the mariner transposase increase their activities by disrupting the allostery that normally serves to downregulate transposition by slowing synapsis of the transposon ends. We focused on the conserved WVPHEL amino acid motif, which forms part of the mariner transposase dimer interface. We generated almost all possible single substitutions of the W, V, E and L residues and found that the majority are hyperactive. Biochemical analysis of the mutations revealed that they disrupt signals that pass between opposite sides of the developing transpososome in response to transposon end binding. In addition to their role in allostery, the signals control the initiation of catalysis, thereby preventing non-productive double-strand breaks. Finally, we note that such breaks may explain the puzzling ‘self-inflicted wounds’ at the ends of the Mos1 transposon in Drosophila.
Collapse
Affiliation(s)
- Danxu Liu
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | | |
Collapse
|
20
|
Transposon tools: worldwide landscape of intellectual property and technological developments. Genetica 2009; 138:285-99. [PMID: 19957019 DOI: 10.1007/s10709-009-9426-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Accepted: 11/03/2009] [Indexed: 10/20/2022]
Abstract
DNA transposons are considered to be good candidates for developing tools for genome engineering, insertional mutagenesis and gene delivery for therapeutic purposes, as illustrated by the recent first clinical trial of a transposon. In this article we set out to highlight the interest of patent information, and to develop a strategy for the technological development of transposon tools, similar to what has been done in many other fields. We propose a patent landscape for transposon tools, including the changes in international patent applications, and review the leading inventors and applicants. We also provide an overview of the potential patent portfolio for the prokaryotic and eukaryotic transposons that are exploited by spin-off companies. Finally, we discuss the difficulties involved in tracing relevant state-of-the-art of articles and patent documents, based on the example of one of the most promising transposon systems, including all the impacts on the technological development of transposon tools.
Collapse
|