1
|
Plasil M, Futas J, Jelinek A, Burger PA, Horin P. Comparative Genomics of the Major Histocompatibility Complex (MHC) of Felids. Front Genet 2022; 13:829891. [PMID: 35309138 PMCID: PMC8924298 DOI: 10.3389/fgene.2022.829891] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/15/2022] [Indexed: 12/25/2022] Open
Abstract
This review summarizes the current knowledge on the major histocompatibility complex (MHC) of the family Felidae. This family comprises an important domestic species, the cat, as well as a variety of free-living felids, including several endangered species. As such, the Felidae have the potential to be an informative model for studying different aspects of the biological functions of MHC genes, such as their role in disease mechanisms and adaptation to different environments, as well as the importance of genetic diversity for conservation issues in free-ranging or captive populations. Despite this potential, the current knowledge on the MHC in the family as a whole is fragmentary and based mostly on studies of the domestic cat and selected species of big cats. The overall structure of the domestic cat MHC is similar to other mammalian MHCs following the general scheme "centromere-MHC class I-MHC class III-MHC class II" with some differences in the gene contents. An unambiguously defined orthologue of the non-classical class I HLA-E gene has not been identified so far and the class II DQ and DP genes are missing or pseudogenized, respectively. A comparison with available genomes of other felids showed a generally high level of structural and sequence conservation of the MHC region. Very little and fragmentary information on in vitro and/or in vivo biological functions of felid MHC genes is available. So far, no association studies have indicated effects of MHC genetic diversity on a particular disease. No information is available on the role of MHC class I molecules in interactions with Natural Killer (NK) cell receptors or on the putative evolutionary interactions (co-evolution) of the underlying genes. A comparison of complex genomic regions encoding NK cell receptors (the Leukocyte Receptor Complex, LRC and the Natural Killer Cell Complex, NKC) in the available felid genomes showed a higher variability in the NKC compared to the LRC and the MHC regions. Studies of the genetic diversity of domestic cat populations and/or specific breeds have focused mainly on DRB genes. Not surprisingly, higher levels of MHC diversity were observed in stray cats compared to pure breeds, as evaluated by DRB sequencing as well as by MHC-linked microsatellite typing. Immunogenetic analysis in wild felids has only been performed on MHC class I and II loci in tigers, Namibian leopards and cheetahs. This information is important as part of current conservation tasks to assess the adaptive potential of endangered wild species at the human-wildlife interface, which will be essential for preserving biodiversity in a functional ecosystem.
Collapse
Affiliation(s)
- Martin Plasil
- Research Group Animal Immunogenomics, Ceitec Vetuni, University of Veterinary Sciences Brno, Brno, Czech Republic
- Department of Animal Genetics, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Jan Futas
- Research Group Animal Immunogenomics, Ceitec Vetuni, University of Veterinary Sciences Brno, Brno, Czech Republic
- Department of Animal Genetics, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - April Jelinek
- Department of Animal Genetics, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Pamela A. Burger
- Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, VIA, Vienna, Austria
| | - Petr Horin
- Research Group Animal Immunogenomics, Ceitec Vetuni, University of Veterinary Sciences Brno, Brno, Czech Republic
- Department of Animal Genetics, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Brno, Czech Republic
| |
Collapse
|
2
|
Integrated proteomics and metabolomics reveal the variations in the physiological state of spotted seal (Phoca largha) pups following artificial rescue. Genomics 2022; 114:110282. [DOI: 10.1016/j.ygeno.2022.110282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/23/2021] [Accepted: 01/31/2022] [Indexed: 11/21/2022]
|
3
|
Tian J, Du J, Han J, Bao X, Song X, Lu Z. Proteomics reveals the preliminary physiological states of the spotted seal (Phoca largha) pups. Sci Rep 2020; 10:18727. [PMID: 33127980 PMCID: PMC7599241 DOI: 10.1038/s41598-020-75759-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 10/20/2020] [Indexed: 02/07/2023] Open
Abstract
Spotted seal (Phoca largha) is a critically endangered pinniped in China and South Korea. The conventional method to protect and maintain the P. largha population is to keep them captive in artificially controlled environments. However, little is known about the physiological differences between wild and captive P. largha. To generate a preliminary protein expression profile for P. largha, whole blood from wild and captive pups were subjected to a label-free comparative proteomic analysis. According to the results, 972 proteins were identified and predicted to perform functions related to various metabolic, immune, and cellular processes. Among the identified proteins, the expression level of 51 were significantly different between wild and captive P. large pups. These differentially expressed proteins were enriched in a wide range of cellular functions, including cytoskeleton, phagocytosis, proteolysis, the regulation of gene expression, and carbohydrate metabolism. The abundances of proteins involved in phagocytosis and ubiquitin-mediated proteolysis were significantly higher in the whole blood of wild P. largha pups than in captive individuals. In addition, heat shock protein 90-beta, were determined as the key protein associated with the differences in the wild and captive P. largha pups due to the most interactions of it with various differentially expressed proteins. Moreover, wild P. largha pups could be more nutritionally stressed and have more powerful immune capacities than captive pups. This study provides the first data on the protein composition of P. largha and provides useful information on the physiological characteristics for research in this species.
Collapse
Affiliation(s)
- Jiashen Tian
- Dalian Key Laboratory of Conservation Biology for Endangered Marine Mammals, Liaoning Ocean and Fisheries Science Research Institute, 50 Heishijiao Street, Shahekou District, Dalian, 116023, China
| | - Jing Du
- Dalian Key Laboratory of Conservation Biology for Endangered Marine Mammals, Liaoning Ocean and Fisheries Science Research Institute, 50 Heishijiao Street, Shahekou District, Dalian, 116023, China
| | - Jiabo Han
- Dalian Key Laboratory of Conservation Biology for Endangered Marine Mammals, Liaoning Ocean and Fisheries Science Research Institute, 50 Heishijiao Street, Shahekou District, Dalian, 116023, China
| | - Xiangbo Bao
- Dalian Key Laboratory of Conservation Biology for Endangered Marine Mammals, Liaoning Ocean and Fisheries Science Research Institute, 50 Heishijiao Street, Shahekou District, Dalian, 116023, China
| | - Xinran Song
- Dalian Sun Asia Tourism Holding Co., Ltd., 608-6-8 Zhongshan Road, Shahekou District, Dalian, 116023, China
| | - Zhichuang Lu
- Dalian Key Laboratory of Conservation Biology for Endangered Marine Mammals, Liaoning Ocean and Fisheries Science Research Institute, 50 Heishijiao Street, Shahekou District, Dalian, 116023, China.
| |
Collapse
|
4
|
Gong M, Shafer ABA, Hu X, Huang Y, Zhang L, Li H, Wu Y, Wen W, Liu G. Population demographic history and adaptability of the vulnerable Lolokou Sucker Frog. Genetica 2020; 148:207-213. [PMID: 33052504 DOI: 10.1007/s10709-020-00105-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 09/26/2020] [Indexed: 11/30/2022]
Abstract
Amphibians are experiencing worldwide declines due to increasing anthropogenetic disturbances. However, the genetic variability and hence adaptability are still unknown for most frogs. We integrated the mitochondrial (ND2 gene), nuclear (TYR gene) and major histocompatibility complex (MHC) loci, to clarify the demographic patterns and immune-gene diversity of the Lolokou Sucker Frog (Amolops loloensis). Demographic analysis of the ND2 and TYR genes suggested that the Lolokou Sucker Frog experienced a population expansion within the last 10,000 years. High MHC diversity was detected, which has likely resulted from positive selection, indicating the current diversity bodes well for the species' adaptive potential to pathogenic challenges. These findings broaden our knowledge on the population history and evolution adaptation of the reclusive torrent frog, and conservation implications are provided.
Collapse
Affiliation(s)
- Minghao Gong
- Institute of Wetland Research, Beijing Key Laboratory of Wetland Services and Restoration, Chinese Academy of Forestry, Beijing, 100091, China
| | - Aaron B A Shafer
- Forensics & Environmental and Life Sciences, Trent University, Peterborough, 7K9J 7B8, Canada
| | - Xiaolong Hu
- College of Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Yaohua Huang
- Mabian Dafengding National Nature Reserve, Sichuan, 614600, China
| | - Ling Zhang
- China Wildlife Conservation Association, Beijing, 100714, China
| | - Huixin Li
- Institute of Wetland Research, Beijing Key Laboratory of Wetland Services and Restoration, Chinese Academy of Forestry, Beijing, 100091, China
| | - Ye Wu
- Mabian Dafengding National Nature Reserve, Sichuan, 614600, China
| | - Wanyu Wen
- Institute of Wetland Research, Beijing Key Laboratory of Wetland Services and Restoration, Chinese Academy of Forestry, Beijing, 100091, China
| | - Gang Liu
- Institute of Wetland Research, Beijing Key Laboratory of Wetland Services and Restoration, Chinese Academy of Forestry, Beijing, 100091, China.
| |
Collapse
|