1
|
Zhang L, Wang G, Li H, Zhao T. Role Analysis of the scarb1 Gene in the Pigmentation of Neocaridina denticulata sinensis. Animals (Basel) 2025; 15:901. [PMID: 40218295 PMCID: PMC11987898 DOI: 10.3390/ani15070901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/18/2025] [Accepted: 03/18/2025] [Indexed: 04/14/2025] Open
Abstract
Body color is a key economic trait for Neocaridina denticulata sinensis, an important ornamental shrimp. Scarb1 may be an important mediator of astaxanthin uptake, changing the shrimp's body color. To discover the relationship between scarb1 and the pigmentation of cherry shrimp, the expression profiles, RNAi, and SNP genotyping of scarb1 were studied. There were significant differences in four color populations and five development stages (p < 0.05). The highest expression level of scarb1 appeared in the red population and the pre-nauplius stage. Exposure to scarb1 dsRNA increased the number and development of chromatophores at the metanauplius stage, but almost no phenotypic changes were observed at the pre-zoea stage. There was a synonymous SNP (G1593A) with a significantly different genotype frequency between the red and yellow populations (p < 0.05). The above results suggested that scarb1 is involved in pigmentation by affecting the development of chromatophores.
Collapse
Affiliation(s)
- Lili Zhang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China; (L.Z.); (H.L.); (T.Z.)
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen 361021, China
| | - Guodong Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China; (L.Z.); (H.L.); (T.Z.)
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen 361021, China
| | - Haifan Li
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China; (L.Z.); (H.L.); (T.Z.)
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen 361021, China
| | - Tanjun Zhao
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China; (L.Z.); (H.L.); (T.Z.)
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen 361021, China
| |
Collapse
|
2
|
Aktürk Dizman Y. Analysis of codon usage bias of exonuclease genes in invertebrate iridescent viruses. Virology 2024; 593:110030. [PMID: 38402641 DOI: 10.1016/j.virol.2024.110030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/04/2024] [Accepted: 02/13/2024] [Indexed: 02/27/2024]
Abstract
Invertebrate iridescent viruses (IIVs) are double-stranded DNA viruses that belong to the Iridoviridae family. IIVs result diseases that vary in severity from subclinical to lethal in invertebrate hosts. Codon usage bias (CUB) analysis is a versatile method for comprehending the genetic and evolutionary aspects of species. In this study, we analyzed the CUB in 10 invertebrate iridescent viruses exonuclease genes by calculating and comparing the nucleotide contents, effective number of codons (ENC), codon adaptation index (CAI), relative synonymous codon usage (RSCU), and others. The results revealed that IIVs exonuclease genes are rich in A/T. The ENC analysis displayed a low codon usage bias in IIVs exonuclease genes. ENC-plot, neutrality plot, and parity rule 2 plot demonstrated that besides mutational pressure, other factors like natural selection, dinucleotide content, and aromaticity also contributed to CUB. The findings could enhance our understanding of the evolution of IIVs exonuclease genes.
Collapse
Affiliation(s)
- Yeşim Aktürk Dizman
- Department of Biology, Faculty of Arts and Sciences, Recep Tayyip Erdogan University, 53100, Rize, Türkiye.
| |
Collapse
|
3
|
Sun W, Wei Z, Gu Y, Wang T, Liu B, Yan Y. Chloroplast genome structure analysis of Equisetum unveils phylogenetic relationships to ferns and mutational hotspot region. FRONTIERS IN PLANT SCIENCE 2024; 15:1328080. [PMID: 38665369 PMCID: PMC11044155 DOI: 10.3389/fpls.2024.1328080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/02/2024] [Indexed: 04/28/2024]
Abstract
Equisetum is one of the oldest extant group vascular plants and is considered to be the key to understanding vascular plant evolution. Equisetum is distributed almost all over the world and has a high degree of adaptability to different environments. Despite the fossil record of horsetails (Equisetum, Equisetaceae) dating back to the Carboniferous, the phylogenetic relationship of this genus is not well, and the chloroplast evolution in Equisetum remains poorly understood. In order to fill this gap, we sequenced, assembled, and annotated the chloroplast genomes of 12 species of Equisetum, and compared them to 13 previously published vascular plants chloroplast genomes to deeply examine the plastome evolutionary dynamics of Equisetum. The chloroplast genomes have a highly conserved quadripartite structure across the genus, but these chloroplast genomes have a lower GC content than other ferns. The size of Equisetum plastomes ranges from 130,773 bp to 133,684 bp and they encode 130 genes. Contraction/expansion of IR regions and the number of simple sequences repeat regions underlie large genomic variations in size among them. Comparative analysis revealed we also identified 13 divergence hotspot regions. Additionally, the genes accD and ycf1 can be used as potential DNA barcodes for the identification and phylogeny of the genus Equisetum. Twelve photosynthesis-related genes were specifically selected in Equisetum. Comparative genomic analyses implied divergent evolutionary patterns between Equisetum and other ferns. Phylogenomic analyses and molecular dating revealed a relatively distant phylogenetic relationship between Equisetum and other ferns, supporting the division of pteridophyte into Lycophytes, Equisetaceae and ferns. The results show that the chloroplast genome can be used to solve phylogenetic problems within or between Equisetum species, and also provide genomic resources for the study of Equisetum systematics and evolution.
Collapse
Affiliation(s)
- Weiyue Sun
- Key Laboratory of Plant Biology, College of Heilongjiang Province, Harbin Normal University, Harbin, China
- Key Laboratory of National Forestry and Grassland Administration for Orehid Conservation and Utilization, the Orchid Conservation & Research Center of Shenzhen, Shenzhen, China
| | - Zuoying Wei
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Guangzhou, China
| | - Yuefeng Gu
- Key Laboratory of National Forestry and Grassland Administration for Orehid Conservation and Utilization, the Orchid Conservation & Research Center of Shenzhen, Shenzhen, China
| | - Ting Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Guangzhou, China
| | - Baodong Liu
- Key Laboratory of Plant Biology, College of Heilongjiang Province, Harbin Normal University, Harbin, China
- Key Laboratory of National Forestry and Grassland Administration for Orehid Conservation and Utilization, the Orchid Conservation & Research Center of Shenzhen, Shenzhen, China
| | - Yuehong Yan
- Key Laboratory of National Forestry and Grassland Administration for Orehid Conservation and Utilization, the Orchid Conservation & Research Center of Shenzhen, Shenzhen, China
| |
Collapse
|
4
|
Wu L, Fan P, Cai J, Zang C, Lin Y, Xu Z, Wu Z, Gao W, Song J, Yao H. Comparative genomics and phylogenomics of the genus Glycyrrhiza (Fabaceae) based on chloroplast genomes. Front Pharmacol 2024; 15:1371390. [PMID: 38515836 PMCID: PMC10955637 DOI: 10.3389/fphar.2024.1371390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/19/2024] [Indexed: 03/23/2024] Open
Abstract
Glycyrrhiza (Fabaceae) species are rich in metabolites and widely used in medicine. Research on the chloroplast genome of Glycyrrhiza is important for understanding its phylogenetics, biogeography, genetic diversity, species identification, and medicinal properties. In this study, comparative genomics and phylogenomics of Glycyrrhiza were analyzed based on the chloroplast genome. The chloroplast genomes of six Glycyrrhiza species were obtained using various assembly and annotation tools. The final assembled chloroplast genome sizes for the six Glycyrrhiza species ranged from 126,380 bp to 129,115 bp, with a total of 109-110 genes annotated. Comparative genomics results showed that the chloroplast genomes of Glycyrrhiza showed typically lacking inverted repeat regions, and the genome length, structure, GC content, codon usage, and gene distribution were highly similar. Bioinformatics analysis revealed the presence of 69-96 simple sequence repeats and 61-138 long repeats in the chloroplast genomes. Combining the results of mVISTA and nucleotide diversity, four highly variable regions were screened for species identification and relationship studies. Selection pressure analysis indicated overall purifying selection in the chloroplast genomes of Glycyrrhiza, with a few positively selected genes potentially linked to environmental adaptation. Phylogenetic analyses involving all tribes of Fabaceae with published chloroplast genomes elucidated the evolutionary relationships, and divergence time estimation estimated the chronological order of species differentiations within the Fabaceae family. The results of phylogenetic analysis indicated that species from the six subfamilies formed distinct clusters, consistent with the classification scheme of the six subfamilies. In addition, the inverted repeat-lacking clade in the subfamily Papilionoideae clustered together, and it was the last to differentiate. Co-linear analysis confirmed the conserved nature of Glycyrrhiza chloroplast genomes, and instances of gene rearrangements and inversions were observed in the subfamily Papilionoideae.
Collapse
Affiliation(s)
- Liwei Wu
- State Key Laboratory of Basis and New Drug Development of Natural and Nuclear Drugs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Panhui Fan
- State Key Laboratory of Basis and New Drug Development of Natural and Nuclear Drugs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiaying Cai
- State Key Laboratory of Basis and New Drug Development of Natural and Nuclear Drugs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chenxi Zang
- State Key Laboratory of Basis and New Drug Development of Natural and Nuclear Drugs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yulin Lin
- State Key Laboratory of Basis and New Drug Development of Natural and Nuclear Drugs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhichao Xu
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Zhengjun Wu
- China Resources Sanjiu Medical & Pharmaceutical Co., Ltd., Shenzhen, China
| | - Wei Gao
- China Resources Sanjiu Medical & Pharmaceutical Co., Ltd., Shenzhen, China
| | - Jingyuan Song
- State Key Laboratory of Basis and New Drug Development of Natural and Nuclear Drugs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Engineering Research Center of Chinese Medicine Resources, Ministry of Education, Beijing, China
| | - Hui Yao
- State Key Laboratory of Basis and New Drug Development of Natural and Nuclear Drugs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Engineering Research Center of Chinese Medicine Resources, Ministry of Education, Beijing, China
| |
Collapse
|
5
|
Wu L, Fan P, Zhou J, Li Y, Xu Z, Lin Y, Wang Y, Song J, Yao H. Gene Losses and Homology of the Chloroplast Genomes of Taxillus and Phacellaria Species. Genes (Basel) 2023; 14:genes14040943. [PMID: 37107701 PMCID: PMC10137875 DOI: 10.3390/genes14040943] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Research on the chloroplast genome of parasitic plants is limited. In particular, the homology between the chloroplast genomes of parasitic and hyperparasitic plants has not been reported yet. In this study, three chloroplast genomes of Taxillus (Taxillus chinensis, Taxillus delavayi, and Taxillus thibetensis) and one chloroplast genome of Phacellaria (Phacellaria rigidula) were sequenced and analyzed, among which T. chinensis is the host of P. rigidula. The chloroplast genomes of the four species were 119,941-138,492 bp in length. Compared with the chloroplast genome of the autotrophic plant Nicotiana tabacum, all of the ndh genes, three ribosomal protein genes, three tRNA genes and the infA gene were lost in the three Taxillus species. Meanwhile, in P. rigidula, the trnV-UAC gene and the ycf15 gene were lost, and only one ndh gene (ndhB) existed. The results of homology analysis showed that the homology between P. rigidula and its host T. chinensis was low, indicating that P. rigidula grows on its host T. chinensis but they do not share the chloroplast genome. In addition, horizontal gene transfer was not found between P. rigidula and its host T. chinensis. Several candidate highly variable regions in the chloroplast genomes of Taxillus and Phacellaria species were selected for species identification study. Phylogenetic analysis revealed that the species of Taxillus and Scurrula were closely related and supported that Scurrula and Taxillus should be treated as congeneric, while species in Phacellaria had a close relationship with that in Viscum.
Collapse
Affiliation(s)
- Liwei Wu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Panhui Fan
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jianguo Zhou
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Yonghua Li
- Faculty of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530004, China
| | - Zhichao Xu
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yulin Lin
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Yu Wang
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jingyuan Song
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Hui Yao
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
6
|
Khandia R, Sharma A, Alqahtani T, Alqahtani AM, Asiri YI, Alqahtani S, Alharbi AM, Kamal MA. Strong Selectional Forces Fine-Tune CpG Content in Genes Involved in Neurological Disorders as Revealed by Codon Usage Patterns. Front Neurosci 2022; 16:887929. [PMID: 35757545 PMCID: PMC9226491 DOI: 10.3389/fnins.2022.887929] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/04/2022] [Indexed: 02/05/2023] Open
Abstract
Neurodegenerative disorders cause irreversible damage to the neurons and adversely affect the quality of life. Protein misfolding and their aggregation in specific parts of the brain, mitochondrial dysfunction, calcium load, proteolytic stress, and oxidative stress are among the causes of neurodegenerative disorders. In addition, altered metabolism has been associated with neurodegeneration as evidenced by reductions in glutamine and alanine in transient global amnesia patients, higher homocysteine-cysteine disulfide, and lower methionine decline in serum urea have been observed in Alzheimer's disease patients. Neurodegeneration thus appears to be a culmination of altered metabolism. The study's objective is to analyze various attributes like composition, physical properties of the protein, and factors like selectional and mutational forces, influencing codon usage preferences in a panel of genes involved directly or indirectly in metabolism and contributing to neurodegeneration. Various parameters, including gene composition, dinucleotide analysis, Relative synonymous codon usage (RSCU), Codon adaptation index (CAI), neutrality and parity plots, and different protein indices, were computed and analyzed to determine the codon usage pattern and factors affecting it. The correlation of intrinsic protein properties such as the grand average of hydropathicity index (GRAVY), isoelectric point, hydrophobicity, and acidic, basic, and neutral amino acid content has been found to influence codon usage. In genes up to 800 amino acids long, the GC3 content was highly variable, while GC12 content was relatively constant. An optimum CpG content is present in genes to maintain a high expression level as required for genes involved in metabolism. Also observed was a low codon usage bias with a higher protein expression level. Compositional parameters and nucleotides at the second position of codons played essential roles in explaining the extent of bias. Overall analysis indicated that the dominance of selection pressure and compositional constraints and mutational forces shape codon usage.
Collapse
Affiliation(s)
- Rekha Khandia
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, India
| | - Anushri Sharma
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, India
| | - Taha Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Ali M Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Yahya I Asiri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Saud Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Ahmed M Alharbi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia
| | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.,King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh.,Enzymoics, Novel Global Community Educational Foundation, Hebersham, NSW, Australia
| |
Collapse
|
7
|
Wang X, Dong Q, Chen G, Zhang J, Liu Y, Cai Y. Frameshift and wild-type proteins are often highly similar because the genetic code and genomes were optimized for frameshift tolerance. BMC Genomics 2022; 23:416. [PMID: 35655139 PMCID: PMC9164415 DOI: 10.1186/s12864-022-08435-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 03/02/2022] [Indexed: 11/10/2022] Open
Abstract
Frameshift mutations have been considered of significant importance for the molecular evolution of proteins and their coding genes, while frameshift protein sequences encoded in the alternative reading frames of coding genes have been considered to be meaningless. However, functional frameshifts have been found widely existing. It was puzzling how a frameshift protein kept its structure and functionality while substantial changes occurred in its primary amino-acid sequence. This study shows that the similarities among frameshifts and wild types are higher than random similarities and are determined at different levels. Frameshift substitutions are more conservative than random substitutions in the standard genetic code (SGC). The frameshift substitutions score of SGC ranks in the top 2.0-3.5% of alternative genetic codes, showing that SGC is nearly optimal for frameshift tolerance. In many genes and certain genomes, frameshift-resistant codons and codon pairs appear more frequently than expected, suggesting that frameshift tolerance is achieved through not only the optimality of the genetic code but, more importantly, the further optimization of a specific gene or genome through the usages of codons/codon pairs, which sheds light on the role of frameshift mutations in molecular and genomic evolution.
Collapse
Affiliation(s)
- Xiaolong Wang
- Department of Biotechnology, College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Shandong, Qingdao, 266003, P. R. China.
| | - Quanjiang Dong
- Qingdao Municipal Hospital, Qingdao, Shandong, 266003, P. R. China
| | - Gang Chen
- Department of Biotechnology, College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Shandong, Qingdao, 266003, P. R. China
| | - Jianye Zhang
- Department of Biotechnology, College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Shandong, Qingdao, 266003, P. R. China
| | - Yongqiang Liu
- Department of Biotechnology, College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Shandong, Qingdao, 266003, P. R. China
| | - Yujia Cai
- Department of Biotechnology, College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Shandong, Qingdao, 266003, P. R. China
| |
Collapse
|
8
|
Wang P, Mao Y, Su Y, Wang J. Comparative analysis of transcriptomic data shows the effects of multiple evolutionary selection processes on codon usage in Marsupenaeus japonicus and Marsupenaeus pulchricaudatus. BMC Genomics 2021; 22:781. [PMID: 34717552 PMCID: PMC8557549 DOI: 10.1186/s12864-021-08106-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 10/19/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Kuruma shrimp, a major commercial shrimp species in the world, has two cryptic or sibling species, Marsupenaeus japonicus and Marsupenaeus pulchricaudatus. Codon usage analysis would contribute to our understanding of the genetic and evolutionary characteristics of the two Marsupenaeus species. In this study, we analyzed codon usage and related indices using coding sequences (CDSs) from RNA-seq data. RESULTS Using CodonW 1.4.2 software, we performed the codon bias analysis of transcriptomes obtained from hepatopancreas tissues, which indicated weak codon bias. Almost all parameters had similar correlations for both species. The gene expression level (FPKM) was negatively correlated with A/T3s. We determined 12 and 14 optimal codons for M. japonicus and M. pulchricaudatus, respectively, and all optimal codons have a C/G-ending. The two Marsupenaeus species had different usage frequencies of codon pairs, which contributed to further analysis of transcriptional differences between them. Orthologous genes that underwent positive selection (ω > 1) had a higher correlation coefficient than that of experienced purifying selection (ω < 1). Parity Rule 2 (PR2) and effective number of codons (ENc) plot analysis showed that the codon usage patterns of both species were influenced by both mutations and selection. Moreover, the average observed ENc value was lower than the expected value for both species, suggesting that factors other than GC may play roles in these phenomena. The results of multispecies clustering based on codon preference were consistent with traditional classification. CONCLUSIONS This study provides a relatively comprehensive understanding of the correlations among codon usage bias, gene expression, and selection pressures of CDSs for M. japonicus and M. pulchricaudatus. The genetic evolution was driven by mutations and selection pressure. Moreover, the results point out new insights into the specificities and evolutionary characteristics of the two Marsupenaeus species.
Collapse
Affiliation(s)
- Panpan Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/ Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
- The Jiangsu Provincial Infrastructure for Conservation and Utilization of Agricultural Germplasm, Nanjing, 210014, China
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Yong Mao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, Fujian, China.
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen, 361102, China.
| | - Yongquan Su
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| | - Jun Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, Fujian, China
| |
Collapse
|
9
|
Wu L, Cui Y, Wang Q, Xu Z, Wang Y, Lin Y, Song J, Yao H. Identification and phylogenetic analysis of five Crataegus species (Rosaceae) based on complete chloroplast genomes. PLANTA 2021; 254:14. [PMID: 34180013 DOI: 10.1007/s00425-021-03667-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
The chloroplast genomes of the five Crataegus species were shown to have a conserved genome structure. Complete chloroplast genome sequences were more suitable than highly variable regions for the identification and phylogenetic analysis of Crataegus species. Hawthorn, which is commonly used as a traditional Chinese medicine, is one of the most popular sour fruits and has high economic value. Crataegus pinnatifida var. pinnatifida and C. pinnatifida var. major are frequently adulterated with other Crataegus species on the herbal medicine market. However, most Crataegus plants are difficult to identify using traditional morphological methods. Here, we compared five Crataegus chloroplast (CP) genomes comprising two newly sequenced (i.e., C. pinnatifida var. pinnatifida and C. pinnatifida var. major) and three previously published CP genomes. The CP genomes of the five Crataegus species had a conserved genome structure, gene content and codon usage. The total length of the CP genomes was 159,654-159,865 bp. A total of 129-130 genes, including 84-85 protein-coding genes, 37 tRNA genes and 8 rRNA genes, were annotated. Bioinformatics analysis revealed 96-103 simple sequence repeats (SSRs) and 48-70 long repeats in the five CP genomes. Combining the results of mVISTA and nucleotide diversity, five highly variable regions were screened for species identification and relationship studies. Maximum likelihood trees were constructed on the basis of complete CP genome sequences and highly variable regions. The results showed that the former had higher discriminatory power for Crataegus species, indicating that the complete CP genome could be used as a super-barcode to accurately authenticate the five Crataegus species.
Collapse
Affiliation(s)
- Liwei Wu
- National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
- Engineering Research Center of Chinese Medicine Resources, Ministry of Education, Beijing, 100193, China
| | - Yingxian Cui
- National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
- Engineering Research Center of Chinese Medicine Resources, Ministry of Education, Beijing, 100193, China
| | - Qing Wang
- National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
- Engineering Research Center of Chinese Medicine Resources, Ministry of Education, Beijing, 100193, China
| | - Zhichao Xu
- National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
- Engineering Research Center of Chinese Medicine Resources, Ministry of Education, Beijing, 100193, China
| | - Yu Wang
- National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Yulin Lin
- National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Jingyuan Song
- National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
- Engineering Research Center of Chinese Medicine Resources, Ministry of Education, Beijing, 100193, China
| | - Hui Yao
- National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China.
- Engineering Research Center of Chinese Medicine Resources, Ministry of Education, Beijing, 100193, China.
| |
Collapse
|
10
|
Chakraborty S, Yengkhom S, Uddin A. Analysis of codon usage bias of chloroplast genes in Oryza species : Codon usage of chloroplast genes in Oryza species. PLANTA 2020; 252:67. [PMID: 32989601 DOI: 10.1007/s00425-020-03470-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 09/15/2020] [Indexed: 05/11/2023]
Abstract
The codon usage bias in chloroplast genes of Oryza species was low and AT rich. The pattern of codon usage was different among Oryza species and mainly influenced by mutation pressure and natural selection. Codon usage bias (CUB) is the unequal usage of synonymous codons in which some codons are more preferred to others in the coding sequences of genes. It shows a species-specific property. We studied the patterns of codon usage and the factors that influenced the CUB of protein-coding chloroplast (cp) genes in 18 Oryza species as no work was yet reported. The nucleotide composition analysis revealed that the overall GC content of cp genes in different species of Oryza was lower than 50%, i.e., Oryza cp genes were AT rich. Synonymous codon usage order (SCUO) suggested that CUB was weak in the cp genes of different Oryza species. A highly significant correlation was observed between overall nucleotides and its constituents at the third codon position suggesting that both, mutation pressure and natural selection, might influence the CUB. Correspondence analysis (COA) revealed that codon usage pattern differed across Oryza species. In the neutrality plot, a narrow range of GC3 distribution was recorded and some points were diagonally distributed in all the plots, suggesting that natural selection and mutation pressure might have influenced the CUB. The slope of the regression line was < 0.5, augmenting our inference that natural selection might have played a major role, while mutation pressure had a minor role in shaping the CUB of cp genes. The magnitudes of mutation pressure and natural selection on cp genes varied across Oryza species.
Collapse
Affiliation(s)
- Supriyo Chakraborty
- Department of Biotechnology, Assam University, Silchar, 788011, Assam, India.
| | - Sophiarani Yengkhom
- Department of Biotechnology, Assam University, Silchar, 788011, Assam, India
| | - Arif Uddin
- Department of Zoology, Moinul Hoque Choudhury Memorial Science College, Algapur, Hailakandi, 788150, Assam, India
| |
Collapse
|
11
|
Directed Evolution of a Homodimeric Laccase from Cerrena unicolor BBP6 by Random Mutagenesis and In Vivo Assembly. Int J Mol Sci 2018; 19:ijms19102989. [PMID: 30274366 PMCID: PMC6213006 DOI: 10.3390/ijms19102989] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 09/19/2018] [Accepted: 09/27/2018] [Indexed: 11/21/2022] Open
Abstract
Laccases have great potential for industrial applications due to their green catalytic properties and broad substrate specificities, and various studies have attempted to improve the catalytic performance of these enzymes. Here, to the best of our knowledge, we firstly report the directed evolution of a homodimeric laccase from Cerrena unicolor BBP6 fused with α-factor prepro-leader that was engineered through random mutagenesis followed by in vivo assembly in Saccharomyces cerevisiae. Three evolved fusion variants selected from ~3500 clones presented 31- to 37-fold increases in total laccase activity, with better thermostability and broader pH profiles. The evolved α-factor prepro-leader enhanced laccase expression levels by up to 2.4-fold. Protein model analysis of these variants reveals that the beneficial mutations have influences on protein pKa shift, subunit interaction, substrate entrance, and C-terminal function.
Collapse
|