1
|
He K, Xu L, Hu Y, Xu Y, Zhao Y, Bao J, Wang B. Comparative analysis of antigen coding genes in 15 red cell blood group systems of Yunnan Yi nationality in China: A cross-sectional study. Health Sci Rep 2022; 5:e891. [PMID: 36262810 PMCID: PMC9576115 DOI: 10.1002/hsr2.891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/09/2022] Open
Abstract
Introduction There are few analyses of the 15 red blood group system antigen coding genes found in the Yunnan Yi nationality. This has caused many poteintial dangers relating to clinical blood transfusion. In this report, the coding genes and distribution of 15 blood group antigens system in the Yi nationality were tested and compared with those of Han nationality and other ethnic minorities. Methods The samples came from the healthy subjects in the first people's Hospital of Qujing, Yunnan Province. Two hundred and three Yunnan Yi and 197 Han nationality individuals were included. Thirty-three blood group antigens with a low frequency from the 15 blood group systems of Yunnan Yi blood donors were genotyped and analyzed by PCR-SSP. Sanger sequencing was used to detect A4GALT from the Yunnan Yi nationality. The χ 2 test was used to analyze observed and expected values of gene distribution to verify conformation to the Hardy-Weinberg equilibrium law. Fisher's exact test was used to analyze gene frequency distribution, and the statistical significance was set at p < 0.05. Results The ABO blood group examination results for the Yi nationality and the local Han nationality in Qujing City, Yunnan Province, showed the majority were type A and type O, while the least prevalent was type AB. RhD+ accounts for more than 98% of the Yi and Han populations. There was a significant difference in ABO blood group antigen distribution between these two nationalities (p < 0.05), but there was no significant difference in the composition ratio of D antigen in the Rh blood group system (p > 0.05). Compared with Tibetan (Tibet), Zhuang (Nanning), and Dong (Guangxi), the gene distribution frequencies of Rh blood group system phenotype CC were significantly lower in the Yunnan Yi nationality (p < 0.05). There were significant differences in six erythrocyte phenotypic antigens in the Yi nationality in Yunnan compared with Han nationality, such as LW(a-b-), JK(a-b+), MMSs, Di(a-b+), Wr(a-b-), and Kp(a-b+) (p < 0.05). There were gene phenotypes with a low frequency in the four rare blood group systems: LW, MNS, Wright, and Colton. Several different mutation types occurred in the P1PK blood group system's A4GALT gene. Conclusion Yunnan Yi nationality has a unique genetic background. There are some significantly different distributions of blood group system genes with a low frequency in different regions and groups in China. Multiple mutations in the A4GALT gene of the P1PK blood group system may be related to their environment and ethnic evolution.
Collapse
Affiliation(s)
- Kun‐Hua He
- Department of Blood TransfusionQujing No.1 Hospital of Yunnan ProvinceQujingChina
| | - Lu‐Qiong Xu
- Department of Blood TransfusionQujing No.1 Hospital of Yunnan ProvinceQujingChina
| | - Ying‐Feng Hu
- Department of Blood TransfusionQujing No.1 Hospital of Yunnan ProvinceQujingChina
| | - Yin‐Xia Xu
- Department of Blood TransfusionQujing No.1 Hospital of Yunnan ProvinceQujingChina
| | - Yu Zhao
- Department of Blood TransfusionQujing No.1 Hospital of Yunnan ProvinceQujingChina
| | - Jing‐Yan Bao
- Department of Blood TransfusionQujing No.1 Hospital of Yunnan ProvinceQujingChina
| | - Bu‐Qiang Wang
- Department of Research and DevelopmentJiangsu LIBO Medicine Biotechnology Co., LtdJiangyinChina
| |
Collapse
|
2
|
Liu Z, Li X, Lu Z, Qin X, Hong H, Zhou Z, Pieters RJ, Shi J, Wu Z. Repurposing the Pentameric B-subunit of Shiga Toxin for Gb3-targeted Immunotherapy of Colorectal Cancer by Rhamnose Conjugation. J Pharm Sci 2022; 111:2719-2729. [PMID: 35905973 DOI: 10.1016/j.xphs.2022.07.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/28/2022]
Abstract
Globotriaosylceramide (Gb3 or CD77) is a tumor-associated carbohydrate antigen implicated in several types of cancer that serves as a potential cancer marker for developing target-specific diagnosis and therapy. However, the development of Gb3-targeted therapeutics has been challenging due to its carbohydrate nature. In the present work, taking advantage of its natural pentamer architecture and Gb3-specific targeting of shiga toxin B subunit (StxB), we constructed a pentameric antibody recruiting chimera by site-specifically conjugating StxB with the rhamnose hapten for immunotherapy of colorectal cancer. The Sortase A-catalyzed enzymatic tethering of rhamnose moieties to the C terminus of Stx1B and Stx2B had very moderate effect on their pentamer architectures and thus the resultant conjugates maintained the potent ability to bind to Gb3 antigen both immobilized on an assay plate and expressed on colorectal cancer cells. All StxB-rhamnose constructs were capable of efficiently mediating the binding of rhamnose antibodies onto HT29 colorectal cancer cells, which was further shown to be able to induce cancer cell lysis by eliciting potent antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) in vitro. Finally, the best StxB-rhamnose conjugate, i.e. 1B-3R, was confirmed to be able to inhibit the colorectal tumor growth using a HT29-derived xenograft murine model. Taken together, our data demonstrated the potential of repurposing StxB as an excellent multivalent scaffold for developing Gb3-targeted biotherapeutics and StxB-rhamnose conjugates might be promising candidates for targeted immunotherapy of Gb3-related colorectal cancer.
Collapse
Affiliation(s)
- Zhicheng Liu
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, China
| | - Xia Li
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, China
| | - Zhongkai Lu
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, China
| | - Xinfang Qin
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, China
| | - Haofei Hong
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, China
| | - Zhifang Zhou
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, China
| | - Roland J Pieters
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Jie Shi
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, China.
| | - Zhimeng Wu
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, China.
| |
Collapse
|
3
|
Application of the Antibody-Inducing Activity of Glycosphingolipids to Human Diseases. Int J Mol Sci 2021; 22:ijms22073776. [PMID: 33917390 PMCID: PMC8038663 DOI: 10.3390/ijms22073776] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/01/2021] [Accepted: 04/04/2021] [Indexed: 12/20/2022] Open
Abstract
Glycosphingolipids (GSLs) are composed of a mono-, di-, or oligosaccharide and a ceramide and function as constituents of cell membranes. Various molecular species of GSLs have been identified in mammalian cells due to differences in the structures of oligosaccharides. The oligosaccharide structure can vary depending on cell lineage, differentiation stage, and pathology; this property can be used as a cell identification marker. Furthermore, GSLs are involved in various aspects of the immune response, such as cytokine production, immune signaling, migration of immune cells, and antibody production. GSLs containing certain structures exhibit strong immunogenicity in immunized animals and promote the production of anti-GSL antibodies. By exploiting this property, it is possible to generate antibodies that recognize the fine oligosaccharide structure of specific GSLs or glycoproteins. In our study using artificially synthesized GSLs (artGSLs), we found that several structural features are correlated with the antibody-inducing activity of GSLs. Based on these findings, we designed artGSLs that efficiently induce the production of antibodies accompanied by class switching and developed several antibodies that recognize not only certain glycan structures of GSLs but also those of glycoproteins. This review comprehensively introduces the immune activities of GSLs and their application as pharmaceuticals.
Collapse
|
4
|
Hamamura K, Hamajima K, Yo S, Mishima Y, Furukawa K, Uchikawa M, Kondo Y, Mori H, Kondo H, Tanaka K, Miyazawa K, Goto S, Togari A. Deletion of Gb3 Synthase in Mice Resulted in the Attenuation of Bone Formation via Decrease in Osteoblasts. Int J Mol Sci 2019; 20:ijms20184619. [PMID: 31540393 PMCID: PMC6769804 DOI: 10.3390/ijms20184619] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/13/2019] [Accepted: 09/17/2019] [Indexed: 12/18/2022] Open
Abstract
Glycosphingolipids are known to play a role in developing and maintaining the integrity of various organs and tissues. Among glycosphingolipids, there are several reports on the involvement of gangliosides in bone metabolism. However, there have been no reports on the presence or absence of expression of globo-series glycosphingolipids in osteoblasts and osteoclasts, and the involvement of their glycosphingolipids in bone metabolism. In the present study, we investigated the presence or absence of globo-series glycosphingolipids such as Gb3 (globotriaosylceramide), Gb4 (globoside), and Gb5 (galactosyl globoside) in osteoblasts and osteoclasts, and the effects of genetic deletion of Gb3 synthase, which initiates the synthesis of globo-series glycosphingolipids on bone metabolism. Among Gb3, Gb4, and Gb5, only Gb4 was expressed in osteoblasts. However, these glycosphingolipids were not expressed in pre-osteoclasts and osteoclasts. Three-dimensional micro-computed tomography (3D-μCT) analysis revealed that femoral cancellous bone mass in Gb3 synthase-knockout (Gb3S KO) mice was lower than that in wild type (WT) mice. Calcein double labeling also revealed that bone formation in Gb3S KO mice was significantly lower than that in WT mice. Consistent with these results, the deficiency of Gb3 synthase in mice decreased the number of osteoblasts on the bone surface, and suppressed mRNA levels of osteogenic differentiation markers. On the other hand, osteoclast numbers on the bone surface and mRNA levels of osteoclast differentiation markers in Gb3S KO mice did not differ from WT mice. This study demonstrated that deletion of Gb3 synthase in mice decreases bone mass via attenuation of bone formation.
Collapse
Affiliation(s)
- Kazunori Hamamura
- Department of Pharmacology, School of Dentistry, Aichi Gakuin University, Nagoya 464-8650, Japan.
| | - Kosuke Hamajima
- Department of Pharmacology, School of Dentistry, Aichi Gakuin University, Nagoya 464-8650, Japan.
- Department of Orthodontics, School of Dentistry, Aichi Gakuin University, Nagoya 464-8650, Japan.
| | - Shoyoku Yo
- Department of Pharmacology, School of Dentistry, Aichi Gakuin University, Nagoya 464-8650, Japan.
- Department of Orthodontics, School of Dentistry, Aichi Gakuin University, Nagoya 464-8650, Japan.
| | - Yoshitaka Mishima
- Department of Pharmacology, School of Dentistry, Aichi Gakuin University, Nagoya 464-8650, Japan.
- Department of Orthodontics, School of Dentistry, Aichi Gakuin University, Nagoya 464-8650, Japan.
| | - Koichi Furukawa
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Aichi 487-8501, Japan.
| | - Makoto Uchikawa
- Japanese Red Cross Tokyo Blood Center, Tokyo 162-8639, Japan.
| | - Yuji Kondo
- Department of Biochemistry II, Nagoya University Graduate School of Medicine, Nagoya 464-8650, Japan.
| | - Hironori Mori
- Department of Pharmacology, School of Dentistry, Aichi Gakuin University, Nagoya 464-8650, Japan.
- Department of Orthodontics, School of Dentistry, Aichi Gakuin University, Nagoya 464-8650, Japan.
| | - Hisataka Kondo
- Department of Pharmacology, School of Dentistry, Aichi Gakuin University, Nagoya 464-8650, Japan.
| | - Kenjiro Tanaka
- Department of Pharmacology, School of Dentistry, Aichi Gakuin University, Nagoya 464-8650, Japan.
| | - Ken Miyazawa
- Department of Orthodontics, School of Dentistry, Aichi Gakuin University, Nagoya 464-8650, Japan.
| | - Shigemi Goto
- Department of Orthodontics, School of Dentistry, Aichi Gakuin University, Nagoya 464-8650, Japan.
| | - Akifumi Togari
- Department of Pharmacology, School of Dentistry, Aichi Gakuin University, Nagoya 464-8650, Japan.
| |
Collapse
|
5
|
Bhuiyan RH, Kondo Y, Yamaguchi T, Tokuda N, Ohkawa Y, Hashimoto N, Ohmi Y, Yamauchi Y, Furukawa K, Okajima T, Furukawa K. Expression analysis of 0-series gangliosides in human cancer cell lines with monoclonal antibodies generated using knockout mice of ganglioside synthase genes. Glycobiology 2016; 26:984-998. [DOI: 10.1093/glycob/cww049] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 04/13/2016] [Indexed: 11/14/2022] Open
|
6
|
Ando R, Tokuda N, Yamamoto T, Ikeda K, Hashimoto N, Taguchi R, Fan X, Furukawa K, Niimura Y, Suzuki A, Goto M, Furukawa K. Immunization of A4galt-deficient mice with glycosphingolipids from renal cell cancers resulted in the generation of anti-sulfoglycolipid monoclonal antibodies. Glycoconj J 2016; 33:169-80. [PMID: 26883028 DOI: 10.1007/s10719-016-9654-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/09/2016] [Accepted: 01/29/2016] [Indexed: 11/30/2022]
Abstract
In this study, we immunized Gb3/CD77 synthase gene (A4galt) knockout (KO) mice with glycosphingolipids (GSLs) extracted from 3 renal cell cancer (RCC) cell lines to raise monoclonal antibodies (mAbs) reactive with globo-series GSLs specifically expressed in RCCs. Although a number of mAbs reactive with globo-series GSLs were generated, they reacted with both RCC cell lines and normal kidney cells. When we analyzed recognized antigens by mAbs that were specifically reactive with RCC, but not with normal kidney cells at least on the cell surface, many of them turned out to be reactive with sulfoglycolipids. Eight out of 11 RCC-specific mAbs were reactive with SM2 alone, and the other 3 mAbs were more broadly reactive with sulfated glycolipids, i.e. SM3 and SM4 as well as SM2. In the immunohistochemistry, these anti-sulfoglycolipids mAbs showed RCC-specific reaction, with no or minimal reaction with adjacent normal tissues. Thus, immunization of A4galt KO mice with RCC-derived GSLs resulted in the generation of anti sulfated GSL mAbs, and these mAbs may be applicable for the therapeutics for RCC patients.
Collapse
Affiliation(s)
- Reiko Ando
- Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, 466-0065, Japan
| | - Noriyo Tokuda
- Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, 466-0065, Japan
| | - Tokunori Yamamoto
- Department of Urology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, 466-0065, Japan
| | - Kazutaka Ikeda
- IMS, RIKEN Center for Integrative Medical Sciences, 1-7-22, Suehiro, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Noboru Hashimoto
- Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, 466-0065, Japan
| | - Ryo Taguchi
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, 1200 Matsumoto, Kasugai, Aichi, 487-8501, Japan
| | - Xiaoen Fan
- Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, 466-0065, Japan
| | - Keiko Furukawa
- Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, 466-0065, Japan.,Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, 1200 Matsumoto, Kasugai, Aichi, 487-8501, Japan
| | - Yukio Niimura
- Research Center of Biomedical Analysis and Radioisotope, Teikyo University School of Medicine, 2-11-1, Kuga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Akemi Suzuki
- Institute of Glycoscience, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa, 259-1292, Japan
| | - Momokazu Goto
- Department of Urology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, 466-0065, Japan
| | - Koichi Furukawa
- Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, 466-0065, Japan. .,Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, 1200 Matsumoto, Kasugai, Aichi, 487-8501, Japan.
| |
Collapse
|
7
|
Abstract
Sonodynamic therapy (SDT) is an emerging approach that involves a combination of low-intensity ultrasound and specialized chemical agents known as sonosensitizers. Ultrasound can penetrate deeply into tissues and can be focused into a small region of a tumor to activate a sonosensitizer which offers the possibility of non-invasively eradicating solid tumors in a site-directed manner. In this article, we critically reviewed the currently accepted mechanisms of sonodynamic action and summarized the classification of sonosensitizers. At the same time, the breath of evidence from SDT-based studies suggests that SDT is promising for cancer treatment.
Collapse
Affiliation(s)
- Guo-Yun Wan
- Research Center of Basic Medical Science & School of Pharmacy, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), Tianjin Medical University, Tianjin 300070, China
| | - Yang Liu
- Research Center of Basic Medical Science & School of Pharmacy, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), Tianjin Medical University, Tianjin 300070, China; Laboratory of Cancer Cell Biology, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Bo-Wei Chen
- Research Center of Basic Medical Science & School of Pharmacy, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), Tianjin Medical University, Tianjin 300070, China
| | - Yuan-Yuan Liu
- Research Center of Basic Medical Science & School of Pharmacy, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), Tianjin Medical University, Tianjin 300070, China
| | - Yin-Song Wang
- Research Center of Basic Medical Science & School of Pharmacy, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), Tianjin Medical University, Tianjin 300070, China
| | - Ning Zhang
- Research Center of Basic Medical Science & School of Pharmacy, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), Tianjin Medical University, Tianjin 300070, China; Laboratory of Cancer Cell Biology, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| |
Collapse
|
8
|
Rabu C, McIntosh R, Jurasova Z, Durrant L. Glycans as targets for therapeutic antitumor antibodies. Future Oncol 2012; 8:943-60. [PMID: 22894669 DOI: 10.2217/fon.12.88] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Glycans represent a vast class of molecules that modify either proteins or lipids. They exert and regulate important and complex functions in both normal and cancer cell metabolism. As such, the most immunogenic glycans have been targeted in passive and active immunotherapy in human cancer for the past 25 years but it is only recently that techniques have become available to uncover novel glycan targets. The main focus of this review article is to highlight why and how monoclonal antibodies (mAbs) recognizing glycans, and in particular the glycans expressed on glycolipids, are being used in various strategies to target and kill cancer cells. The article reports on the historical use of mAbs and on very recent progress made in antitumor therapy using the anti-GD2 mAb and the antiganglioside mAbs, anti-N-glycolylneuraminic acid mAb and anti-Lewis mAb. Anti-GD2 is showing great promise in Phase III clinical trials in adjuvant treatment of neuroblastoma. Racotumomab, an anti-idiotypic mAb mimicking N-glycolylneuraminic acid-containing gangliosides, is currently being tested in a randomized, controlled Phase II/III clinical trial. This article also presents various strategies used by different groups to develop mAbs against these naturally poorly immunogenic glycans.
Collapse
Affiliation(s)
- Catherine Rabu
- Academic Department of Clinical Oncology, City Hospital Campus, University of Nottingham, Nottingham, NG5 1PB, UK
| | | | | | | |
Collapse
|
9
|
Abstract
Inhibiting the growth of tumor vasculature represents one of the relevant strategies against tumor progression. Between all the different pro-angiogenic molecular targets, plasma membrane glycosphingolipids have been under-investigated. In this present study, we explore the anti-angiogenic therapeutic advantage of a tumor immunotherapy targeting the globotriaosylceramide Gb3. In this purpose, a monoclonal antibody against Gb3, named 3E2 was developed and characterized. We first demonstrate that Gb3 is over-expressed in proliferative endothelial cells relative to quiescent cells. Then, we demonstrate that 3E2 inhibits endothelial cell proliferation in vitro by slowing endothelial cell proliferation and by increasing mitosis duration. Antibody 3E2 is further effective in inhibiting ex vivo angiogenesis in aorta ring assays. Moreover, 3E2 treatment inhibits NXS2 neuroblastoma development and liver metastases spreading in A/J mice. Immunohistology examination of the NXS2 metastases shows that only endothelial cells, but not cancer cells express Gb3. Finally, 3E2 treatment diminishes tumor vessels density, proving a specific therapeutic action of our monoclonal antibody to tumor vasculature. Our study demonstrates that Gb3 is a viable alternative target for immunotherapy and angiogenesis inhibition.
Collapse
|