Sottolano CJ, Revaitis NT, Geneva AJ, Yakoby N. Nebulous without white: annotated long-read genome assembly and CRISPR/Cas9 genome engineering in Drosophila nebulosa.
G3 (BETHESDA, MD.) 2022;
12:jkac231. [PMID:
36063049 PMCID:
PMC9635631 DOI:
10.1093/g3journal/jkac231]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022]
Abstract
The diversity among Drosophila species presents an opportunity to study the molecular mechanisms underlying the evolution of biological phenomena. A challenge to investigating these species is that, unlike the plethora of molecular and genetics tools available for D. melanogaster research, many other species do not have sequenced genomes; a requirement for employing these tools. Selecting transgenic flies through white (w) complementation has been commonly practiced in numerous Drosophila species. While tolerated, the disruption of w is associated with impaired vision, among other effects in D. melanogaster. The D. nebulosa fly has a unique mating behavior which requires vision, and is thus unable to successfully mate in dark conditions. Here, we hypothesized that the disruption of w will impede mating success. As a first step, using PacBio long-read sequencing, we assembled a high-quality annotated genome of D. nebulosa. Using these data, we employed CRISPR/Cas9 to successfully disrupt the w gene. As expected, D. nebulosa males null for w did not court females, unlike several other mutant strains of Drosophila species whose w gene has been disrupted. In the absence of mating, no females became homozygous null for w. We conclude that gene disruption via CRISPR/Cas9 genome engineering is a successful tool in D. nebulosa, and that the w gene is necessary for mating. Thus, an alternative selectable marker unrelated to vision is desirable.
Collapse