1
|
Verzi DH, De Santi NA, Olivares AI, Morgan CC, Basso NG, Brook F. A new species of the highly polytypic South American rodent Ctenomys increases the diversity of the magellanicus clade. VERTEBRATE ZOOLOGY 2023. [DOI: 10.3897/vz.73.e96656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
The subterranean rodent Ctenomys is the most polytypic South American mammal genus and one of the most speciose and rapidly diversifying mammal genera in the world. Its systematics is unstable due to the underlying accelerated diversification processes that give rise to evolutionary lineages at different stages of differentiation and to remarkable morphological homogeneity even among long-differentiated species. As a result, species boundaries are often difficult to define. Diversity of this genus in the coastal area of central Argentina has been extensively studied, with two independent lineages currently recognized while a distinct third population had not been previously detected. Through a phylogenetic analysis based on combined morphological and molecular evidence, Bayesian estimates of divergence times, and morphometric and morphological assessments, we recognize this third population as an independently evolving lineage. The new species, Ctenomys pulcersp. nov., is here described for both the living fauna and the fossil record of the Pampean region of central Argentina. According to phylogenetic results, Ctenomys pulcersp. nov. belongs to the essentially Patagonian magellanicus clade, and would have diverged from its sister species, Ctenomys bidaui, during the middle Pleistocene (ca. 0.4 Ma). Its current distribution in the fixed and semifixed dunes of the coastal Pampean region is assumed to represent a relict of a wider and continuous distribution of potentially suitable environments during the late Pleistocene. Ctenomys pulcersp. nov. occurs in a particularly fragile natural system subjected to profound disturbances caused by diverse anthropic actions and therefore measures for the conservation of its habitat will be indispensable.
Collapse
|
2
|
Austrich A, Tomasco IH, Mapelli FJ, Kittlein MJ, Cutrera AP, Mora MS. Appearances are deceptive: a cryptic lineage within the assumed distributional boundaries of Ctenomys talarum (Rodentia, Ctenomyidae). J Mammal 2023. [DOI: 10.1093/jmammal/gyac116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Abstract
The coastal dunes of the southeast of Buenos Aires province, Argentina, present two different described species of tuco-tucos: Ctenomys talarum and C. australis. Formerly, C. talarum was subdivided into three subspecies (C. t. talarum, C. t. recessus, and C. t. occidentalis), mainly based on its geographic distribution and phenotypic variation in characters of external morphology (e.g., body size and pelage color). This study assesses the phylogenetic relationships of C. talarum, focusing on the populations at the western end of its coastal distribution (localities of Pehuen-Có and Sauce Grande), which have been previously identified as highly genetically divergent. In this regard, populations distributed throughout the range of the species were sampled. Complete DNA sequences of the mitochondrial cytochrome b gene (1,140 bp), partial sequences of the mitochondrial D-loop region (426 bp), and partial sequences of the nuclear DNA intron 8 of the β-fibrinogen (about 870 bp) gene were used for the analyses. Phylogenetic inferences based on mitochondrial and nuclear markers were performed separately or combined to obtain a species tree. Populations distributed at the western end of the coastal dunes (between Pehuen-Có and Sauce Grande), previously assumed as C. talarum, were found to belong to an independent lineage relative to the other populations from the Pampas region. The average genetic distance between these two lineages is within the order of the genetic distances observed between different species of the genus. Also, our results show that this lineage of Ctenomys presents a high affinity with the magellanicus group, which is distributed further south, in Patagonia. In conclusion, tuco-tuco populations occurring in the coastal expanse between these two localities should be considered a possible distinct cryptic species, highly differentiated from C. talarum.
Collapse
Affiliation(s)
- Ailin Austrich
- Departamento de Biologia, Facultad de Ciencias Exactas y Naturales, Instituto de Investigaciones Marinas y Costeras (IIMyC, CONICET), Universidad Nacional de Mar del Plata , Dean Funes 3250, 3rd Floor, 7600 Mar del Plata , Argentina
| | - Ivanna Haydée Tomasco
- Departamento de Ecología y Evolución, Facultad de Ciencias, Universidad de la República , Iguá 4225, Montevideo 11400 , Uruguay
| | - Fernando Javier Mapelli
- División Mastozoología, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia” CONICET , Angel Gallardo 470, Buenos Aires C1405DJR , Argentina
| | - Marcelo Javier Kittlein
- Departamento de Biologia, Facultad de Ciencias Exactas y Naturales, Instituto de Investigaciones Marinas y Costeras (IIMyC, CONICET), Universidad Nacional de Mar del Plata , Dean Funes 3250, 3rd Floor, 7600 Mar del Plata , Argentina
| | - Ana Paula Cutrera
- Departamento de Biologia, Facultad de Ciencias Exactas y Naturales, Instituto de Investigaciones Marinas y Costeras (IIMyC, CONICET), Universidad Nacional de Mar del Plata , Dean Funes 3250, 3rd Floor, 7600 Mar del Plata , Argentina
| | - Matías Sebastián Mora
- Departamento de Biologia, Facultad de Ciencias Exactas y Naturales, Instituto de Investigaciones Marinas y Costeras (IIMyC, CONICET), Universidad Nacional de Mar del Plata , Dean Funes 3250, 3rd Floor, 7600 Mar del Plata , Argentina
| |
Collapse
|
3
|
Mapelli FJ, Teta P, Contreras F, Pereyra D, Priotto JW, Coda JA. Looking under stones: A new Ctenomys species from the rocky foothills of the Sierras Grandes of central Argentina. J MAMM EVOL 2022. [DOI: 10.1007/s10914-022-09634-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Comprehensive cytogenetic analysis of the most chromosomally variable mammalian genus from South America: Ctenomys (Rodentia: Caviomorpha: Ctenomyidae). Mamm Biol 2022. [DOI: 10.1007/s42991-022-00312-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Tammone MN, Lacey EA, Voglino D, Cuéllar Soto E, Pardiñas UFJ. Disentangling the complex alpha taxonomy of Andean populations of Ctenomys (Rodentia: Ctenomyidae) from northern Patagonia: the need for extensive sampling in heterogeneous landscapes. J Mammal 2021. [DOI: 10.1093/jmammal/gyab089] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
In the Andean portion of northern Patagonia, populations of Ctenomys are found from low-elevation plains to high-elevation meadows and valleys. Despite their prevalence, the taxonomy of these subterranean rodents remains poorly resolved. Using genetic and morphological data obtained from museum specimens and animals collected in the field, we examined the taxonomy of Ctenomys from southwestern Mendoza Province, Argentina. Our analyses suggest the presence of at least five species of Ctenomys within the study area. The highest, innermost portion of the Andes is occupied by C. maulinus. To the east, the mountains and foothills are inhabited by two forms associated with the “mendocinus” and the “magellanicus” lineages, respectively. The former appears to be a local variant of C. emilianus, while the latter is sister to C. pontifex. Although C. pontifex was not encountered during our field sampling, it remains a valid species that likely is restricted to the isolated Valle Hermoso in westernmost Mendoza Province. In addition, we report an undescribed form from Las Leñas Valley that is associated with the “mendocinus” lineage. This complex alpha taxonomic scenario occurs within less than one degree of latitude, thereby highlighting the need to conduct detailed field collections to improve our knowledge of the systematics of Ctenomys.
Collapse
Affiliation(s)
- Mauro N Tammone
- Instituto de Investigaciones en Biodiversidad y Medioambiente (CONICET-UNComahue), Quintral 1250, 8400 Bariloche, Río Negro, Argentina
- Parque Nacional Nahuel Huapi (CENAC-CONICET), 8400 Bariloche, Río Negro, Argentina
| | - Eileen A Lacey
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, 94720 Berkeley, California, USA
| | - Damián Voglino
- Museo de Ciencias Naturales Antonio Scasso, 2900 San Nicolás de los Arroyos, Buenos Aires, Argentina
| | - Erika Cuéllar Soto
- College of Science, Department of Biology, 123 Sultan Qaboos University, Muscat, Oman
| | - Ulyses F J Pardiñas
- Instituto de Diversidad y Evolución Austral (IDEAus-CONICET), Boulevard Brown 2915, 9120 Puerto Madryn, Chubut, Argentina
- Instituto Nacional de Biodiversidad, 170135 Quito, Ecuador
| |
Collapse
|
6
|
Conservation status, protected area coverage of Ctenomys (Rodentia, Ctenomyidae) species and molecular identification of a population in a national park. Mamm Biol 2020. [DOI: 10.1007/s42991-019-00004-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Integrative analysis of chromosome banding, telomere localization and molecular genetics in the highly variable Ctenomys of the Corrientes group (Rodentia; Ctenomyidae). Genetica 2018; 146:403-414. [PMID: 30076493 DOI: 10.1007/s10709-018-0032-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 07/27/2018] [Indexed: 02/04/2023]
Abstract
The genus Ctenomys comprises about 70 species with great chromosome diversity. The Corrientes group is one of the most chromosomally variable lineages in the genus, where the diploid number (2n) varies from 41 to 70. In this group, three nominal species and numerous polymorphic and polytypic populations have been described. In order to get insight into the chromosomal evolution of this species complex, we applied different banding and molecular cytogenetic techniques. The results were interpreted in an evolutionary context, based on mitochondrial cytochrome b analyses. Studied samples are representative of the broad chromosomal variability in the group, including specimens with 2n = 42 to 2n = 70. Heterochromatin was scarce but concentrated in a few chromosomes. Centromeric DAPI-negative heterochromatin was observed in some autosomal pairs, which differed among populations. Location and amount of DAPI-neutral heterochromatin within the Y chromosome varied among populations. The variable distribution of heterochromatin indicates its dynamic behavior. NORs were detected in one pair of autosomes, which also differed among some populations. Telomeric FISH signals were observed in all complements only at the chromosome ends. The Corrientes group belongs to a clade that also includes C. pearsoni, C. lami, C. minutus, C. ibicuiensis and C. torquatus. Almost all of these species are variable at the chromosomal level, suggesting that this is the ancestral condition of the clade. Within the Corrientes group, the observed low genetic divergence, in contrast with its high chromosomal variability, is indicative of decoupling between the rates of chromosomal and mitochondrial evolution.
Collapse
|
8
|
Ivanov V, Lee KM, Mutanen M. Mitonuclear discordance in wolf spiders: Genomic evidence for species integrity and introgression. Mol Ecol 2018; 27:1681-1695. [PMID: 29575366 DOI: 10.1111/mec.14564] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 02/23/2018] [Accepted: 03/01/2018] [Indexed: 12/31/2022]
Abstract
Systematists and taxonomists have benefited greatly from the emergence of molecular methods. Species identification has become straightforward through DNA barcoding and the rapid build-up of massive DNA barcode reference libraries. In animals, mitonuclear discordance can significantly complicate the process of species identification and delimitation. The causes of mitonuclear discordance are either biological (e.g., introgression, incomplete lineage sorting, horizontal gene transfer androgenesis) or induced by operational factors (e.g., human error with specimen misidentification or incorrect species delimitation). Moreover, endosymbionts may play an important role in promoting fixation of mitochondrial genomes. Here, we study the mitonuclear discordance of wolf spiders species (Lycosidae) (independent cases from Alopecosa aculeata and Pardosa pullata groups) that share identical COI DNA barcodes. We approached the case utilizing double-digest restriction site-associated DNA sequencing (ddRADseq) to obtain and analyse genomic-scale data. Our results suggest that the observed cases of mitonuclear discordance are not due to operational reasons but result from biological processes. Further analysis indicated introgression and that incomplete lineage sorting is unlikely to have been responsible for the observed discrepancy. Additional survey of endosymbionts provided ideas on further research and their role in shaping mitochondrial DNA distribution patterns. Thus, ddRADseq grants an efficient way to study the taxonomy of problematic groups with insight into underlying evolutionary processes.
Collapse
Affiliation(s)
- Vladislav Ivanov
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Kyung Min Lee
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Marko Mutanen
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| |
Collapse
|
9
|
Mapelli FJ, Mora MS, Lancia JP, Gómez Fernández MJ, Mirol PM, Kittlein MJ. Evolution and phylogenetic relationships in subterranean rodents of the Ctenomys mendocinus species complex: Effects of Late Quaternary landscape changes of Central Argentina. Mamm Biol 2017. [DOI: 10.1016/j.mambio.2017.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Martínez JJ, Gardenal CN. Phylogenetic relationships among species of the Neotropical genusGraomys(Rodentia: Cricetidae): contrasting patterns of skull morphometric variation and genetic divergence. Biol J Linn Soc Lond 2016. [DOI: 10.1111/bij.12767] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Juan J. Martínez
- Centro de Investigaciones y Transferencia de Jujuy (CIT-Jujuy); CONICET and Universidad Nacional de Jujuy; Av. Bolivia 1711, San Salvador de Jujuy, Jujuy, 4600 Argentina
| | - Cristina N. Gardenal
- Instituto de Diversidad y Ecología Animal (IDEA); CONICET and Universidad Nacional de Córdoba; Av. Vélez Sarsfield 299, Córdoba, Córdoba, 5000 Argentina
| |
Collapse
|
11
|
Lopes CM, Ximenes SSF, Gava A, de Freitas TRO. The role of chromosomal rearrangements and geographical barriers in the divergence of lineages in a South American subterranean rodent (Rodentia: Ctenomyidae: Ctenomys minutus). Heredity (Edinb) 2013; 111:293-305. [PMID: 23759727 DOI: 10.1038/hdy.2013.49] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 03/19/2013] [Accepted: 04/03/2013] [Indexed: 11/09/2022] Open
Abstract
Identifying factors and the extent of their roles in the differentiation of populations is of great importance for understanding the evolutionary process in which a species is involved. Ctenomys minutus is a highly karyotype-polymorphic subterranean rodent, with diploid numbers ranging from 42 to 50 and autosomal arm numbers (ANs) ranging from 68 to 80, comprising a total of 45 karyotypes described so far. This species inhabits the southern Brazilian coastal plain, which has a complex geological history, with several potential geographical barriers acting on different time scales. We assessed the geographical genetic structure of C. minutus, examining 340 individuals over the entire distributional range and using information from chromosomal rearrangements, mitochondrial DNA (mtDNA) sequences and 14 microsatellite loci. The mtDNA results revealed seven main haplogroups, with the most recent common ancestors dating from the Pleistocene, whereas clustering methods defined 12 populations. Some boundaries of mtDNA haplogroups and population clusters can be associated with potential geographical barriers to gene flow. The isolation-by-distance pattern also has an important role in fine-scale genetic differentiation, which is strengthened by the narrowness of the coastal plain and by common features of subterranean rodents (that is, small fragmented populations and low dispersal rates), which limit gene flow among populations. A step-by-step mechanism of chromosomal evolution can be suggested for this species, mainly associated with the metapopulation structure, genetic drift and the geographical features of the southern Brazilian coastal plain. However, chromosomal variations have no or very little role in the diversification of C. minutus populations.
Collapse
Affiliation(s)
- C M Lopes
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | | | | | | |
Collapse
|