1
|
Wang Y, Chen Y, Wei Q, Chen X, Wan H, Sun C. Characterization of repetitive sequences in Dendrobium officinale and comparative chromosomal structures in Dendrobium species using FISH. Gene 2022; 846:146869. [PMID: 36075328 DOI: 10.1016/j.gene.2022.146869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/26/2022] [Accepted: 09/01/2022] [Indexed: 11/04/2022]
Abstract
Tandem repeats are one of the most conserved features in the eukaryote genomes. Dendrobium is the third largest genus in family Orchidaceae compromising over 1,200 species. However, the organization of repetitive sequences in Dendrobium species remains unclear. In this study, we performed the identification and characterization of the tandem repeats in D. officinale genome using graph-based clustering and Fluorescence in situ hybridization (FISH). Six major clusters including five satellite DNAs (DofSat1-5) and one 5S rDNA repeat (Dof5S) were identified as tandem repeats. The tandem organization of DofSat5 was verified by PCR amplification and southern blotting. The chromosomal locations of the repetitive DNAs in D. officinale were investigated by FISH using the tandem repeats and oligos probes. The results showed that each of the DofSat5, 5S and 45S rDNA had one pair of strong signals on D. officinale chromosomes. The distribution of repetitive DNAs along chromosomes was also investigated based on genomic in situ hybridization (GISH) among four Dendrobium species. The results suggested complex chromosomal fusion/segmentation and rearrangements during the evolution of Dendrobium species. In conclusion, the present study provides new landmarks for unequival differentiation of the Dendrobium chromosomes and facilitate the understanding the chromosome evolution in Dendrobium speceis.
Collapse
Affiliation(s)
- Yunzhu Wang
- Institute of Horticulture Research, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Yue Chen
- Institute of Horticulture Research, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Qingzhen Wei
- Institute of Vegetable Research, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Xiaoyang Chen
- Seed Management Terminal of Zhejiang, Hangzhou 310021, China.
| | - Hongjian Wan
- Institute of Vegetable Research, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Chongbo Sun
- Institute of Horticulture Research, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
2
|
García G, Gutiérrez V, Ríos N. Living in Temporary Ponds Loading Giant Genomes: The Neotropical Annual Killifish Genus Austrolebias as New Outstanding Evolutionary Model. Front Genet 2022; 13:903683. [PMID: 35795213 PMCID: PMC9251178 DOI: 10.3389/fgene.2022.903683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/05/2022] [Indexed: 12/02/2022] Open
Abstract
The term Annual killifish describes a short-lived and amazing group of vertebrates inhabiting temporary ponds exposed to an extremely variable environment during its short lifespan in South America and Africa, leading to the death of the entire adult population during the dry season. Austrolebias is a specious genus of the family Rivulidae, with ∼58 currently recognized species, extensively distributed in the temperate Neotropical region. Herein, we reviewed different aspects of the evolutionary biology with emphasis on the genome dynamic linked to the burst speciation process in this genus. Austrolebias constitutes an excellent model to study the genomic evolutionary processes underlying speciation events, since all the species of this genus analyzed so far share an unusually large genome size, with an average DNA content of 5.95 ± 0.45 picograms per diploid cell (mean C-value of about 2.98 pg). The drastic nuclear DNA–increasing would be associated with a considerable proportion of transposable elements (TEs) found in the Austrolebias genomes. The genomic proportion of the moderately repetitive DNA in the A. charrua genome represents approximately twice (45%) the amount of the repetitive components of the highly related sympatric and syntopic rivulinae taxon Cynopoecilus melanotaenia (25%), as well as from other rivulids and actinopterygian fish. These events could explain the great genome instability, the high genetic diversity, chromosome variability, as well as the morphological diversity in species of Austrolebias. Thus, species of this genus represent new model systems linking different evolutionary processes: drastic genome increase, massive TEs genomic representation, high chromosome instability, occurrence of natural hybridization between sister species, and burst speciation events.
Collapse
Affiliation(s)
| | | | - Néstor Ríos
- Sección Genética Evolutiva, Facultad de Ciencias, UdelaR, Montevideo, Uruguay
| |
Collapse
|
3
|
First genome survey and repeatome analysis of Chrysopogon zizanioides based on next-generation sequencing. Biologia (Bratisl) 2020. [DOI: 10.2478/s11756-020-00517-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
4
|
Amorim IC, Melo ES, Moura RC, Wallau GL. Diverse mobilome of Dichotomius (Luederwaldtinia) schiffleri (Coleoptera: Scarabaeidae) reveals long-range horizontal transfer events of DNA transposons. Mol Genet Genomics 2020; 295:1339-1353. [PMID: 32601732 DOI: 10.1007/s00438-020-01703-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 06/17/2020] [Indexed: 10/24/2022]
Abstract
Transposable elements (TEs) are mobile DNA sequences that are able to move from one genomic location to another. These selfish elements are known as genomic parasites, since they hijack the host molecular machinery to generate new copies of themselves. The mobilization of TEs can be seen as a natural mutagen because new TE copies can insert into different loci and impact host genomic structure through different mechanisms. Although our knowledge about TEs is improving with new genomes available, there is still very limited data about the mobilome of species from the Coleoptera order, the most diverse order of insects, including species from the Scarabaeidae family. Therefore, the main goal of this study was to characterize the mobilome of D. (Luederwaldtinia) schiffleri, based on low-coverage genome sequencing, and reconstruct their evolutionary history. We used a combination of four different approaches for TE characterization and maximum likelihood phylogenetic analysis to study their evolution. We found a large and diverse mobilome composed of 38 TE superfamilies, 20 DNA transposon and 18 retrotransposons, accounting for 21% of the genome. Moreover, we found a number of incongruences between the TE and host phylogenetic trees in three DNA transposon TE superfamilies, which represents five TE families, suggesting possible horizontal transfer events between highly divergent taxa. In summary, we found an abundant and diverse mobilome and a number of horizontal transfer events that have shaped the evolutionary history of this species.
Collapse
Affiliation(s)
- I C Amorim
- Laboratório de Biodiversidade E Genética de Insetos, Instituto de Ciências Biológicas, Universidade de Pernambuco, Rua Arnóbio Marques, 310- Santo Amaro, Recife, PE, CEP: 50100-130, Brasil
| | - E S Melo
- Departamento de Entomologia, Instituto Aggeu Magalhães, FIOCRUZ, Recife, PE, Brasil
| | - R C Moura
- Laboratório de Biodiversidade E Genética de Insetos, Instituto de Ciências Biológicas, Universidade de Pernambuco, Rua Arnóbio Marques, 310- Santo Amaro, Recife, PE, CEP: 50100-130, Brasil.
| | - G L Wallau
- Departamento de Entomologia, Instituto Aggeu Magalhães, FIOCRUZ, Recife, PE, Brasil.
| |
Collapse
|
5
|
Silva BSML, Heringer P, Dias GB, Svartman M, Kuhn GCS. De novo identification of satellite DNAs in the sequenced genomes of Drosophila virilis and D. americana using the RepeatExplorer and TAREAN pipelines. PLoS One 2019; 14:e0223466. [PMID: 31856171 PMCID: PMC6922343 DOI: 10.1371/journal.pone.0223466] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 11/26/2019] [Indexed: 01/10/2023] Open
Abstract
Satellite DNAs are among the most abundant repetitive DNAs found in eukaryote genomes, where they participate in a variety of biological roles, from being components of important chromosome structures to gene regulation. Experimental methodologies used before the genomic era were insufficient, too laborious and time-consuming to recover the collection of all satDNAs from a genome. Today, the availability of whole sequenced genomes combined with the development of specific bioinformatic tools are expected to foster the identification of virtually all the "satellitome" of a particular species. While whole genome assemblies are important to obtain a global view of genome organization, most of them are incomplete and lack repetitive regions. We applied short-read sequencing and similarity clustering in order to perform a de novo identification of the most abundant satellite families in two Drosophila species from the virilis group: Drosophila virilis and D. americana, using the Tandem Repeat Analyzer (TAREAN) and RepeatExplorer pipelines. These species were chosen because they have been used as models to understand satDNA biology since the early 70's. We combined the computational approach with data from the literature and chromosome mapping to obtain an overview of the major tandem repeat sequences of these species. The fact that all of the abundant tandem repeats (TRs) we detected were previously identified in the literature allowed us to evaluate the efficiency of TAREAN in correctly identifying true satDNAs. Our results indicate that raw sequencing reads can be efficiently used to detect satDNAs, but that abundant tandem repeats present in dispersed arrays or associated with transposable elements are frequent false positives. We demonstrate that TAREAN with its parent method RepeatExplorer may be used as resources to detect tandem repeats associated with transposable elements and also to reveal families of dispersed tandem repeats.
Collapse
Affiliation(s)
- Bráulio S. M. L. Silva
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Pedro Heringer
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Guilherme B. Dias
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Marta Svartman
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Gustavo C. S. Kuhn
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| |
Collapse
|
6
|
García G, Ríos N, Gutiérrez V, Serra S, Loureiro M. Transcriptome-Based SNP Discovery and Validation in the Hybrid Zone of the Neotropical Annual Fish Genus Austrolebias. Genes (Basel) 2019; 10:genes10100789. [PMID: 31614537 PMCID: PMC6826752 DOI: 10.3390/genes10100789] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/13/2019] [Accepted: 09/15/2019] [Indexed: 02/04/2023] Open
Abstract
The genus Austrolebias (Cyprinodontiformes: Rivulidae) represents a specious group of taxa following annual life cycles in the neotropical ichthyofauna. They live in temporary ponds and each generation must be completed in a few months, depending on environmental stochasticity. Annual fish survive the dry season through diapausing eggs buried in the substrate of these ponds. A hypothesized bimodal hybrid zone between two taxa of the genus, A. charrua and A. reicherti from Dos Patos Merin lagoon system, was recently proposed based on genetics and morphological analyses. However, hundreds of additional nuclear molecular markers should be used to strongly support this hypothesized bimodal pattern. In the present paper, we conducted RNA-seq-based sequencing of the transcriptomes from pools of individuals of A. charrua, A. reicherti and their putative natural hybrids from the previously characterized hybrid zone. As a result, we identified a set of 111,725 SNP (single nucleotide polymorphism) markers, representing presumably fixed allelic differences among the two species. The present study provided the first panel of 106 SNP markers as a single diagnostic multiplex assay and validated their capacity to reconstruct the patterns of the hybrid zone between both taxa. These nuclear markers combined with Cytb gene and morphological analyses detected a population structure in which some groups among the hybrid swarms showed different level of introgression towards one or the other parental species according to their geographic distribution. High-quality transcriptomes and a large set of gene-linked SNPs should greatly facilitate functional and population genomics studies in the hybrid zone of these endangered species.
Collapse
Affiliation(s)
- Graciela García
- Sección Genética Evolutiva, Facultad de Ciencias, UdelaR, Iguá 4225, Montevideo 11400, Uruguay.
| | - Néstor Ríos
- Sección Genética Evolutiva, Facultad de Ciencias, UdelaR, Iguá 4225, Montevideo 11400, Uruguay.
| | - Verónica Gutiérrez
- Sección Genética Evolutiva, Facultad de Ciencias, UdelaR, Iguá 4225, Montevideo 11400, Uruguay.
| | - Sebastián Serra
- Sección Genética Evolutiva, Facultad de Ciencias, UdelaR, Iguá 4225, Montevideo 11400, Uruguay.
- Departamento de Ecología y Evolución, Facultad de Ciencias, UdelaR, Iguá 4225, Montevideo 11400, Uruguay.
- Sección Ictiología, Museo Nacional de Historia Natural, Montevideo 11400, Uruguay.
| | - Marcelo Loureiro
- Departamento de Ecología y Evolución, Facultad de Ciencias, UdelaR, Iguá 4225, Montevideo 11400, Uruguay.
- Sección Ictiología, Museo Nacional de Historia Natural, Montevideo 11400, Uruguay.
| |
Collapse
|
7
|
García G, Gutiérrez V, Ríos N, Serra S, Calviño P, Duarte A, Loureiro M. Contrasting morphology with population genetics approach: An insight to revision of the Neotropical annual fish “ Austrolebias robustus
” species group based on a taxonomic integrative framework. J ZOOL SYST EVOL RES 2019. [DOI: 10.1111/jzs.12268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Graciela García
- Sección Genética Evolutiva; Facultad de Ciencias; UdelaR; Iguá 4225, 11400 Montevideo Uruguay
| | - Verónica Gutiérrez
- Sección Genética Evolutiva; Facultad de Ciencias; UdelaR; Iguá 4225, 11400 Montevideo Uruguay
| | - Néstor Ríos
- Sección Genética Evolutiva; Facultad de Ciencias; UdelaR; Iguá 4225, 11400 Montevideo Uruguay
| | - Sebastián Serra
- Sección Genética Evolutiva; Facultad de Ciencias; UdelaR; Iguá 4225, 11400 Montevideo Uruguay
- Departamento de Ecología y Evolución; Facultad de Ciencias; UdelaR; Iguá 4225, 11400 Montevideo Uruguay
- Sección Ictiología; Museo Nacional de Historia Natural; Montevideo Uruguay
| | - Pablo Calviño
- GICK; Grupo de Investigación y conservación de Killis; Buenos Aires Argentina
| | - Alejandro Duarte
- Departamento de Ecología y Evolución; Facultad de Ciencias; UdelaR; Iguá 4225, 11400 Montevideo Uruguay
| | - Marcelo Loureiro
- Departamento de Ecología y Evolución; Facultad de Ciencias; UdelaR; Iguá 4225, 11400 Montevideo Uruguay
- Sección Ictiología; Museo Nacional de Historia Natural; Montevideo Uruguay
| |
Collapse
|
8
|
da Silva AF, Dezordi FZ, Loreto ELS, Wallau GL. Drosophila parasitoid wasps bears a distinct DNA transposon profile. Mob DNA 2018; 9:23. [PMID: 30002736 PMCID: PMC6035795 DOI: 10.1186/s13100-018-0127-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 06/19/2018] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The majority of Eukaryotic genomes are composed of a small portion of stable (non-mobile) genes and a large fraction of parasitic mobile elements such as transposable elements and endogenous viruses: the Mobilome. Such important component of many genomes are normally underscored in genomic analysis and detailed characterized mobilomes only exists for model species. In this study, we used a combination of de novo and homology approaches to characterize the Mobilome of two non-model parasitoid wasp species. RESULTS The different methodologies employed for TE characterization recovered TEs with different features as TE consensus number and size. Moreover, some TEs were detected only by one or few methodologies. RepeatExplorer and dnaPipeTE estimated a low TE content of 5.86 and 4.57% for Braconidae wasp and 5.22% and 7.42% for L. boulardi species, respectively. Both mobilomes are composed by a miscellaneous of ancient and recent elements. Braconidae wasps presented a large diversity of Maverick/Polintons Class II TEs while other TE superfamilies were more equally diverse in both species. Phylogenetic analysis of reconstructed elements showed that vertical transfer is the main mode of transmission. CONCLUSION Different methodologies should be used complementarity in order to achieve better mobilome characterization. Both wasps genomes have one of the lower mobilome estimates among all Hymenoptera genomes studied so far and presented a higher proportion of Class II than Class I TEs. The large majority of superfamilies analyzed phylogenetically showed that the elements are being inherited by vertical transfer. Overall, we achieved a deep characterization of the mobilome in two non-model parasitoid wasps improving our understanding of their evolution.
Collapse
Affiliation(s)
- Alexandre Freitas da Silva
- Pós Graduação em Biociências e Biotecnologia em Saúde, Instituto Aggeu Magalhães (IAM), Recife, Pernambuco Brazil
| | - Filipe Zimmer Dezordi
- Pós Graduação em Biociências e Biotecnologia em Saúde, Instituto Aggeu Magalhães (IAM), Recife, Pernambuco Brazil
| | - Elgion Lucio Silva Loreto
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul Brazil
| | - Gabriel Luz Wallau
- Departamento de Entomologia, Instituto Aggeu Magalhães (IAM), Fundação Oswaldo Cruz (FIOCRUZ/PE), Recife, Pernambuco Brazil
| |
Collapse
|
9
|
Ruiz-Ruano FJ, Castillo-Martínez J, Cabrero J, Gómez R, Camacho JPM, López-León MD. High-throughput analysis of satellite DNA in the grasshopper Pyrgomorpha conica reveals abundance of homologous and heterologous higher-order repeats. Chromosoma 2018; 127:323-340. [PMID: 29549528 DOI: 10.1007/s00412-018-0666-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 02/13/2018] [Accepted: 03/06/2018] [Indexed: 12/25/2022]
Abstract
Satellite DNA (satDNA) constitutes an important fraction of repetitive DNA in eukaryotic genomes, but it is barely known in most species. The high-throughput analysis of satDNA in the grasshopper Pyrgomorpha conica revealed 87 satDNA variants grouped into 76 different families, representing 9.4% of the genome. Fluorescent in situ hybridization (FISH) analysis of the 38 most abundant satDNA families revealed four different patterns of chromosome distribution. Homology search between the 76 satDNA families showed the existence of 15 superfamilies, each including two or more families, with the most abundant superfamily representing more than 80% of all satDNA found in this species. This also revealed the presence of two types of higher-order repeats (HORs), one showing internal homologous subrepeats, as conventional HORs, and an additional type showing non-homologous internal subrepeats, the latter arising by the combination of a given satDNA family with a non-annotated sequence, or with telomeric DNA. Interestingly, the heterologous subrepeats included in these HORs showed higher divergence within the HOR than outside it, suggesting that heterologous HORs show poor homogenization, in high contrast with conventional (homologous) HORs. Finally, heterologous HORs can show high differences in divergence between their constituent subrepeats, suggesting the possibility of regional homogenization.
Collapse
Affiliation(s)
- Francisco J Ruiz-Ruano
- Departamento de Genética. Facultad de Ciencias, Universidad de Granada, 18071, Granada, Spain
| | - Jesús Castillo-Martínez
- Departamento de Genética. Facultad de Ciencias, Universidad de Granada, 18071, Granada, Spain.,Facultad de Medicina, Universidad Católica de Valencia, C/Quevedo 2, 46001, Valencia, Spain
| | - Josefa Cabrero
- Departamento de Genética. Facultad de Ciencias, Universidad de Granada, 18071, Granada, Spain
| | - Ricardo Gómez
- Departamento de Ciencia y Tecnología Agroforestal, E.T.S. de Ingenieros Agrónomos, Universidad de Castilla La Mancha, 02071, Albacete, Spain
| | - Juan Pedro M Camacho
- Departamento de Genética. Facultad de Ciencias, Universidad de Granada, 18071, Granada, Spain
| | | |
Collapse
|
10
|
Wagner JT, Singh PP, Romney AL, Riggs CL, Minx P, Woll SC, Roush J, Warren WC, Brunet A, Podrabsky JE. The genome of Austrofundulus limnaeus offers insights into extreme vertebrate stress tolerance and embryonic development. BMC Genomics 2018; 19:155. [PMID: 29463212 PMCID: PMC5819677 DOI: 10.1186/s12864-018-4539-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 02/12/2018] [Indexed: 11/21/2022] Open
Abstract
Background The annual killifish Austrofundulus limnaeus inhabits ephemeral ponds in northern Venezuela, South America, and is an emerging extremophile model for vertebrate diapause, stress tolerance, and evolution. Embryos of A. limnaeus regularly experience extended periods of desiccation and anoxia as a part of their natural history and have unique metabolic and developmental adaptations. Currently, there are limited genomic resources available for gene expression and evolutionary studies that can take advantage of A. limnaeus as a unique model system. Results We describe the first draft genome sequence of A. limnaeus. The genome was assembled de novo using a merged assembly strategy and was annotated using the NCBI Eukaryotic Annotation Pipeline. We show that the assembled genome has a high degree of completeness in genic regions that is on par with several other teleost genomes. Using RNA-seq and phylogenetic-based approaches, we identify several candidate genes that may be important for embryonic stress tolerance and post-diapause development in A. limnaeus. Several of these genes include heat shock proteins that have unique expression patterns in A. limnaeus embryos and at least one of these may be under positive selection. Conclusion The A. limnaeus genome is the first South American annual killifish genome made publicly available. This genome will be a valuable resource for comparative genomics to determine the genetic and evolutionary mechanisms that support the unique biology of annual killifishes. In a broader context, this genome will be a valuable tool for exploring genome-environment interactions and their impacts on vertebrate physiology and evolution. Electronic supplementary material The online version of this article (10.1186/s12864-018-4539-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Josiah T Wagner
- Department of Biology, Center for Life in Extreme Environments, Portland State University, Portland, Oregon, USA. .,Knight Cancer Early Detection Advanced Research Center, Oregon Health and Science University, Portland, Oregon, USA.
| | - Param Priya Singh
- Department of Genetics, Stanford University, Stanford, California, USA
| | - Amie L Romney
- Department of Biology, Center for Life in Extreme Environments, Portland State University, Portland, Oregon, USA
| | - Claire L Riggs
- Department of Biology, Center for Life in Extreme Environments, Portland State University, Portland, Oregon, USA
| | - Patrick Minx
- McDonnell Genome Institute at Washington University, St Louis, Missouri, USA
| | - Steven C Woll
- Department of Biology, Center for Life in Extreme Environments, Portland State University, Portland, Oregon, USA
| | - Jake Roush
- Department of Biology, Center for Life in Extreme Environments, Portland State University, Portland, Oregon, USA
| | - Wesley C Warren
- McDonnell Genome Institute at Washington University, St Louis, Missouri, USA
| | - Anne Brunet
- Department of Genetics, Stanford University, Stanford, California, USA.,Glenn Center for the Biology of Aging, Stanford, California, USA
| | - Jason E Podrabsky
- Department of Biology, Center for Life in Extreme Environments, Portland State University, Portland, Oregon, USA
| |
Collapse
|
11
|
Utsunomia R, Ruiz-Ruano FJ, Silva DMZA, Serrano ÉA, Rosa IF, Scudeler PES, Hashimoto DT, Oliveira C, Camacho JPM, Foresti F. A Glimpse into the Satellite DNA Library in Characidae Fish (Teleostei, Characiformes). Front Genet 2017; 8:103. [PMID: 28855916 PMCID: PMC5557728 DOI: 10.3389/fgene.2017.00103] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 07/26/2017] [Indexed: 01/21/2023] Open
Abstract
Satellite DNA (satDNA) is an abundant fraction of repetitive DNA in eukaryotic genomes and plays an important role in genome organization and evolution. In general, satDNA sequences follow a concerted evolutionary pattern through the intragenomic homogenization of different repeat units. In addition, the satDNA library hypothesis predicts that related species share a series of satDNA variants descended from a common ancestor species, with differential amplification of different satDNA variants. The finding of a same satDNA family in species belonging to different genera within Characidae fish provided the opportunity to test both concerted evolution and library hypotheses. For this purpose, we analyzed here sequence variation and abundance of this satDNA family in ten species, by a combination of next generation sequencing (NGS), PCR and Sanger sequencing, and fluorescence in situ hybridization (FISH). We found extensive between-species variation for the number and size of pericentromeric FISH signals. At genomic level, the analysis of 1000s of DNA sequences obtained by Illumina sequencing and PCR amplification allowed defining 150 haplotypes which were linked in a common minimum spanning tree, where different patterns of concerted evolution were apparent. This also provided a glimpse into the satDNA library of this group of species. In consistency with the library hypothesis, different variants for this satDNA showed high differences in abundance between species, from highly abundant to simply relictual variants.
Collapse
Affiliation(s)
- Ricardo Utsunomia
- Department of Morphology, Institute of Biosciences, São Paulo State UniversityBotucatu, Brazil
| | | | - Duílio M Z A Silva
- Department of Morphology, Institute of Biosciences, São Paulo State UniversityBotucatu, Brazil
| | - Érica A Serrano
- Department of Morphology, Institute of Biosciences, São Paulo State UniversityBotucatu, Brazil
| | - Ivana F Rosa
- Department of Morphology, Institute of Biosciences, São Paulo State UniversityBotucatu, Brazil
| | - Patrícia E S Scudeler
- Department of Morphology, Institute of Biosciences, São Paulo State UniversityBotucatu, Brazil
| | | | - Claudio Oliveira
- Department of Morphology, Institute of Biosciences, São Paulo State UniversityBotucatu, Brazil
| | - Juan Pedro M Camacho
- Departamento de Genética, Facultad de Ciencias, Universidad de GranadaGranada, Spain
| | - Fausto Foresti
- Department of Morphology, Institute of Biosciences, São Paulo State UniversityBotucatu, Brazil
| |
Collapse
|
12
|
Araya-Jaime C, Lam N, Pinto IV, Méndez MA, Iturra P. Chromosomal organization of four classes of repetitive DNA sequences in killifish Orestias ascotanensis Parenti, 1984 (Cyprinodontiformes, Cyprinodontidae). COMPARATIVE CYTOGENETICS 2017; 11:463-475. [PMID: 29093798 PMCID: PMC5646654 DOI: 10.3897/compcytogen.v11i3.11729] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 06/14/2017] [Indexed: 06/01/2023]
Abstract
Orestias Valenciennes, 1839 is a genus of freshwater fish endemic to the South American Altiplano. Cytogenetic studies of these species have focused on conventional karyotyping. The aim of this study was to use classical and molecular cytogenetic methods to identify the constitutive heterochromatin distribution and chromosome organization of four classes of repetitive DNA sequences (histone H3 DNA, U2 snRNA, 18S rDNA and 5S rDNA) in the chromosomes of O. ascotanensis Parenti, 1984, an endemic species restricted to the Salar de Ascotán in the Chilean Altiplano. All individuals analyzed had a diploid number of 48 chromosomes. C-banding identified constitutive heterochromatin mainly in the pericentromeric region of most chromosomes, especially a GC-rich heterochromatic block of the short arm of pair 3. FISH assay with an 18S probe confirmed the location of the NOR in pair 3 and revealed that the minor rDNA cluster occurs interstitially on the long arm of pair 2. Dual FISH identified a single block of U2 snDNA sequences in the pericentromeric regions of a subtelocentric chromosome pair, while histone H3 sites were observed as small signals scattered in throughout the all chromosomes. This work represents the first effort to document the physical organization of the repetitive fraction of the Orestias genome. These data will improve our understanding of the chromosomal evolution of a genus facing serious conservation problems.
Collapse
Affiliation(s)
- Cristian Araya-Jaime
- Facultad de Medicina, Universidad de Chile, ICBM, Programa de Genética Humana, Casilla 70061, Santiago, Chile
| | - Natalia Lam
- Departamento de Producción Animal, Facultad de Ciencias Agronómicas, Universidad de Chile. Santa Rosa 11315, La Pintana, Santiago, Chile
| | - Irma Vila Pinto
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, CP 780-0024, Santiago, Chile
| | - Marco A. Méndez
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, CP 780-0024, Santiago, Chile
| | - Patricia Iturra
- Facultad de Medicina, Universidad de Chile, ICBM, Programa de Genética Humana, Casilla 70061, Santiago, Chile
| |
Collapse
|
13
|
Novák P, Ávila Robledillo L, Koblížková A, Vrbová I, Neumann P, Macas J. TAREAN: a computational tool for identification and characterization of satellite DNA from unassembled short reads. Nucleic Acids Res 2017. [PMID: 28402514 DOI: 10.1093/nar/gkx257.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Satellite DNA is one of the major classes of repetitive DNA, characterized by tandemly arranged repeat copies that form contiguous arrays up to megabases in length. This type of genomic organization makes satellite DNA difficult to assemble, which hampers characterization of satellite sequences by computational analysis of genomic contigs. Here, we present tandem repeat analyzer (TAREAN), a novel computational pipeline that circumvents this problem by detecting satellite repeats directly from unassembled short reads. The pipeline first employs graph-based sequence clustering to identify groups of reads that represent repetitive elements. Putative satellite repeats are subsequently detected by the presence of circular structures in their cluster graphs. Consensus sequences of repeat monomers are then reconstructed from the most frequent k-mers obtained by decomposing read sequences from corresponding clusters. The pipeline performance was successfully validated by analyzing low-pass genome sequencing data from five plant species where satellite DNA was previously experimentally characterized. Moreover, novel satellite repeats were predicted for the genome of Vicia faba and three of these repeats were verified by detecting their sequences on metaphase chromosomes using fluorescence in situ hybridization.
Collapse
Affiliation(s)
- Petr Novák
- Institute of Plant Molecular Biology, Biology Centre CAS, Ceské Budejovice CZ-37005, Czech Republic
| | - Laura Ávila Robledillo
- Institute of Plant Molecular Biology, Biology Centre CAS, Ceské Budejovice CZ-37005, Czech Republic
| | - Andrea Koblížková
- Institute of Plant Molecular Biology, Biology Centre CAS, Ceské Budejovice CZ-37005, Czech Republic
| | - Iva Vrbová
- Institute of Plant Molecular Biology, Biology Centre CAS, Ceské Budejovice CZ-37005, Czech Republic
| | - Pavel Neumann
- Institute of Plant Molecular Biology, Biology Centre CAS, Ceské Budejovice CZ-37005, Czech Republic
| | - Jirí Macas
- Institute of Plant Molecular Biology, Biology Centre CAS, Ceské Budejovice CZ-37005, Czech Republic
| |
Collapse
|
14
|
Novák P, Ávila Robledillo L, Koblížková A, Vrbová I, Neumann P, Macas J. TAREAN: a computational tool for identification and characterization of satellite DNA from unassembled short reads. Nucleic Acids Res 2017; 45:e111. [PMID: 28402514 PMCID: PMC5499541 DOI: 10.1093/nar/gkx257] [Citation(s) in RCA: 201] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/23/2017] [Accepted: 04/04/2017] [Indexed: 12/21/2022] Open
Abstract
Satellite DNA is one of the major classes of repetitive DNA, characterized by tandemly arranged repeat copies that form contiguous arrays up to megabases in length. This type of genomic organization makes satellite DNA difficult to assemble, which hampers characterization of satellite sequences by computational analysis of genomic contigs. Here, we present tandem repeat analyzer (TAREAN), a novel computational pipeline that circumvents this problem by detecting satellite repeats directly from unassembled short reads. The pipeline first employs graph-based sequence clustering to identify groups of reads that represent repetitive elements. Putative satellite repeats are subsequently detected by the presence of circular structures in their cluster graphs. Consensus sequences of repeat monomers are then reconstructed from the most frequent k-mers obtained by decomposing read sequences from corresponding clusters. The pipeline performance was successfully validated by analyzing low-pass genome sequencing data from five plant species where satellite DNA was previously experimentally characterized. Moreover, novel satellite repeats were predicted for the genome of Vicia faba and three of these repeats were verified by detecting their sequences on metaphase chromosomes using fluorescence in situ hybridization.
Collapse
Affiliation(s)
- Petr Novák
- Institute of Plant Molecular Biology, Biology Centre CAS, Ceské Budejovice CZ-37005, Czech Republic
| | - Laura Ávila Robledillo
- Institute of Plant Molecular Biology, Biology Centre CAS, Ceské Budejovice CZ-37005, Czech Republic
| | - Andrea Koblížková
- Institute of Plant Molecular Biology, Biology Centre CAS, Ceské Budejovice CZ-37005, Czech Republic
| | - Iva Vrbová
- Institute of Plant Molecular Biology, Biology Centre CAS, Ceské Budejovice CZ-37005, Czech Republic
| | - Pavel Neumann
- Institute of Plant Molecular Biology, Biology Centre CAS, Ceské Budejovice CZ-37005, Czech Republic
| | - Jirí Macas
- Institute of Plant Molecular Biology, Biology Centre CAS, Ceské Budejovice CZ-37005, Czech Republic
| |
Collapse
|
15
|
Berois N, Garcia G, De Sá RO. A global community effort to decipher the unique biology of annual killifish. Dev Dyn 2017; 246:807-811. [PMID: 28608511 DOI: 10.1002/dvdy.24533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 05/18/2017] [Accepted: 05/23/2017] [Indexed: 11/06/2022] Open
Abstract
Over the past 50 years, annual killifishes arose as alternative model organisms for studies of vertebrate biology. The annual fish offers exceptional advantages for studies of genetics, genomics, developmental biology, population dynamics, ecology, biogeography, and evolution. They inhabit extremely variable freshwater environments in Africa and South America, have a short lifespan and a set of unique and fascinating developmental characteristics. Embryos survive within the dry substrate during the dry season, whereas the adult population dies. Thus, the survival of the populations is entirely dependent on the buried embryos that hatch the next rainy season. Although Old and New World species share similarities in their life cycle, they also have different adaptive responses associated with climate-related selective pressures. Therefore, contrasting different species from these areas is essential to understand unique adaptations to heterogeneous environment. A network of laboratories (United States, Czech Republic, Italy, Brazil, Chile, and Uruguay) is working and collaborating on many aspects of the biology of annual fishes. Participating researchers share projects and cross-training undergraduate and graduate students. These efforts resulted in two International Symposia (2010 and 2015) that took place in Montevideo and an international book. Herein, we summarize the progress made by this global community of scientists. Developmental Dynamics 246:807-811, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
|
16
|
Shah AB, Schielzeth H, Albersmeier A, Kalinowski J, Hoffman JI. High-throughput sequencing and graph-based cluster analysis facilitate microsatellite development from a highly complex genome. Ecol Evol 2016; 6:5718-27. [PMID: 27547349 PMCID: PMC4983586 DOI: 10.1002/ece3.2305] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 05/30/2016] [Accepted: 05/31/2016] [Indexed: 11/09/2022] Open
Abstract
Despite recent advances in high-throughput sequencing, difficulties are often encountered when developing microsatellites for species with large and complex genomes. This probably reflects the close association in many species of microsatellites with cryptic repetitive elements. We therefore developed a novel approach for isolating polymorphic microsatellites from the club-legged grasshopper (Gomphocerus sibiricus), an emerging quantitative genetic and behavioral model system. Whole genome shotgun Illumina MiSeq sequencing was used to generate over three million 300 bp paired-end reads, of which 67.75% were grouped into 40,548 clusters within RepeatExplorer. Annotations of the top 468 clusters, which represent 60.5% of the reads, revealed homology to satellite DNA and a variety of transposable elements. Evaluating 96 primer pairs in eight wild-caught individuals, we found that primers mined from singleton reads were six times more likely to amplify a single polymorphic microsatellite locus than primers mined from clusters. Our study provides experimental evidence in support of the notion that microsatellites associated with repetitive elements are less likely to successfully amplify. It also reveals how advances in high-throughput sequencing and graph-based repetitive DNA analysis can be leveraged to isolate polymorphic microsatellites from complex genomes.
Collapse
Affiliation(s)
- Abhijeet B. Shah
- Department of Animal BehaviourBielefeld UniversityPostfach 10013133501BielefeldGermany
| | - Holger Schielzeth
- Department of Evolutionary BiologyBielefeld UniversityMorgenbreede 4533615BielefeldGermany
- Department of Population Ecology, Institute of EcologyFriedrich Schiller University Jena, Dornburger Str. 15907743JenaGermany
| | | | - Joern Kalinowski
- Center for BiotechnologyUniversitätsstraße 2533615BielefeldGermany
| | - Joseph I. Hoffman
- Department of Animal BehaviourBielefeld UniversityPostfach 10013133501BielefeldGermany
| |
Collapse
|
17
|
Koo DH, Tiwari VK, Hřibová E, Doležel J, Friebe B, Gill BS. Molecular Cytogenetic Mapping of Satellite DNA Sequences in Aegilops geniculata and Wheat. Cytogenet Genome Res 2016; 148:314-21. [PMID: 27403741 DOI: 10.1159/000447471] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2016] [Indexed: 11/19/2022] Open
Abstract
Fluorescence in situ hybridization (FISH) provides an efficient system for cytogenetic analysis of wild relatives of wheat for individual chromosome identification, elucidation of homoeologous relationships, and for monitoring alien gene transfers into wheat. This study is aimed at developing cytogenetic markers for chromosome identification of wheat and Aegilops geniculata (2n = 4x = 28, UgUgMgMg) using satellite DNAs obtained from flow-sorted chromosome 5Mg. FISH was performed to localize the satellite DNAs on chromosomes of wheat and selected Aegilops species. The FISH signals for satellite DNAs on chromosome 5Mg were generally associated with constitutive heterochromatin regions corresponding to C-band-positive chromatin including telomeric, pericentromeric, centromeric, and interstitial regions of all the 14 chromosome pairs of Ae. geniculata. Most satellite DNAs also generated FISH signals on wheat chromosomes and provided diagnostic chromosome arm-specific cytogenetic markers that significantly improved chromosome identification in wheat. The newly identified satellite DNA CL36 produced localized Mg genome chromosome-specific FISH signals in Ae. geniculata and in the M genome of the putative diploid donor species Ae. comosa subsp. subventricosa but not in Ae. comosa subsp. comosa, suggesting that the Mg genome of Ae. geniculata was probably derived from subsp. subventricosa.
Collapse
Affiliation(s)
- Dal-Hoe Koo
- Wheat Genetics Resource Center, Department of Plant Pathology, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, Kans., USA
| | | | | | | | | | | |
Collapse
|
18
|
Canapa A, Barucca M, Biscotti MA, Forconi M, Olmo E. Transposons, Genome Size, and Evolutionary Insights in Animals. Cytogenet Genome Res 2016; 147:217-39. [PMID: 26967166 DOI: 10.1159/000444429] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2015] [Indexed: 11/19/2022] Open
Abstract
The relationship between genome size and the percentage of transposons in 161 animal species evidenced that variations in genome size are linked to the amplification or the contraction of transposable elements. The activity of transposable elements could represent a response to environmental stressors. Indeed, although with different trends in protostomes and deuterostomes, comprehensive changes in genome size were recorded in concomitance with particular periods of evolutionary history or adaptations to specific environments. During evolution, genome size and the presence of transposable elements have influenced structural and functional parameters of genomes and cells. Changes of these parameters have had an impact on morphological and functional characteristics of the organism on which natural selection directly acts. Therefore, the current situation represents a balance between insertion and amplification of transposons and the mechanisms responsible for their deletion or for decreasing their activity. Among the latter, methylation and the silencing action of small RNAs likely represent the most frequent mechanisms.
Collapse
Affiliation(s)
- Adriana Canapa
- Dipartimento di Scienze della Vita e dell'Ambiente, Universitx00E0; Politecnica delle Marche, Ancona, Italy
| | | | | | | | | |
Collapse
|
19
|
Macas J, Novák P, Pellicer J, Čížková J, Koblížková A, Neumann P, Fuková I, Doležel J, Kelly LJ, Leitch IJ. In Depth Characterization of Repetitive DNA in 23 Plant Genomes Reveals Sources of Genome Size Variation in the Legume Tribe Fabeae. PLoS One 2015; 10:e0143424. [PMID: 26606051 PMCID: PMC4659654 DOI: 10.1371/journal.pone.0143424] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 11/04/2015] [Indexed: 01/30/2023] Open
Abstract
The differential accumulation and elimination of repetitive DNA are key drivers of genome size variation in flowering plants, yet there have been few studies which have analysed how different types of repeats in related species contribute to genome size evolution within a phylogenetic context. This question is addressed here by conducting large-scale comparative analysis of repeats in 23 species from four genera of the monophyletic legume tribe Fabeae, representing a 7.6-fold variation in genome size. Phylogenetic analysis and genome size reconstruction revealed that this diversity arose from genome size expansions and contractions in different lineages during the evolution of Fabeae. Employing a combination of low-pass genome sequencing with novel bioinformatic approaches resulted in identification and quantification of repeats making up 55–83% of the investigated genomes. In turn, this enabled an analysis of how each major repeat type contributed to the genome size variation encountered. Differential accumulation of repetitive DNA was found to account for 85% of the genome size differences between the species, and most (57%) of this variation was found to be driven by a single lineage of Ty3/gypsy LTR-retrotransposons, the Ogre elements. Although the amounts of several other lineages of LTR-retrotransposons and the total amount of satellite DNA were also positively correlated with genome size, their contributions to genome size variation were much smaller (up to 6%). Repeat analysis within a phylogenetic framework also revealed profound differences in the extent of sequence conservation between different repeat types across Fabeae. In addition to these findings, the study has provided a proof of concept for the approach combining recent developments in sequencing and bioinformatics to perform comparative analyses of repetitive DNAs in a large number of non-model species without the need to assemble their genomes.
Collapse
Affiliation(s)
- Jiří Macas
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, České Budějovice, Czech Republic
- * E-mail:
| | - Petr Novák
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, České Budějovice, Czech Republic
| | - Jaume Pellicer
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey, United Kingdom
| | - Jana Čížková
- Institute of Experimental Botany, Olomouc, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Andrea Koblížková
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, České Budějovice, Czech Republic
| | - Pavel Neumann
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, České Budějovice, Czech Republic
| | - Iva Fuková
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, České Budějovice, Czech Republic
| | - Jaroslav Doležel
- Institute of Experimental Botany, Olomouc, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Laura J. Kelly
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Ilia J. Leitch
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey, United Kingdom
| |
Collapse
|