1
|
Boroń A, Grabowska A, Jablonska O, Kirtiklis L, Duda S, Juchno D. Chromosomal rDNA Distribution Patterns in Clonal Cobitis Triploid Hybrids (Teleostei, Cobitidae): Insights into Parental Genomic Contributions. Genes (Basel) 2025; 16:68. [PMID: 39858616 PMCID: PMC11765124 DOI: 10.3390/genes16010068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 12/31/2024] [Accepted: 01/05/2025] [Indexed: 01/27/2025] Open
Abstract
Background: Interspecific hybridization between relative species Cobitis taenia (with a diploid genome designated as TT), Cobitis elongatoides (EE) and Cobitis tanaitica (NN) and the successive polyploidization with transitions from sexuality to asexuality experienced by triploid Cobitis hybrids likely influence their chromosomal rearrangements, including rearrangements of ribosomal DNA (rDNA) distribution patterns. Previously, we documented distinct karyotypic differences: C. elongatoides exhibited bi-armed chromosomes while C. taenia showed uni-armed chromosomes with rDNA-positive hybridization signals, respectively. Methods: In this study, fluorescence in situ hybridization (FISH) with 5S rDNA and 28S rDNA probes was used to analyze and compare chromosomal distribution patterns of rDNAs in clonally reproduced triploid Cobitis hybrids of different genomic constitutions ETT, ETN, EEN and EET (referred to using acronyms denoting the haploid genomes of their parent species), and their parental species. Results:Cobitis triploid hybrids exhibited intermediate karyotypes with ribosome synthesis sites on chromosomes inherited from both parents, showing no evidence of nucleolar dominance. The rDNA pattern derived from the C. elongatoides genome was more stable in the hybrids' karyotypes. Two and one submetacentric chromosomes with co-localized rDNAs were effective markers to ascertain C. elongatoides diploid (EE) and haploid (E) genomes within the genome of triploid hybrids, respectively. Fewer 5S rDNA loci were observed in diploid (TT) and haploid (T) chromosome sets from C. taenia in ETT and EET females. C. taenia and C. tanaitica exhibited similar rDNA distribution patterns. Conclusions: The karyotypes of triploid Cobitis hybrids reflect the genomic contributions of their parental species. Variability in rDNA distribution patterns suggests complex genomic interactions in Cobitis hybrids resulting from polyploidization and hybridization, potentially influencing their reproductive potential.
Collapse
Affiliation(s)
| | | | | | - Lech Kirtiklis
- Department of Zoology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (A.B.); (A.G.); (O.J.); (S.D.); (D.J.)
| | | | | |
Collapse
|
2
|
Tichopád T, Franěk R, Doležálková-Kaštánková M, Dedukh D, Marta A, Halačka K, Steinbach C, Janko K, Pšenička M. Clonal gametogenesis is triggered by intrinsic stimuli in the hybrid's germ cells but is dependent on sex differentiation. Biol Reprod 2022; 107:446-457. [PMID: 35416937 DOI: 10.1093/biolre/ioac074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/08/2022] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
Interspecific hybridization may trigger the transition from sexual reproduction to asexuality, but mechanistic reasons for such a change in a hybrid's reproduction are poorly understood. Gametogenesis of many asexual hybrids involves a stage of premeiotic endoreduplication (PMER), when gonial cells duplicate chromosomes and subsequent meiotic divisions involve bivalents between identical copies, leading to production of clonal gametes. Here, we investigated the triggers of PMER and whether its induction is linked to intrinsic stimuli within a hybrid's gonial cells or whether it is regulated by the surrounding gonadal tissue. We investigated gametogenesis in the Cobitis taenia hybrid complex, which involves sexually reproducing species (Cobitis elongatoides and C. taenia) as well as their hybrids, where females reproduce clonally via PMER while males are sterile. We transplanted spermatogonial stem cells (SSCs) from C. elongatoides and triploid hybrid males into embryos of sexual species and of asexual hybrid females, respectively, and observed their development in an allospecific gonadal environment. Sexual SSCs underwent regular meiosis and produced normally reduced gametes when transplanted into clonal females. On the other hand, the hybrid's SSCs lead to sterility when transplanted into sexual males, but maintained their ability to undergo asexual development (PMER) and production of clonal eggs, when transplanted into sexual females. This suggests that asexual gametogenesis is under complex control when somatic gonadal tissue indirectly affects the execution of asexual development by determining the sexual differentiation of stem cells and once such cells develop to female phenotypes, hybrid germ cells trigger the PMER from their intrinsic signals.
Collapse
Affiliation(s)
- Tomáš Tichopád
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Roman Franěk
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Marie Doležálková-Kaštánková
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Liběchov, Czech Republic
| | - Dmitrij Dedukh
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Liběchov, Czech Republic
| | - Anatolie Marta
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Liběchov, Czech Republic.,Department of Zoology, Faculty of Science, Charles University in Prague, 128 00 Prague, Czech Republic.,Institute of Zoology, Academy of Science of Moldova, MD-2028, Academiei 1, 2001 Chisinau, Moldova
| | - Karel Halačka
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Liběchov, Czech Republic.,Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, v.v.i., Květná 8, 603 65 Brno, Czech Republic
| | - Christoph Steinbach
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Karel Janko
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Liběchov, Czech Republic.,Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Martin Pšenička
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| |
Collapse
|
3
|
Rearing of Bitterling ( Rhodeus amarus) Larvae and Fry under Controlled Conditions for the Restitution of Endangered Populations. Animals (Basel) 2021; 11:ani11123534. [PMID: 34944309 PMCID: PMC8698087 DOI: 10.3390/ani11123534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 11/21/2022] Open
Abstract
Simple Summary Among the many species threatened with extinction and covered by protection of species is bitterling Rhodeus amarus. It belongs to ostracophilic fish that place spawn inside live mussels. Bitterlings, such as mussels, belongs to indicator species that testify to the good state of the natural environment. Supporting the populations of these organisms is a necessity in order to preserve the biodiversity of inland waters, which are subjected to severe anthropopression. The development in advance of a method of reproduction and breeding of bitterling under controlled conditions can ensure their survival in the event of an imbalance in the natural environment. These were the first studies of this type, where after 6.5 months of rearing, sexually mature individuals were obtained. In this way, a suitable stocking material of the bitterling was obtained in order to save the endangered populations. Abstract Among the several dozen European freshwater fish species, only European bitterling (Rhodeus amarus Bloch) and Rhodeus meridionalis belong to the group of ostrakophilous fish. The embryonic and larval development of the fish in this reproductive group until the time of the yolk sac resorption takes place in the gill cavity of river mussels (Anodonta sp. or Unio sp.). This paper presents the results of the European bitterling Rhodeus amarus being reared under controlled conditions. Bitterling larvae were caught together with river mussels in the natural environment and subsequently placed in a tank for behavioural observations. Bitterling larvae were seen swimming in the water within a week of placing the bivalves under controlled conditions. The bitterling larvae were 8.6 ± 0.11 mm long when they started to swim actively. The rearing was conducted in water at 20 and 26 ± 0.5 °C and lasted for 6.5 months (200 days) in both variants. Initially, the larvae were fed with live nauplii of Artemia salina and subsequently with fodder. The bitterlings in tanks with water at 26 ± 0.5 °C were 66.2 ± 3.0 mm long and weighed 3389 ± 548 mg. For comparison, bitterlings kept in water at 20 ± 0.5 °C were 64.48 ± 3.4 mm long and weighed 3242 ± 427 mg. No larval malformities or mortality were observed during the larvae and fry rearing. The bitterlings had well-developed secondary sexual characteristics and exhibited pre-spawning behaviour at the end of the rearing. This produced suitable bitterling stocking material to be used in the conservation of small or endangered populations.
Collapse
|
4
|
Dedukh D, Marta A, Janko K. Challenges and Costs of Asexuality: Variation in Premeiotic Genome Duplication in Gynogenetic Hybrids from Cobitis taenia Complex. Int J Mol Sci 2021; 22:ijms222212117. [PMID: 34830012 PMCID: PMC8622741 DOI: 10.3390/ijms222212117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/25/2021] [Accepted: 11/04/2021] [Indexed: 02/07/2023] Open
Abstract
The transition from sexual reproduction to asexuality is often triggered by hybridization. The gametogenesis of many hybrid asexuals involves premeiotic genome endoreplication leading to bypass hybrid sterility and forming clonal gametes. However, it is still not clear when endoreplication occurs, how many gonial cells it affects and whether its rate differs among clonal lineages. Here, we investigated meiotic and premeiotic cells of diploid and triploid hybrids of spined loaches (Cypriniformes: Cobitis) that reproduce by gynogenesis. We found that in naturally and experimentally produced F1 hybrids asexuality is achieved by genome endoreplication, which occurs in gonocytes just before entering meiosis or, rarely, one or a few divisions before meiosis. However, genome endoreplication was observed only in a minor fraction of the hybrid's gonocytes, while the vast majority of gonocytes were unable to duplicate their genomes and consequently could not proceed beyond pachytene due to defects in bivalent formation. We also noted that the rate of endoreplication was significantly higher among gonocytes of hybrids from natural clones than of experimentally produced F1 hybrids. Thus, asexuality and hybrid sterility are intimately related phenomena and the transition from sexual reproduction to asexuality must overcome significant problems with genome incompatibilities with a possible impact on reproductive potential.
Collapse
Affiliation(s)
- Dmitrij Dedukh
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics of the CAS, Rumburská 89, 277 21 Liběchov, Czech Republic;
- Correspondence: (D.D.); (K.J.)
| | - Anatolie Marta
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics of the CAS, Rumburská 89, 277 21 Liběchov, Czech Republic;
- Department of Zoology, Faculty of Science, Charles University in Prague, 128 00 Prague, Czech Republic
- Institute of Zoology, MD-2028, Academiei 1, 2001 Chisinau, Moldova
| | - Karel Janko
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics of the CAS, Rumburská 89, 277 21 Liběchov, Czech Republic;
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00 Ostrava, Czech Republic
- Correspondence: (D.D.); (K.J.)
| |
Collapse
|
5
|
Yun SW, Kim HT, Park JY. Sperm motility analysis of Cobitis hankugensis, Iksookimia longicorpa (Teleostei, Cypriniformes, Cobitidae) and their unisexual natural hybrids. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2021; 335:587-594. [PMID: 34224637 DOI: 10.1002/jez.2498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 11/10/2022]
Abstract
Hybrid sterility is an inevitable phenomenon in the speciation process to avoid indiscriminate increases in species, but it is not always unconditional. We used computer assisted sperm analysis (CASA) to analyze sperm motility of Cobitis hankugensis, Iksookimia longicorpa, and their unisexual natural hybrids. In parental species, the sperm concentrations of C. hankugensis and I. longicorpa were 11.6 ± 4.8 × 109 and 16.5 ± 6.8 × 109 , respectively. For sperm motility, the total motility was higher in the parental species (C. hankugensis, 91.3%; I. longicorpa, 87.5%) than other hybrids. After 1 min, the motility duration was reduced to 14% in C. hankugensis and 3.3% in I. longicorpa. This result could indicate that the duration of sperm motility of C. hankugensis is longer than that of I. longicorpa up to 1 min after spermatozoa activation. All of the hybrids had a low concentration and it was distinct from their parent species. Total motility and other velocity parameters also showed significantly lower values except for the HHL (one from the C. hankugensis genome with two from the I. longicorpa genome) type motility measurement (13.6%). These results suggest that the hybrids derived from C. hankugensis and I. longicorpa, are not completely infertile, contrary to histological observations.
Collapse
Affiliation(s)
- Seung Woon Yun
- Department of Biological Science, College of Natural Science, Institute for Biodiversity, Chonbuk National University, Jeonju, Korea
| | - Hyun Tae Kim
- Department of Biological Science, College of Natural Science, Institute for Biodiversity, Chonbuk National University, Jeonju, Korea
| | - Jong Young Park
- Department of Biological Science, College of Natural Science, Institute for Biodiversity, Chonbuk National University, Jeonju, Korea
| |
Collapse
|
6
|
Yu P, Zhou L, Yang WT, Miao LJ, Li Z, Zhang XJ, Wang Y, Gui JF. Comparative mitogenome analyses uncover mitogenome features and phylogenetic implications of the subfamily Cobitinae. BMC Genomics 2021; 22:50. [PMID: 33446100 PMCID: PMC7809818 DOI: 10.1186/s12864-020-07360-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 12/29/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Loaches of Cobitinae, widely distributed in Eurasian continent, have high economic, ornamental and scientific value. However, the phylogeny of Cobitinae fishes within genera or family level remains complex and controversial. Up to now, about 60 Cobitinae mitogenomes had been deposited in GenBank, but their integrated characteristics were not elaborated. RESULTS In this study, we sequenced and analyzed the complete mitogenomes of a female Cobits macrostigma. Then we conducted a comparative mitogenome analysis and revealed the conserved and unique characteristics of 58 Cobitinae mitogenomes, including C. macrostigma. Cobitinae mitogenomes display highly conserved tRNA secondary structure, overlaps and non-coding intergenic spacers. In addition, distinct base compositions were observed among different genus and significantly negative linear correlation between AT% and AT-skew were found among Cobitinae, genus Cobitis and Pangio mitogenomes, respectively. A specific 3 bp insertion (GCA) in the atp8-atp6 overlap was identified as a unique feature of loaches, compared to other Cypriniformes fish. Additionally, all protein coding genes underwent a strong purifying selection. Phylogenetic analysis strongly supported the paraphyly of Cobitis and polyphyly of Misgurnus. The strict molecular clock predicted that Cobitinae might have split into northern and southern lineages in the late Eocene (42.11 Ma), furthermore, mtDNA introgression might occur (14.40 Ma) between ancestral species of Cobitis and ancestral species of Misgurnus. CONCLUSIONS The current study represents the first comparative mitogenomic and phylogenetic analyses within Cobitinae and provides new insights into the mitogenome features and evolution of fishes belonging to the cobitinae family.
Collapse
Affiliation(s)
- Peng Yu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, the Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, the Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen-Tao Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, the Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li-Jun Miao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, the Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, the Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xiao-Juan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, the Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yang Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, the Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, the Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
7
|
Kočí J, Röslein J, Pačes J, Kotusz J, Halačka K, Koščo J, Fedorčák J, Iakovenko N, Janko K. No evidence for accumulation of deleterious mutations and fitness degradation in clonal fish hybrids: Abandoning sex without regrets. Mol Ecol 2020; 29:3038-3055. [PMID: 32627290 PMCID: PMC7540418 DOI: 10.1111/mec.15539] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/18/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023]
Abstract
Despite its inherent costs, sexual reproduction is ubiquitous in nature, and the mechanisms to protect it from a competitive displacement by asexuality remain unclear. Popular mutation-based explanations, like the Muller's ratchet and the Kondrashov's hatchet, assume that purifying selection may not halt the accumulation of deleterious mutations in the nonrecombining genomes, ultimately leading to their degeneration. However, empirical evidence is scarce and it remains particularly unclear whether mutational degradation proceeds fast enough to ensure the decay of clonal organisms and to prevent them from outcompeting their sexual counterparts. To test this hypothesis, we jointly analysed the exome sequences and the fitness-related phenotypic traits of the sexually reproducing fish species and their clonal hybrids, whose evolutionary ages ranged from F1 generations to 300 ky. As expected, mutations tended to accumulate in the clonal genomes in a time-dependent manner. However, contrary to the predictions, we found no trend towards increased nonsynonymity of mutations acquired by clones, nor higher radicality of their amino acid substitutions. Moreover, there was no evidence for fitness degeneration in the old clones compared with that in the younger ones. In summary, although an efficacy of purifying selection may still be reduced in the asexual genomes, our data indicate that its efficiency is not drastically decreased. Even the oldest investigated clone was found to be too young to suffer fitness consequences from a mutation accumulation. This suggests that mechanisms other than mutation accumulation may be needed to explain the competitive advantage of sex in the short term.
Collapse
Affiliation(s)
- Jan Kočí
- Department of Biology and Ecology, University of Ostrava, Ostrava, Czechia.,Institute of Animal Physiology and Genetics, Czech Academy of Science, Liběchov, Czechia
| | - Jan Röslein
- Department of Biology and Ecology, University of Ostrava, Ostrava, Czechia.,Institute of Animal Physiology and Genetics, Czech Academy of Science, Liběchov, Czechia
| | - Jan Pačes
- Institute of Animal Physiology and Genetics, Czech Academy of Science, Liběchov, Czechia.,Institute of Molecular Genetics, Czech Academy of Science, Prague, Czechia
| | - Jan Kotusz
- Museum of Natural History, University of Wrocław, Wrocław, Poland
| | - Karel Halačka
- Institute of Vertebrate Biology, Czech Academy of Science, Brno, Czechia
| | - Ján Koščo
- Department of Ecology, University of Prešov, Prešov, Slovakia
| | - Jakub Fedorčák
- Department of Ecology, University of Prešov, Prešov, Slovakia
| | - Nataliia Iakovenko
- Department of Biology and Ecology, University of Ostrava, Ostrava, Czechia.,Institute of Animal Physiology and Genetics, Czech Academy of Science, Liběchov, Czechia
| | - Karel Janko
- Department of Biology and Ecology, University of Ostrava, Ostrava, Czechia.,Institute of Animal Physiology and Genetics, Czech Academy of Science, Liběchov, Czechia
| |
Collapse
|
8
|
Parthenogenesis as a Solution to Hybrid Sterility: The Mechanistic Basis of Meiotic Distortions in Clonal and Sterile Hybrids. Genetics 2020; 215:975-987. [PMID: 32518062 PMCID: PMC7404241 DOI: 10.1534/genetics.119.302988] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 06/03/2020] [Indexed: 11/25/2022] Open
Abstract
Hybrid sterility is a hallmark of speciation, but the underlying molecular mechanisms remain poorly understood. Here, we report that speciation may regularly proceed through a stage at which gene flow is completely interrupted, but hybrid sterility occurs only in male hybrids whereas female hybrids reproduce asexually. We analyzed gametogenic pathways in hybrids between the fish species Cobitis elongatoides and C. taenia, and revealed that male hybrids were sterile owing to extensive asynapsis and crossover reduction among heterospecific chromosomal pairs in their gametes, which was subsequently followed by apoptosis. We found that polyploidization allowed pairing between homologous chromosomes and therefore partially rescued the bivalent formation and crossover rates in triploid hybrid males. However, it was not sufficient to overcome sterility. In contrast, both diploid and triploid hybrid females exhibited premeiotic genome endoreplication, thereby ensuring proper bivalent formation between identical chromosomal copies. This endoreplication ultimately restored female fertility but it simultaneously resulted in the obligate production of clonal gametes, preventing any interspecific gene flow. In conclusion, we demonstrate that the emergence of asexuality can remedy hybrid sterility in a sex-specific manner and contributes to the speciation process.
Collapse
|
9
|
Jablonska O, Juchno D, Leska A, Kowalewska K, Boroń A. Variable occurrence of apoptosis in the testes of diploid and sterile allotetraploid Cobitis (Teleostei, Cobitidae) males during the reproductive cycle. J Exp Biol 2020; 223:jeb212050. [PMID: 32205361 DOI: 10.1242/jeb.212050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 03/16/2020] [Indexed: 12/12/2022]
Abstract
Cobitis species exist in both diploid and diploid-polyploid (d-p) populations, but mostly occur in the latter. They are considered an important model organism to study the biology and physiology of natural hybrid and polyploid vertebrates. Indeed, polyploidization causes a huge stress for in terms of cell physiology and alters spermatogenesis in polyploid fish. The most extensively studied mode of germ cell death during spermatogenesis in vertebrates is apoptosis. The aim of this study was to examine caspase-3 immunoexpression in the testes of Cobitis taenia from a diploid population as well as C. taenia and sterile tetraploid Cobitis from d-p populations before, during and after spawning. The obtained results suggest a different performance of apoptosis in the testes of C. taenia from the two studied populations and seems to be conditioned by their role as the only sperm donors in d-p populations. Moreover, apoptosis was an active cell death process in the testes of tetraploid Cobitis.
Collapse
Affiliation(s)
- Olga Jablonska
- Department of Zoology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-718 Olsztyn, Poland
| | - Dorota Juchno
- Department of Zoology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-718 Olsztyn, Poland
| | - Anna Leska
- Department of Zoology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-718 Olsztyn, Poland
| | - Karolina Kowalewska
- Department of Zoology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-718 Olsztyn, Poland
| | - Alicja Boroń
- Department of Zoology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-718 Olsztyn, Poland
| |
Collapse
|
10
|
Bartoš O, Röslein J, Kotusz J, Paces J, Pekárik L, Petrtýl M, Halačka K, Štefková Kašparová E, Mendel J, Boroń A, Juchno D, Leska A, Jablonska O, Benes V, Šídová M, Janko K. The Legacy of Sexual Ancestors in Phenotypic Variability, Gene Expression, and Homoeolog Regulation of Asexual Hybrids and Polyploids. Mol Biol Evol 2020; 36:1902-1920. [PMID: 31077330 PMCID: PMC6735777 DOI: 10.1093/molbev/msz114] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hybridization and polyploidization are important evolutionary processes whose impacts range from the alteration of gene expression and phenotypic variation to the triggering of asexual reproduction. We investigated fishes of the Cobitis taenia-elongatoides hybrid complex, which allowed us to disentangle the direct effects of both processes, due to the co-occurrence of parental species with their diploid and triploid hybrids. Employing morphological, ecological, and RNAseq approaches, we investigated the molecular determinants of hybrid and polyploid forms. In contrast with other studies, hybridization and polyploidy induced relatively very little transgressivity. Instead, Cobitis hybrids appeared intermediate with a clear effect of genomic dosing when triploids expressed higher similarity to the parent contributing two genome sets. This dosage effect was symmetric in the germline (oocyte gene expression), interestingly though, we observed an overall bias toward C. taenia in somatic tissues and traits. At the level of individual genes, expression-level dominance vastly prevailed over additivity or transgressivity. Also, trans-regulation of gene expression was less efficient in diploid hybrids than in triploids, where the expression modulation of homoeologs derived from the "haploid" parent was stronger than those derived from the "diploid" parent. Our findings suggest that the apparent intermediacy of hybrid phenotypes results from the combination of individual genes with dominant expression rather than from simple additivity. The efficiency of cross-talk between trans-regulatory elements further appears dosage dependent. Important effects of polyploidization may thus stem from changes in relative concentrations of trans-regulatory elements and their binding sites between hybridizing genomes. Links between gene regulation and asexuality are discussed.
Collapse
Affiliation(s)
- Oldřich Bartoš
- Institute of Animal Physiology and Genetics, Laboratory of Fish Genetics, The Czech Academy of Sciences, Libechov, Czech Republic.,Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jan Röslein
- Institute of Animal Physiology and Genetics, Laboratory of Fish Genetics, The Czech Academy of Sciences, Libechov, Czech Republic.,Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Jan Kotusz
- Museum of Natural History, University of Wroclaw, Wroclaw, Poland
| | - Jan Paces
- Institute of Animal Physiology and Genetics, Laboratory of Fish Genetics, The Czech Academy of Sciences, Libechov, Czech Republic.,Institute of Molecular Genetics, Laboratory of Genomics and Bioinformatics, The Czech Academy of Sciences, Prague, Czech Republic
| | - Ladislav Pekárik
- Plant Science and Biodiversity Center, Institute of Botany, Slovak Academy of Sciences, Bratislava, Slovakia.,Faculty of Education, Trnava University, Trnava, Slovakia
| | - Miloslav Petrtýl
- Institute of Animal Physiology and Genetics, Laboratory of Fish Genetics, The Czech Academy of Sciences, Libechov, Czech Republic.,Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Karel Halačka
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Eva Štefková Kašparová
- Institute of Animal Physiology and Genetics, Laboratory of Fish Genetics, The Czech Academy of Sciences, Libechov, Czech Republic
| | - Jan Mendel
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Alicja Boroń
- Department of Zoology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Dorota Juchno
- Department of Zoology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Anna Leska
- Department of Zoology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Olga Jablonska
- Department of Zoology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Vladimir Benes
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Monika Šídová
- Institute of Biotechnology of the Czech Academy of Sciences - BIOCEV, Vestec, Czech Republic
| | - Karel Janko
- Institute of Animal Physiology and Genetics, Laboratory of Fish Genetics, The Czech Academy of Sciences, Libechov, Czech Republic.,Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| |
Collapse
|
11
|
Grabowska AI, Boroń A, Kirtiklis L, Spóz A, Juchno D, Kotusz J. Chromosomal inheritance of parental rDNAs distribution pattern detected by FISH in diploid F 1 hybrid progeny of Cobitis (Teleostei, Cobitidae) species has non-Mendelian character. JOURNAL OF FISH BIOLOGY 2020; 96:261-273. [PMID: 31755097 DOI: 10.1111/jfb.14216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/21/2019] [Indexed: 06/10/2023]
Abstract
This study was conducted to describe the major and the minor rDNA chromosome distribution in the spined loach Cobitis taenia (2n = 48) and the Danubian loach Cobitis elongatoides (2n = 50), and their laboratory-produced diploid reciprocal F1 hybrid progeny. It was tested by fluorescence in situ hybridisation (FISH) whether the number of 28s and 5s rDNA sites in the karyotypes of diploid hybrids corresponds to the expectations resulting from Mendelian ratio and if nucleolar organiser regions (NOR)were inherited from both parents or nucleolar dominance can be observed in the induced F1 hybrid progeny. Ten (females) or twelve (males) 28s rDNA loci were located in nine uniarm chromosomes of C. taenia. Two of such loci terminally bounded on one acrocentric chromosome were unique and indicated as specific for this species. Large 5s rDNA clusters were located on two acrocentric chromosomes. In C. elongatoides of both sexes, six NOR sites in terminal regions on six meta-submetacentric chromosomes and two 5s rDNA sites on large submetacentrics were detected. The F1 hybrid progeny (2n = 49) was characterised by the intermediate karyotype with the sites of ribosome synthesis on chromosomes inherited from both parents without showing nucleolar dominance. 5s rDNA sites were detected on large submetacentric and two acrocentric chromosomes. The observed number of both 28s and 5s rDNAs signals in F1 diploid Cobitis hybrids was disproportionally inherited from the two parental species, showing inconsistency with the Mendelian ratios. The presented rDNA patterns indicate some marker chromosomes that allow the species of the parental male and female to be recognised in hybrid progeny. The 5s rDNA was found to be a particularly effective diagnostic marker of C. elongatoides to partially discern genomic composition of diploid Cobitis hybrids and presumably allopolyploids resulting from their backcrossing with one of the parental species. Thus, the current study provides insight into the extent of rDNA heredity in Cobitis chromosomes and their cytotaxonomic character.
Collapse
Affiliation(s)
- Anna I Grabowska
- Department of Zoology, University of Warmia and Mazury, Olsztyn, Poland
| | - Alicja Boroń
- Department of Zoology, University of Warmia and Mazury, Olsztyn, Poland
| | - Lech Kirtiklis
- Department of Zoology, University of Warmia and Mazury, Olsztyn, Poland
| | - Aneta Spóz
- Department of Zoology, University of Warmia and Mazury, Olsztyn, Poland
| | - Dorota Juchno
- Department of Zoology, University of Warmia and Mazury, Olsztyn, Poland
| | - Jan Kotusz
- Museum of Natural History, University of Wroclaw, Wroclaw, Poland
| |
Collapse
|
12
|
Juchno D, Pecio A, Boroń A, Leska A, Jablonska O, Cejko BI, Kowalski RK, Judycka S, Przybylski M. Evidence of the sterility of allotetraploidCobitisloaches (Teleostei, Cobitidae) using testes ultrastructure. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2017; 327:66-74. [DOI: 10.1002/jez.2071] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 03/07/2017] [Accepted: 03/08/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Dorota Juchno
- Department of Zoology; University of Warmia and Mazury in Olsztyn; Poland
| | - Anna Pecio
- Department of Comparative Anatomy; Institute of Zoology; Jagiellonian University; Krakow Poland
| | - Alicja Boroń
- Department of Zoology; University of Warmia and Mazury in Olsztyn; Poland
| | - Anna Leska
- Department of Zoology; University of Warmia and Mazury in Olsztyn; Poland
| | - Olga Jablonska
- Department of Zoology; University of Warmia and Mazury in Olsztyn; Poland
| | - Beata Irena Cejko
- Department of Gamete and Embryo Biology; Institute of Animal Reproduction and Food Research; Polish Academy of Sciences; Olsztyn Poland
| | - Radosław Kajetan Kowalski
- Department of Gamete and Embryo Biology; Institute of Animal Reproduction and Food Research; Polish Academy of Sciences; Olsztyn Poland
| | - Sylwia Judycka
- Department of Gamete and Embryo Biology; Institute of Animal Reproduction and Food Research; Polish Academy of Sciences; Olsztyn Poland
| | | |
Collapse
|