1
|
Özkale E, Doğan Ö, Budak M, Mahir Korkmaz E. Mitogenome evolution in Trichoderma afroharzianum strains: for a better understanding of distinguishing genus. Genome 2024; 67:139-150. [PMID: 38118129 DOI: 10.1139/gen-2022-0092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Trichoderma afroharzianum (Hypocreales) is known as an important mycoparasite and biocontrol fungus and feeds on fungal material by parasitizing other fungi. Recent studies indicate that this species is also an ear rot pathogen in Europe. Here, the complete mitochondrial genome of three T. afroharzianum strains was sequenced using next-generation sequencing and comparatively characterized by the reported Trichoderma mitogenomes. T. afroharzianum mitogenomes were varying between 29 511 bp and 29 517 bp in length, with an average A + T content of 72.32%. These mitogenomes contain 14 core protein coding genes (PCGs), 22 tRNAs, two rRNAs, one gene encoding the ribosomal protein S3, and three or four genes including conserved domains for the homing endonucleases (HEGs; GIY-YIG type and LAGLIDADG type). All PCGs are initiated by ATG codons, except for atp8, and all are terminated with TAA. A significant correlation was observed between nucleotide composition and codon preference. Four introns belonging to the group I intron class were predicted, accounting for about 14.54% of the size of the mitogenomes. Phylogenetic analyses confirmed the positions of T. afroharzianum strains within the genus of Trichoderma and supported a sister group relationship between T. afroharzianum and T. simmonsii. The recovered trees also supported the monophyly of all included families and of the genus of Acremonium. The characterization of mitochondrial genome of T. afroharzianum contributes to the understanding of phylogeny and evolution of Hypocreales.
Collapse
Affiliation(s)
- Evrim Özkale
- Faculty of Engineering and Natural Sciences, Department of Biology, Manisa Celal Bayar University, Manisa 45140, Turkiye
| | - Özgül Doğan
- Vocational School of Health Services, Sivas Cumhuriyet University, Sivas 58140, Turkiye
| | - Mahir Budak
- Faculty of Science, Department of Molecular Biology and Genetics, Sivas Cumhuriyet University, Sivas 58140, Turkiye
- Institute of Science, Department of Bioinformatics, Sivas Cumhuriyet University, Sivas 58140, Turkiye
| | - Ertan Mahir Korkmaz
- Faculty of Science, Department of Molecular Biology and Genetics, Sivas Cumhuriyet University, Sivas 58140, Turkiye
- Institute of Science, Department of Bioinformatics, Sivas Cumhuriyet University, Sivas 58140, Turkiye
| |
Collapse
|
2
|
Niu G, Budak M, Korkmaz EM, Doğan Ö, Nel A, Wan S, Cai C, Jouault C, Li M, Wei M. Phylogenomic Analyses of the Tenthredinoidea Support the Familial Rank of Athaliidae (Insecta, Tenthredinoidea). INSECTS 2022; 13:858. [PMID: 36292806 PMCID: PMC9604231 DOI: 10.3390/insects13100858] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
The systematic status of the genus Athalia and related genera is a perennial controversy in sawfly taxonomy. Several authors have hypothesized that the placement of Athalia within the Tenthredinidae is artificial, but no studies have focused on this topic. If the hypothesis that Athalia does not belong to Tenthredinidae can be supported, the taxonomic framework of Tenthredinoidea needs revision. We present a comprehensive phylogenomic study of Tenthredinoidae, focusing on the positions of Athalia and related genera by sampling 80 representatives mainly of the Tenthredinoidea, including Heptamelinae and Blasticotomidae. Our phylogenetic reconstructions based on nuclear genes and mitochondrial (mt) sequences support Athalia and related genera as a distinct clade sister to Tenthredinidae + (Cimbicidae + Diprionidae). A comparison of symphytan mitochondrial genomes reveals an innovative gene rearrangement pattern in Athaliidae, in which Dentathalia demonstrates a more ancestral pattern than Athalia and Hypsathalia. The lineage specificity of mt rRNA secondary structures also provides sufficient support to consider Athaliidae as a separate family. In summary, the phylogeny and genomic structural changes unanimously support the taxonomic treatment of Athaliidae as a family and the re-establishment of Dentathalia as a valid genus.
Collapse
Affiliation(s)
- Gengyun Niu
- Laboratory of Insect Systematics and Evolutionary Biology, College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
| | - Mahir Budak
- Department of Molecular Biology and Genetics, Faculty of Science, Sivas Cumhuriyet University, Sivas 58140, Turkey
| | - Ertan Mahir Korkmaz
- Department of Molecular Biology and Genetics, Faculty of Science, Sivas Cumhuriyet University, Sivas 58140, Turkey
| | - Özgül Doğan
- Department of Molecular Biology and Genetics, Faculty of Science, Sivas Cumhuriyet University, Sivas 58140, Turkey
| | - André Nel
- Institut de Systématique, Évolution, Biodiversité (ISYEB) Muséum National d’Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP50, 57 rue Cuvier, 75005 Paris, France
| | - Siying Wan
- Laboratory of Insect Systematics and Evolutionary Biology, College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
| | - Chenyang Cai
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Centre for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing 210008, China
| | - Corentin Jouault
- Institut de Systématique, Évolution, Biodiversité (ISYEB) Muséum National d’Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP50, 57 rue Cuvier, 75005 Paris, France
- Univ. Rennes, CNRS, Géosciences Rennes, UMR 6118, F-35000 Rennes, France
- CNRS, Institut des Sciences de l’Évolution de Montpellier, UMR 5554, 34090 Montpellier, France
| | - Min Li
- Laboratory of Insect Systematics and Evolutionary Biology, College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
| | - Meicai Wei
- Laboratory of Insect Systematics and Evolutionary Biology, College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
| |
Collapse
|
3
|
Niu G, Jiang S, Doğan Ö, Korkmaz EM, Budak M, Wu D, Wei M. Mitochondrial Phylogenomics of Tenthredinidae (Hymenoptera: Tenthredinoidea) Supports the Monophyly of Megabelesesinae as a Subfamily. INSECTS 2021; 12:495. [PMID: 34073280 PMCID: PMC8227683 DOI: 10.3390/insects12060495] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 11/16/2022]
Abstract
Tenthredinidae represents one of the external feeders of the most diverse superfamily, Tenthredinoidea, with diverse host plant utilization. In this study, four complete mitochondrial genomes (mitogenomes), those of Cladiucha punctata, Cladiucha magnoliae, Megabeleses magnoliae, and Megabeleses liriodendrovorax, are newly sequenced and comparatively analyzed with previously reported tenthredinid mitogenomes. The close investigation of mitogenomes and the phylogeny of Tenthredinidae leads us to the following conclusions: The subfamilial relationships and phylogenetic placements within Tenthredinidae are mostly found to be similar to the previously suggested phylogenies. However, the present phylogeny supports the monophyly of Megabelesesinae as a subfamily, with the sister-group placement of Cladiucha and Megabeleses outside of Allantinae. The occurrence of the same type of tRNA rearrangements (MQI and ANS1ERF) in the mitogenomes of Megabelesesinae species and the presence of apomorphic morphological characters also provide robust evidence for this new subfamily. The divergence and diversification times of the subfamilies appear to be directly related to colonization of the flowering plants following the Early Cretaceous. The origin time and diversification patterns of Megabelesesinae were also well matched with the divergence times of their host plants from Magnoliaceae.
Collapse
Affiliation(s)
- Gengyun Niu
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China; (G.N.); (D.W.)
| | - Sijia Jiang
- College of Forestry, Beijing Forestry University, Beijing 100083, China;
| | - Özgül Doğan
- Department of Molecular Biology and Genetics, Faculty of Science, Sivas Cumhuriyet University, Sivas 58140, Turkey; (Ö.D.); (M.B.); (E.M.K.)
| | - Ertan Mahir Korkmaz
- Department of Molecular Biology and Genetics, Faculty of Science, Sivas Cumhuriyet University, Sivas 58140, Turkey; (Ö.D.); (M.B.); (E.M.K.)
| | - Mahir Budak
- Department of Molecular Biology and Genetics, Faculty of Science, Sivas Cumhuriyet University, Sivas 58140, Turkey; (Ö.D.); (M.B.); (E.M.K.)
| | - Duo Wu
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China; (G.N.); (D.W.)
| | - Meicai Wei
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China; (G.N.); (D.W.)
| |
Collapse
|
4
|
Comparative mitogenomics of Hymenoptera reveals evolutionary differences in structure and composition. Int J Biol Macromol 2020; 144:460-472. [DOI: 10.1016/j.ijbiomac.2019.12.135] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 11/06/2019] [Accepted: 12/15/2019] [Indexed: 01/26/2023]
|
5
|
Yan Y, Niu G, Zhang Y, Ren Q, Du S, Lan B, Wei M. Complete mitochondrial genome sequence of Labriocimbex sinicus, a new genus and new species of Cimbicidae (Hymenoptera) from China. PeerJ 2019; 7:e7853. [PMID: 31608181 PMCID: PMC6786251 DOI: 10.7717/peerj.7853] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 09/08/2019] [Indexed: 11/25/2022] Open
Abstract
Labriocimbex sinicus Yan & Wei gen. et sp. nov. of Cimbicidae is described. The new genus is similar to Praia Andre and Trichiosoma Leach. A key to extant Holarctic genera of Cimbicinae is provided. To identify the phylogenetic placement of Cimbicidae, the mitochondrial genome of L. sinicus was annotated and characterized using high-throughput sequencing data. The complete mitochondrial genome of L. sinicus was obtained with a length of 15,405 bp (GenBank: MH136623; SRA: SRR8270383) and a typical set of 37 genes (22 tRNAs, 13 PCGs, and two rRNAs). The results demonstrated that all PCGs were initiated by ATN codon, and ended with TAA or T stop codons. The study reveals that all tRNA genes have a typical clover-leaf secondary structure, except for trnS1. Remarkably, the secondary structures of the rrnS and rrnL of L. sinicus were much different from those of Corynis lateralis. Phylogenetic analyses verified the monophyly and positions of the three Cimbicidae species within the superfamily Tenthredinoidea and demonstrated a relationship as (Tenthredinidae + Cimbicidae) + (Argidae + Pergidae) with strong nodal supports. Furthermore, we found that the generic relationships of Cimbicidae revealed by the phylogenetic analyses based on COI genes agree quite closely with the systematic arrangement of the genera based on the morphological characters. Phylogenetic tree based on two methods shows that L. sinicus is the sister group of Praia with high support values. We suggest that Labriocimbex belongs to the tribe Trichiosomini of Cimbicinae based on adult morphology and molecular data. Besides, we suggest to promote the subgenus Asitrichiosoma to be a valid genus.
Collapse
Affiliation(s)
- Yuchen Yan
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees; Lab of Insect Systematics and Evolutionary Biology, Central South University of Forestry and Technology, Changsha, China
| | - Gengyun Niu
- Jiangxi Normal University, Nanchang, Jiangxi, China
| | - Yaoyao Zhang
- College of Life Sciences, Nankai University, Tianjin, China
| | - Qianying Ren
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees; Lab of Insect Systematics and Evolutionary Biology, Central South University of Forestry and Technology, Changsha, China
| | - Shiyu Du
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees; Lab of Insect Systematics and Evolutionary Biology, Central South University of Forestry and Technology, Changsha, China
| | - Bocheng Lan
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees; Lab of Insect Systematics and Evolutionary Biology, Central South University of Forestry and Technology, Changsha, China
| | - Meicai Wei
- Jiangxi Normal University, Nanchang, Jiangxi, China
| |
Collapse
|
6
|
Niu G, Zhang Y, Li Z, Wei M. Characterization of the mitochondrial genome of Analcellicampa xanthosoma gen. et sp. nov. (Hymenoptera: Tenthredinidae). PeerJ 2019; 7:e6866. [PMID: 31106070 PMCID: PMC6500721 DOI: 10.7717/peerj.6866] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 03/28/2019] [Indexed: 11/20/2022] Open
Abstract
A new genus with a new species of the tribe Hoplocampini of Hoplocampinae was described from China: Analcellicampa xanthosoma Wei & Niu, gen. et sp. nov. Hoplocampa danfengensis G. Xiao 1994 was designated as the type species of the new genus. The characters of Analcellicampa danfengensis (G. Xiao) comb. nov. were briefly discussed. A key to the tribes and known genera of Hoplocampinae was provided. The nearly complete mitochondrial genome of A. xanthosoma was characterized as having a length of 15,512 bp and containing 37 genes (22 tRNAs, 13 protein-coding genes (PCGs), and 2 rRNAs). The gene order of this new specimen was the same as that in the inferred insect ancestral mitochondrial genome. All PCGs were initiated by ATN codons and ended with TAA or T stop codons. All tRNAs had a typical cloverleaf secondary structure, except for trnS1. Remarkably, the helices H991 of rrnS and H47 of rrnL were redundant, while helix H563 of rrnL was highly conserved. A phylogeny based on previously reported symphytan mitochondrial genomes showed that A. xanthosoma is a sister group to Monocellicampa pruni, with high support values. We suggest that A. xanthosoma and M. pruni belong to the tribe Hoplocampini of Hoplocampinae.
Collapse
Affiliation(s)
- Gengyun Niu
- College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi, China
| | - Yaoyao Zhang
- College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi, China
| | - Zhenyi Li
- Bangor College, Central South University of Forestry and Technology, Ministry of Education, Changsha, Hunan, China
| | - Meicai Wei
- College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi, China
| |
Collapse
|
7
|
Du S, Niu G, Nyman T, Wei M. Characterization of the mitochondrial genome of Arge bella Wei & Du sp. nov. (Hymenoptera: Argidae). PeerJ 2018; 6:e6131. [PMID: 30595984 PMCID: PMC6305119 DOI: 10.7717/peerj.6131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 11/17/2018] [Indexed: 01/27/2023] Open
Abstract
We describe Arge bella Wei & Du sp. nov., a large and beautiful species of Argidae from south China, and report its mitochondrial genome based on high-throughput sequencing data. We present the gene order, nucleotide composition of protein-coding genes (PCGs), and the secondary structures of RNA genes. The nearly complete mitochondrial genome of A. bella has a length of 15,576 bp and a typical set of 37 genes (22 tRNAs, 13 PCGs, and 2 rRNAs). Three tRNAs are rearranged in the A. bella mitochondrial genome as compared to the ancestral type in insects: trnM and trnQ are shuffled, while trnW is translocated from the trnW-trnC-trnY cluster to a location downstream of trnI. All PCGs are initiated by ATN codons, and terminated with TAA, TA or T as stop codons. All tRNAs have a typical cloverleaf secondary structure, except for trnS1. H821 of rrnS and H976 of rrnL are redundant. A phylogenetic analysis based on mitochondrial genome sequences of A. bella, 21 other symphytan species, two apocritan representatives, and four outgroup taxa supports the placement of Argidae as sister to the Pergidae within the symphytan superfamily Tenthredinoidea.
Collapse
Affiliation(s)
- Shiyu Du
- Central South University of Forestry and Technology, Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees (Central South University of Forestry and Technology), Ministry of Education, Changsha, Hunan, China
| | - Gengyun Niu
- Jiangxi Normal University, Life Science College, Nanchang, Jiangxi, China
| | - Tommi Nyman
- Norwegian Institute of Bioeconomy Research, Department of Ecosystems in the Barents Region, Svanhovd Research Station, Svanvik, Norway
| | - Meicai Wei
- Central South University of Forestry and Technology, Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees (Central South University of Forestry and Technology), Ministry of Education, Changsha, Hunan, China
| |
Collapse
|
8
|
Niu G, Korkmaz EM, Doğan Ö, Zhang Y, Aydemir MN, Budak M, Du S, Başıbüyük HH, Wei M. The first mitogenomes of the superfamily Pamphilioidea (Hymenoptera: Symphyta): Mitogenome architecture and phylogenetic inference. Int J Biol Macromol 2018; 124:185-199. [PMID: 30448489 DOI: 10.1016/j.ijbiomac.2018.11.129] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/30/2018] [Accepted: 11/14/2018] [Indexed: 10/27/2022]
Abstract
The Pamphilioidea represents a small superfamily of the phytophagous suborder Symphyta (Hymenoptera). Here, nearly complete mitochondrial genomes (mitogenomes) of three pamphilioid species: Chinolyda flagellicornis (Pamphiliidae), Megalodontes spiraeae and M. cephalotes (Megalodontesidae) were newly sequenced using next generation sequencing and comparatively analysed with the previously reported symphytan mitogenomes. A positive AT skew (0.013) and a negative GC skew (-0.194) were found in pamphilioid mitogenome, and a deviation from strand asymmetry was also observed in the PCGs encoded on both strands. Several gene rearrangement events were observed in four tRNA gene clusters (WCY, IQM, ARNS1EF and TP clusters), which have not been reported from symphytan mitogenomes to date. As the most parsimonious explanation, compared with the inferred insect ancestral mitogenome architecture, the occurrence of gene rearrangements in pamphilioid mitogenomes requires totally five evolutionary steps, including four transpositions and one inversion. The predicted secondary structures of tRNAs, rrnS and rrnL genes are mostly consistent with reported hymenopteran species. Phylogenetic analyses recovered the monophyly of superfamily Pamphilioidea and indicated the relationship Tenthredinoidea + (Pamphilioidea + (Cephoidea + (Orussoidea + Apocrita))) with strong nodal supports.
Collapse
Affiliation(s)
- Gengyun Niu
- College of Life Sciences, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, PR China
| | - Ertan Mahir Korkmaz
- Department of Molecular Biology and Genetics, Faculty of Science, Sivas Cumhuriyet University, Sivas, Turkey.
| | - Özgül Doğan
- Department of Molecular Biology and Genetics, Faculty of Science, Sivas Cumhuriyet University, Sivas, Turkey
| | - Yaoyao Zhang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees (Central South University of Forestry and Technology), Ministry of Education, Central South University of Forestry and Technology, 498 South Shaoshan Road, Changsha 410004, PR China
| | - Merve Nur Aydemir
- Department of Molecular Biology and Genetics, Faculty of Science, Sivas Cumhuriyet University, Sivas, Turkey
| | - Mahir Budak
- Department of Molecular Biology and Genetics, Faculty of Science, Sivas Cumhuriyet University, Sivas, Turkey
| | - Shiyu Du
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees (Central South University of Forestry and Technology), Ministry of Education, Central South University of Forestry and Technology, 498 South Shaoshan Road, Changsha 410004, PR China
| | | | - Meicai Wei
- College of Life Sciences, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, PR China
| |
Collapse
|