1
|
Ahmad SF, Singchat W, Jehangir M, Suntronpong A, Panthum T, Malaivijitnond S, Srikulnath K. Dark Matter of Primate Genomes: Satellite DNA Repeats and Their Evolutionary Dynamics. Cells 2020; 9:E2714. [PMID: 33352976 PMCID: PMC7767330 DOI: 10.3390/cells9122714] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
A substantial portion of the primate genome is composed of non-coding regions, so-called "dark matter", which includes an abundance of tandemly repeated sequences called satellite DNA. Collectively known as the satellitome, this genomic component offers exciting evolutionary insights into aspects of primate genome biology that raise new questions and challenge existing paradigms. A complete human reference genome was recently reported with telomere-to-telomere human X chromosome assembly that resolved hundreds of dark regions, encompassing a 3.1 Mb centromeric satellite array that had not been identified previously. With the recent exponential increase in the availability of primate genomes, and the development of modern genomic and bioinformatics tools, extensive growth in our knowledge concerning the structure, function, and evolution of satellite elements is expected. The current state of knowledge on this topic is summarized, highlighting various types of primate-specific satellite repeats to compare their proportions across diverse lineages. Inter- and intraspecific variation of satellite repeats in the primate genome are reviewed. The functional significance of these sequences is discussed by describing how the transcriptional activity of satellite repeats can affect gene expression during different cellular processes. Sex-linked satellites are outlined, together with their respective genomic organization. Mechanisms are proposed whereby satellite repeats might have emerged as novel sequences during different evolutionary phases. Finally, the main challenges that hinder the detection of satellite DNA are outlined and an overview of the latest methodologies to address technological limitations is presented.
Collapse
Affiliation(s)
- Syed Farhan Ahmad
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (M.J.); (A.S.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok 10900, Thailand
| | - Worapong Singchat
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (M.J.); (A.S.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok 10900, Thailand
| | - Maryam Jehangir
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (M.J.); (A.S.); (T.P.)
- Department of Structural and Functional Biology, Institute of Bioscience at Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo 18618-689, Brazil
| | - Aorarat Suntronpong
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (M.J.); (A.S.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok 10900, Thailand
| | - Thitipong Panthum
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (M.J.); (A.S.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok 10900, Thailand
| | - Suchinda Malaivijitnond
- National Primate Research Center of Thailand, Chulalongkorn University, Saraburi 18110, Thailand;
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kornsorn Srikulnath
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (M.J.); (A.S.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok 10900, Thailand
- National Primate Research Center of Thailand, Chulalongkorn University, Saraburi 18110, Thailand;
- Center of Excellence on Agricultural Biotechnology (AG-BIO/PERDO-CHE), Bangkok 10900, Thailand
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
| |
Collapse
|
2
|
Suntsova MV, Buzdin AA. Differences between human and chimpanzee genomes and their implications in gene expression, protein functions and biochemical properties of the two species. BMC Genomics 2020; 21:535. [PMID: 32912141 PMCID: PMC7488140 DOI: 10.1186/s12864-020-06962-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 07/29/2020] [Indexed: 12/24/2022] Open
Abstract
Chimpanzees are the closest living relatives of humans. The divergence between human and chimpanzee ancestors dates to approximately 6,5-7,5 million years ago. Genetic features distinguishing us from chimpanzees and making us humans are still of a great interest. After divergence of their ancestor lineages, human and chimpanzee genomes underwent multiple changes including single nucleotide substitutions, deletions and duplications of DNA fragments of different size, insertion of transposable elements and chromosomal rearrangements. Human-specific single nucleotide alterations constituted 1.23% of human DNA, whereas more extended deletions and insertions cover ~ 3% of our genome. Moreover, much higher proportion is made by differential chromosomal inversions and translocations comprising several megabase-long regions or even whole chromosomes. However, despite of extensive knowledge of structural genomic changes accompanying human evolution we still cannot identify with certainty the causative genes of human identity. Most structural gene-influential changes happened at the level of expression regulation, which in turn provoked larger alterations of interactome gene regulation networks. In this review, we summarized the available information about genetic differences between humans and chimpanzees and their potential functional impacts on differential molecular, anatomical, physiological and cognitive peculiarities of these species.
Collapse
Affiliation(s)
- Maria V Suntsova
- Institute for personalized medicine, I.M. Sechenov First Moscow State Medical University, Trubetskaya 8, Moscow, Russia
| | - Anton A Buzdin
- Institute for personalized medicine, I.M. Sechenov First Moscow State Medical University, Trubetskaya 8, Moscow, Russia. .,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya, 16/10, Moscow, Russia. .,Omicsway Corp, Walnut, CA, USA. .,Moscow Institute of Physics and Technology (National Research University), 141700, Moscow, Russia.
| |
Collapse
|
3
|
Cechova M, Harris RS, Tomaszkiewicz M, Arbeithuber B, Chiaromonte F, Makova KD. High Satellite Repeat Turnover in Great Apes Studied with Short- and Long-Read Technologies. Mol Biol Evol 2019; 36:2415-2431. [PMID: 31273383 PMCID: PMC6805231 DOI: 10.1093/molbev/msz156] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 12/23/2022] Open
Abstract
Satellite repeats are a structural component of centromeres and telomeres, and in some instances, their divergence is known to drive speciation. Due to their highly repetitive nature, satellite sequences have been understudied and underrepresented in genome assemblies. To investigate their turnover in great apes, we studied satellite repeats of unit sizes up to 50 bp in human, chimpanzee, bonobo, gorilla, and Sumatran and Bornean orangutans, using unassembled short and long sequencing reads. The density of satellite repeats, as identified from accurate short reads (Illumina), varied greatly among great ape genomes. These were dominated by a handful of abundant repeated motifs, frequently shared among species, which formed two groups: 1) the (AATGG)n repeat (critical for heat shock response) and its derivatives; and 2) subtelomeric 32-mers involved in telomeric metabolism. Using the densities of abundant repeats, individuals could be classified into species. However, clustering did not reproduce the accepted species phylogeny, suggesting rapid repeat evolution. Several abundant repeats were enriched in males versus females; using Y chromosome assemblies or Fluorescent In Situ Hybridization, we validated their location on the Y. Finally, applying a novel computational tool, we identified many satellite repeats completely embedded within long Oxford Nanopore and Pacific Biosciences reads. Such repeats were up to 59 kb in length and consisted of perfect repeats interspersed with other similar sequences. Our results based on sequencing reads generated with three different technologies provide the first detailed characterization of great ape satellite repeats, and open new avenues for exploring their functions.
Collapse
Affiliation(s)
- Monika Cechova
- Department of Biology, Pennsylvania State University, University Park, PA
| | - Robert S Harris
- Department of Biology, Pennsylvania State University, University Park, PA
| | | | | | - Francesca Chiaromonte
- Department of Statistics, Pennsylvania State University, University Park, PA
- EMbeDS, Sant’Anna School of Advanced Studies, Pisa, Italy
- Center for Medical Genomics, Penn State, University Park, PA
| | - Kateryna D Makova
- Department of Biology, Pennsylvania State University, University Park, PA
- Center for Medical Genomics, Penn State, University Park, PA
| |
Collapse
|
4
|
Hirai H, Hirai Y, Udono T, Matsubayashi K, Tosi AJ, Koga A. Structural variations of subterminal satellite blocks and their source mechanisms as inferred from the meiotic configurations of chimpanzee chromosome termini. Chromosome Res 2019; 27:321-332. [PMID: 31418128 DOI: 10.1007/s10577-019-09615-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/09/2019] [Accepted: 07/29/2019] [Indexed: 10/26/2022]
Abstract
African great apes have large constitutive heterochromatin (C-band) blocks in subtelomeric regions of the majority of their chromosomes, but humans lack these. Additionally, the chimpanzee meiotic cell division process demonstrates unique partial terminal associations in the first meiotic prophase (pachytene). These are likely formed as a result of interaction among subtelomeric C-band blocks. We thus conducted an extensive study to define the features in the subtelomeric heterochromatic regions of chimpanzee chromosomes undergoing mitotic metaphase and meiotic cell division. Molecular cytogenetic analyses with probes of both subterminal satellite DNA (a main component of C-band) and rDNA demonstrated principles of interaction among DNA arrays. The results suggest that homologous and ectopic recombination through persistent subtelomeric associations (post-bouquet association observed in 32% of spermatocytes in the pachytene stage) appears to create variability in heterochromatin patterns and simultaneously restrain subtelomeric genome polymorphisms. That is, the meeting of non-homologous chromosome termini sets the stage for ectopic pairing which, in turn, is the mechanism for generating variability and genomic dispersion of subtelomeric C-band blocks through a system of concerted evolution. Comparison between the present study and previous reports indicated that the chromosomal distribution rate of sutelomeric regions seems to have antagonistic correlation with arm numbers holding subterminal satellite blocks in humans, chimpanzees, and gorillas. That is, the increase of subterminal satellite blocks probably reduces genomic diversity in the subtelomeric regions. The acquisition vs. loss of the subtelomeric C-band blocks is postulated as the underlying engine of this chromosomal differentiation yielded by meiotic chromosomal interaction.
Collapse
Affiliation(s)
- Hirohisa Hirai
- Primate Research Institute, Kyoto University, Inuyama, Aichi, 484-8506, Japan. .,The Unit of Human-Nature Interlaced Life Science, Kyoto University Research Coordination Alliance, Kyoto, Japan.
| | - Yuriko Hirai
- Primate Research Institute, Kyoto University, Inuyama, Aichi, 484-8506, Japan
| | - Toshifumi Udono
- Kumamoto Sanctuary, Wildlife Research Center, Kyoto University, Uto, Kumamoto, Japan
| | | | - Anthony J Tosi
- Department of Anthropology and School of Biomedical Science, Kent State University, Kent, OH, 44242, USA
| | - Akihiko Koga
- Primate Research Institute, Kyoto University, Inuyama, Aichi, 484-8506, Japan
| |
Collapse
|
5
|
Hirai H, Go Y, Hirai Y, Rakotoarisoa G, Pamungkas J, Baicharoen S, Jahan I, Sajuthi D, Tosi AJ. Considerable Synteny and Sequence Similarity of Primate Chromosomal Region VIIq31. Cytogenet Genome Res 2019; 158:88-97. [PMID: 31220833 DOI: 10.1159/000500796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2009] [Indexed: 11/19/2022] Open
Abstract
Human chromosome 7 has been the focus of many behavioral, genetic, and medical studies because it carries genes related to cancer and neurodevelopment. We examined the evolution of the chromosome 7 homologs, and the 7q31 region in particular, using chromosome painting analyses and 3 paint probes derived from (i) the whole of chimpanzee chromosome VII (wcVII), (ii) human 7q31 (h7q31), and (iii) the chimpanzee homolog VIIq31 (cVIIq31). The wcVII probe was used instead of the whole human chromosome 7 because the chimpanzee contains additional C-bands and revealed large areas of synteny conservation as well as fragmentation across 20 primate species. Analyses focusing specifically on the 7q31 homolog and vicinity revealed considerable conservation across lineages with 2 exceptions. First, the probes verified an insertion of repetitive sequence at VIIq22 in chimpanzees and bonobos and also detected the sequence in most subtelomeres of the African apes. Second, a paracentric inversion with a breakpoint in the cVIIq31 block was found in the common marmoset, confirming earlier studies. Subsequent in silico comparative genome analysis of 17 primate species revealed that VIIq31.1 is more significantly conserved at the sequence level than other regions of chromosome VII, which indicates that its components are likely responsible for critical shared traits across the order, including conditions necessary for proper human development and wellbeing.
Collapse
|
6
|
Koga A, Hirai Y, Terada S, Jahan I, Baicharoen S, Arsaithamkul V, Hirai H. Evolutionary origin of higher-order repeat structure in alpha-satellite DNA of primate centromeres. DNA Res 2014; 21:407-15. [PMID: 24585002 PMCID: PMC4131833 DOI: 10.1093/dnares/dsu005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Alpha-satellite DNA (AS) is a main DNA component of primate centromeres, consisting of tandemly repeated units of ∼170 bp. The AS of humans contains sequences organized into higher-order repeat (HOR) structures, in which a block of multiple repeat units forms a larger repeat unit and the larger units are repeated tandemly. The presence of HOR in AS is widely thought to be unique to hominids (family Hominidae; humans and great apes). Recently, we have identified an HOR-containing AS in the siamang, which is a small ape species belonging to the genus Symphalangus in the family Hylobatidae. This result supports the view that HOR in AS is an attribute of hominoids (superfamily Hominoidea) rather than hominids. A single example is, however, not sufficient for discussion of the evolutionary origin of HOR-containing AS. In the present study, we developed an efficient method for detecting signs of large-scale HOR and demonstrated HOR of AS in all the three other genera. Thus, AS organized into HOR occurs widely in hominoids. Our results indicate that (i) HOR-containing AS was present in the last common ancestor of hominoids or (ii) HOR-containing AS emerged independently in most or all basal branches of hominoids. We have also confirmed HOR occurrence in centromeric AS in the Hylobatidae family, which remained unclear in our previous study because of the existence of AS in subtelomeric regions, in addition to centromeres, of siamang chromosomes.
Collapse
Affiliation(s)
- Akihiko Koga
- Primate Research Institute, Kyoto University, Inuyama City 484-8506, Japan
| | - Yuriko Hirai
- Primate Research Institute, Kyoto University, Inuyama City 484-8506, Japan
| | - Shoko Terada
- Primate Research Institute, Kyoto University, Inuyama City 484-8506, Japan
| | - Israt Jahan
- Primate Research Institute, Kyoto University, Inuyama City 484-8506, Japan
| | - Sudarath Baicharoen
- Bureau of Conservation Research and Education, Zoological Park Organization, Bangkok 10300, Thailand
| | - Visit Arsaithamkul
- Bureau of Conservation Research and Education, Zoological Park Organization, Bangkok 10300, Thailand
| | - Hirohisa Hirai
- Primate Research Institute, Kyoto University, Inuyama City 484-8506, Japan
| |
Collapse
|
7
|
Prakhongcheep O, Chaiprasertsri N, Terada S, Hirai Y, Srikulnath K, Hirai H, Koga A. Heterochromatin blocks constituting the entire short arms of acrocentric chromosomes of Azara's owl monkey: formation processes inferred from chromosomal locations. DNA Res 2013; 20:461-70. [PMID: 23761219 PMCID: PMC3789557 DOI: 10.1093/dnares/dst023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Centromeres and telomeres of higher eukaryotes generally contain repetitive sequences, which often form pericentric or subtelomeric heterochromatin blocks. C-banding analysis of chromosomes of Azara's owl monkey, a primate species, showed that the short arms of acrocentric chromosomes consist mostly or solely of constitutive heterochromatin. The purpose of the present study was to determine which category, pericentric, or subtelomeric is most appropriate for this heterochromatin, and to infer its formation processes. We cloned and sequenced its DNA component, finding it to be a tandem repeat sequence comprising 187-bp repeat units, which we named OwlRep. Subsequent hybridization analyses revealed that OwlRep resides in the pericentric regions of a small number of metacentric chromosomes, in addition to the short arms of acrocentric chromosomes. Further, in the pericentric regions of the acrocentric chromosomes, OwlRep was observed on the short-arm side only. This distribution pattern of OwlRep among chromosomes can be simply and sufficiently explained by assuming (i) OwlRep was transferred from chromosome to chromosome by the interaction of pericentric heterochromatin, and (ii) it was amplified there as subtelomeric heterochromatin. OwlRep carries several direct and inverted repeats within its repeat units. This complex structure may lead to a higher frequency of chromosome scission and may thus be a factor in the unique distribution pattern among chromosomes. Neither OwlRep nor similar sequences were found in the genomes of the other New World monkey species we examined, suggesting that OwlRep underwent rapid amplification after the divergence of the owl monkey lineage from lineages of the other species.
Collapse
|
8
|
Baicharoen S, Arsaithamkul V, Hirai Y, Hara T, Koga A, Hirai H. In situ hybridization analysis of gibbon chromosomes suggests that amplification of alpha satellite DNA in the telomere region is confined to two of the four genera. Genome 2012. [DOI: 10.1139/gen-2012-0123] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The siamang (Symphalangus syndactylus), a species of the family Hylobatidae (gibbons), carries large blocks of constitutive heterochromatin in the telomere region of chromosomes. We recently found that alpha satellite DNA constitutes these heterochromatin blocks as a main component. Alpha satellite DNA, tandem repeat sequences of 171-bp repeat units, is a major component of centromeres in primates. In addition to the siamang, the white-cheeked gibbon (Nomascus leucogenys) was previously found to carry the alpha satellite DNA in the telomere region, although not as large a scale as the siamang. Gibbons comprise four genera: Hoolock, Hylobates, Nomascus, and Symphalangus. Here, we report that the amplification of alpha satellite DNA in the telomere region is probably confined to two genera: Nomascus and Symphalangus. We examined one species of Hoolock and four species of Hylobates and obtained evidence against such an amplification event in these species. The phylogenetic relationship of the four gibbon genera remains unclear. One simple explanation for the current distribution of the telomere region alpha satellite DNA would be that Nomascus and Symphalangus are relatively closely related and the amplification occurred in their common ancestor.
Collapse
Affiliation(s)
- Sudarath Baicharoen
- Primate Research Institute, Kyoto University, Inuyama City 484-8506, Japan
- Bureau of Conservation Research and Education, Zoological Park Organization, Bangkok 10300, Thailand
| | - Visit Arsaithamkul
- Bureau of Conservation Research and Education, Zoological Park Organization, Bangkok 10300, Thailand
| | - Yuriko Hirai
- Primate Research Institute, Kyoto University, Inuyama City 484-8506, Japan
| | - Toru Hara
- Primate Research Institute, Kyoto University, Inuyama City 484-8506, Japan
| | - Akihiko Koga
- Primate Research Institute, Kyoto University, Inuyama City 484-8506, Japan
| | - Hirohisa Hirai
- Primate Research Institute, Kyoto University, Inuyama City 484-8506, Japan
| |
Collapse
|
9
|
Hara T, Hirai Y, Jahan I, Hirai H, Koga A. Tandem repeat sequences evolutionarily related to SVA-type retrotransposons are expanded in the centromere region of the western hoolock gibbon, a small ape. J Hum Genet 2012; 57:760-5. [DOI: 10.1038/jhg.2012.107] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
10
|
Repetitive sequences originating from the centromere constitute large-scale heterochromatin in the telomere region in the siamang, a small ape. Heredity (Edinb) 2012; 109:180-7. [PMID: 22669075 DOI: 10.1038/hdy.2012.28] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Chromosomes of the siamang Symphalangus syndactylus (a small ape) carry large-scale heterochromatic structures at their ends. These structures look similar, by chromosome C-banding, to chromosome-end heterochromatin found in chimpanzee, bonobo and gorilla (African great apes), of which a major component is tandem repeats of 32-bp-long, AT-rich units. In the present study, we identified repetitive sequences that are a major component of the siamang heterochromatin. Their repeat units are 171 bp in length, and exhibit sequence similarity to alpha satellite DNA, a major component of the centromeres in primates. Thus, the large-scale heterochromatic structures have different origins between the great apes and the small ape. The presence of alpha satellite DNA in the telomere region has previously been reported in the white-cheeked gibbon Nomascus leucogenys, another small ape species. There is, however, a difference in the size of the telomere-region alpha satellite DNA, which is far larger in the siamang. It is not known whether the sequences of these two species (of different genera) have a common origin because the phylogenetic relationship of genera within the small ape family is still not clear. Possible evolutionary scenarios are discussed.
Collapse
|
11
|
Ari E, Ittzés P, Podani J, Thi QCL, Jakó É. Comparison of Boolean analysis and standard phylogenetic methods using artificially evolved and natural mt-tRNA sequences from great apes. Mol Phylogenet Evol 2012; 63:193-202. [DOI: 10.1016/j.ympev.2012.01.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 11/17/2011] [Accepted: 01/11/2012] [Indexed: 11/28/2022]
|
12
|
Ventura M, Catacchio CR, Sajjadian S, Vives L, Sudmant PH, Marques-Bonet T, Graves TA, Wilson RK, Eichler EE. The evolution of African great ape subtelomeric heterochromatin and the fusion of human chromosome 2. Genome Res 2012; 22:1036-49. [PMID: 22419167 PMCID: PMC3371704 DOI: 10.1101/gr.136556.111] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chimpanzee and gorilla chromosomes differ from human chromosomes by the presence of large blocks of subterminal heterochromatin thought to be composed primarily of arrays of tandem satellite sequence. We explore their sequence composition and organization and show a complex organization composed of specific sets of segmental duplications that have hyperexpanded in concert with the formation of subterminal satellites. These regions are highly copy number polymorphic between and within species, and copy number differences involving hundreds of copies can be accurately estimated by assaying read-depth of next-generation sequencing data sets. Phylogenetic and comparative genomic analyses suggest that the structures have arisen largely independently in the two lineages with the exception of a few seed sequences present in the common ancestor of humans and African apes. We propose a model where an ancestral human-chimpanzee pericentric inversion and the ancestral chromosome 2 fusion both predisposed and protected the chimpanzee and human genomes, respectively, to the formation of subtelomeric heterochromatin. Our findings highlight the complex interplay between duplicated sequences and chromosomal rearrangements that rapidly alter the cytogenetic landscape in a short period of evolutionary time.
Collapse
Affiliation(s)
- Mario Ventura
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Hara T, Hirai Y, Baicharoen S, Hayakawa T, Hirai H, Koga A. A novel composite retrotransposon derived from or generated independently of the SVA (SINE/VNTR/ Alu) transposon has undergone proliferation in gibbon genomes. Genes Genet Syst 2012; 87:181-90. [DOI: 10.1266/ggs.87.181] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Toru Hara
- Primate Research Institute, Kyoto University
| | | | | | - Takashi Hayakawa
- Primate Research Institute, Kyoto University
- Japan Society for Promotion of Science
| | | | | |
Collapse
|