1
|
Wang S, Qin H, Dong J, Hu L, Ye M. Multi-histidine functionalized material for the specific enrichment of sialylated glycopeptides. J Chromatogr A 2020; 1627:461422. [PMID: 32823117 DOI: 10.1016/j.chroma.2020.461422] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/30/2020] [Accepted: 07/19/2020] [Indexed: 12/26/2022]
Abstract
Sialylation, an important form of glycosylation, is involved in many biological processes and plays an important role in the development of diseases. However, due to the low abundance among various glycosylation and lack of efficient enrichment method with high specificity, the study of sialylation remains a challenge. Herein, multi-histidine modified microspheres (MHM) were synthesized to enrich sialylated glycopeptides. It was found that MHM could selectively enrich sialylated glycopeptides from over 100 times of non-sialylated glycopeptides, which indicated MHM possessed good enrichment specificity towards sialylated glycopeptides. Furthermore, MHM were utilized to the large-scale analysis of protein sialylation, and 510 intact glycopeptides were identified with over 94.5% sialylated glycopeptide specificity from 4 μL human serum. The good specificity could be attributed to the synergistic effect by the electrostatic interaction and hydrophilic interaction. Hence, MHM could provide an alternative approach for the analysis of site-specific sialylation at proteome level from complex biological samples.
Collapse
Affiliation(s)
- Shuyue Wang
- Key Laboratory Molecular Enzymology and Engineering, the Ministry of Education, National Engineering Laboratory of AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130023, China; CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, 457 Zhongshan Road, Dalian 116023, China
| | - Hongqiang Qin
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, 457 Zhongshan Road, Dalian 116023, China
| | - Jing Dong
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, 457 Zhongshan Road, Dalian 116023, China
| | - Lianghai Hu
- Key Laboratory Molecular Enzymology and Engineering, the Ministry of Education, National Engineering Laboratory of AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130023, China.
| | - Mingliang Ye
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, 457 Zhongshan Road, Dalian 116023, China.
| |
Collapse
|
2
|
Analysis of glycopeptide biomarkers by on-line TiO 2 solid-phase extraction capillary electrophoresis-mass spectrometry. Talanta 2019; 209:120563. [PMID: 31892091 DOI: 10.1016/j.talanta.2019.120563] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/04/2019] [Accepted: 11/12/2019] [Indexed: 12/15/2022]
Abstract
In this study is described an on-line titanium dioxide solid-phase extraction capillary electrophoresis-mass spectrometry (TiO2-SPE-CE-MS) method for the analysis of the glycopeptide glycoforms obtained from the tryptic digests of recombinant human erythropoietin (rhEPO). The O126-glycopeptide of rhEPO was used to optimize the methodology given its importance in quality control of biopharmaceuticals and doping analysis. Several aspects that affect the selective retention and elution, peak efficiency and electrophoretic separation of the O126 glycoforms were investigated to maximize detection sensitivity while minimizing non-specific retention of peptides. Under the optimized conditions, the microcartridge lifetime was around 10 analyses and repeatability was acceptable (%RSD values of 9-11% and 6-11% for migration times and peak areas, respectively). The method was linear between 0.5 and 50 mg L-1 and 10-50 mg L-1 for O126 glycoforms containing NeuAc and NeuGc, respectively, and limits of detection (LODs) were up to 100 times lower than by CE-MS. Although optimized for O-glycopeptides, the method proved also successful for preconcentration of N83-glycopeptides, without compromising the separation between glycopeptide glycoforms with different number of sialic acids. Tryptic digests of other glycoproteins (i.e. human apolipoprotein CIII (APO-C3) and bovine alpha-1-acid glycoprotein (bAGP)) were also analyzed, demonstrating the applicability to glycopeptides with different glycan composition and nature.
Collapse
|
3
|
Zhang Q, Li Z, Wang Y, Zheng Q, Li J. Mass spectrometry for protein sialoglycosylation. MASS SPECTROMETRY REVIEWS 2018; 37:652-680. [PMID: 29228471 DOI: 10.1002/mas.21555] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/17/2017] [Indexed: 06/07/2023]
Abstract
Sialic acids are a family of structurally unique and negatively charged nine-carbon sugars, normally found at the terminal positions of glycan chains on glycoproteins and glycolipids. The glycosylation of proteins is a universal post-translational modification in eukaryotic species and regulates essential biological functions, in which the most common sialic acid is N-acetyl-neuraminic acid (2-keto-5-acetamido-3,5-dideoxy-D-glycero-D-galactononulopyranos-1-onic acid) (Neu5NAc). Because of the properties of sialic acids under general mass spectrometry (MS) conditions, such as instability, ionization discrimination, and mixed adducts, the use of MS in the analysis of protein sialoglycosylation is still challenging. The present review is focused on the application of MS related methodologies to the study of both N- and O-linked sialoglycans. We reviewed MS-based strategies for characterizing sialylation by analyzing intact glycoproteins, proteolytic digested glycopeptides, and released glycans. The review concludes with future perspectives in the field.
Collapse
Affiliation(s)
- Qiwei Zhang
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Institute for Interdisciplinary Research, Institute of Environment and Health, School of Chemical and Environmental Engineering, Jianghan University, Wuhan, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Haidian District, Beijing, China
| | - Zack Li
- School of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Yawei Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Haidian District, Beijing, China
| | - Qi Zheng
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Institute for Interdisciplinary Research, Institute of Environment and Health, School of Chemical and Environmental Engineering, Jianghan University, Wuhan, China
| | - Jianjun Li
- National Research Council Canada, Ottawa, Ontario, Canada
| |
Collapse
|
4
|
Fang P, Wang XJ, Xue Y, Liu MQ, Zeng WF, Zhang Y, Zhang L, Gao X, Yan GQ, Yao J, Shen HL, Yang PY. In-depth mapping of the mouse brain N-glycoproteome reveals widespread N-glycosylation of diverse brain proteins. Oncotarget 2018; 7:38796-38809. [PMID: 27259237 PMCID: PMC5122430 DOI: 10.18632/oncotarget.9737] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 04/26/2016] [Indexed: 01/16/2023] Open
Abstract
N-glycosylation is one of the most prominent and abundant posttranslational modifications of proteins. It is estimated that over 50% of mammalian proteins undergo glycosylation. However, the analysis of N-glycoproteins has been limited by the available analytical technology. In this study, we comprehensively mapped the N-glycosylation sites in the mouse brain proteome by combining complementary methods, which included seven protease treatments, four enrichment techniques and two fractionation strategies. Altogether, 13492 N-glycopeptides containing 8386 N-glycosylation sites on 3982 proteins were identified. After evaluating the performance of the above methods, we proposed a simple and efficient workflow for large-scale N-glycosylation site mapping. The optimized workflow yielded 80% of the initially identified N-glycosylation sites with considerably less effort. Analysis of the identified N-glycoproteins revealed that many of the mouse brain proteins are N-glycosylated, including those proteins in critical pathways for nervous system development and neurological disease. Additionally, several important biomarkers of various diseases were found to be N-glycosylated. These data confirm that N-glycosylation is important in both physiological and pathological processes in the brain, and provide useful details about numerous N-glycosylation sites in brain proteins.
Collapse
Affiliation(s)
- Pan Fang
- Minhang Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xin-Jian Wang
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Yu Xue
- Department of Chemistry, Fudan University, Shanghai, China
| | - Ming-Qi Liu
- Minhang Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Wen-Feng Zeng
- Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing, China
| | - Yang Zhang
- Minhang Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Lei Zhang
- Minhang Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xing Gao
- Minhang Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Guo-Quan Yan
- Department of Chemistry, Fudan University, Shanghai, China
| | - Jun Yao
- Minhang Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Hua-Li Shen
- Minhang Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,Department of Systems Biology for Medicine and School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Peng-Yuan Yang
- Minhang Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,Department of Chemistry, Fudan University, Shanghai, China.,Department of Systems Biology for Medicine and School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Mancera-Arteu M, Giménez E, Benavente F, Barbosa J, Sanz-Nebot V. Analysis of O-Glycopeptides by Acetone Enrichment and Capillary Electrophoresis-Mass Spectrometry. J Proteome Res 2017; 16:4166-4176. [DOI: 10.1021/acs.jproteome.7b00524] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Montserrat Mancera-Arteu
- Department
of Chemical Engineering and Analytical Chemistry, University of Barcelona, 08028 Barcelona, Spain
| | - Estela Giménez
- Department
of Chemical Engineering and Analytical Chemistry, University of Barcelona, 08028 Barcelona, Spain
| | - Fernando Benavente
- Department
of Chemical Engineering and Analytical Chemistry, University of Barcelona, 08028 Barcelona, Spain
| | - José Barbosa
- Department
of Chemical Engineering and Analytical Chemistry, University of Barcelona, 08028 Barcelona, Spain
| | - Victòria Sanz-Nebot
- Department
of Chemical Engineering and Analytical Chemistry, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
6
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2011-2012. MASS SPECTROMETRY REVIEWS 2017; 36:255-422. [PMID: 26270629 DOI: 10.1002/mas.21471] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 01/15/2015] [Indexed: 06/04/2023]
Abstract
This review is the seventh update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2012. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, and fragmentation are covered in the first part of the review and applications to various structural types constitute the remainder. The main groups of compound are oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 36:255-422, 2017.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford, OX1 3QU, UK
| |
Collapse
|
7
|
Yu H, Wang F, Lin L, Cao W, Liu Y, Qin L, Lu H, He F, Shen H, Yang P. Mapping and analyzing the human liver proteome: progress and potential. Expert Rev Proteomics 2016; 13:833-43. [PMID: 27448621 DOI: 10.1080/14789450.2016.1213132] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION The liver is an important organ in humans. Hepatocellular carcinoma (HCC) is one of the deadliest cancers in the world. Progress in the Human Liver Proteome Project (HLPP) has improved understanding of the liver and the liver cancer proteome. AREAS COVERED Here, we summarize the recent progress in liver proteome modification profiles, proteomic studies in liver cancer, proteomic study in the search for novel liver cancer biomarkers and drug targets, and progress of the Chromosome Centric Human Proteome Project (CHPP) in the past five years in the Institutes of Biomedical Sciences (IBS) of Fudan University. Expert commentary: Recent advances and findings discussed here provide great promise of improving the outcome of patients with liver cancer.
Collapse
Affiliation(s)
- Hongxiu Yu
- a Department of Systems Biology for Medicine, School of Basic Medical Sciences , Fudan University , Shanghai , China.,b Minhang Hospital and Institutes of Biomedical Sciences , Fudan University , Shanghai , China
| | - Fang Wang
- a Department of Systems Biology for Medicine, School of Basic Medical Sciences , Fudan University , Shanghai , China
| | - Ling Lin
- a Department of Systems Biology for Medicine, School of Basic Medical Sciences , Fudan University , Shanghai , China
| | - Weiqian Cao
- a Department of Systems Biology for Medicine, School of Basic Medical Sciences , Fudan University , Shanghai , China
| | - Yinkun Liu
- c China Liver Cancer Institute, Zhongshan Hospital , Fudan University , Shanghai , China
| | - Lunxiu Qin
- c China Liver Cancer Institute, Zhongshan Hospital , Fudan University , Shanghai , China
| | - Haojie Lu
- b Minhang Hospital and Institutes of Biomedical Sciences , Fudan University , Shanghai , China
| | - Fuchu He
- d State Key Laboratory of Proteomics, Beijing Proteome Research Center , Beijing Institute of Radiation Medicine , Beijing , China
| | - Huali Shen
- a Department of Systems Biology for Medicine, School of Basic Medical Sciences , Fudan University , Shanghai , China.,b Minhang Hospital and Institutes of Biomedical Sciences , Fudan University , Shanghai , China
| | - Pengyuan Yang
- a Department of Systems Biology for Medicine, School of Basic Medical Sciences , Fudan University , Shanghai , China.,b Minhang Hospital and Institutes of Biomedical Sciences , Fudan University , Shanghai , China
| |
Collapse
|
8
|
Huang BY, Yang CK, Liu CP, Liu CY. Stationary phases for the enrichment of glycoproteins and glycopeptides. Electrophoresis 2014; 35:2091-107. [PMID: 24729282 DOI: 10.1002/elps.201400034] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Revised: 03/25/2014] [Accepted: 04/04/2014] [Indexed: 12/20/2022]
Abstract
The analysis of protein glycosylation is important for biomedical and biopharmaceutical research. Recent advances in LC-MS analysis have enabled the identification of glycosylation sites, the characterisation of glycan structures and the identification and quantification of glycoproteins and glycopeptides. However, this type of analysis remains challenging due to the low abundance of glycopeptides in complex protein digests, the microheterogeneity at glycosylation sites, ion suppression effects and the competition for ionisation by co-eluting peptides. Specific sample preparation is necessary for comprehensive and site-specific glycosylation analyses using MS. Therefore, researchers continue to pursue new columns to broaden their applications. The current manuscript covers recent literature published from 2008 to 2013. The stationary phases containing various chemical bonding methods or ligands immobilisation strategies on solid supports that selectively enrich N-linked or sialylated N-glycopeptides are categorised with either physical or chemical modes of binding. These categories include lectin affinity, hydrophilic interactions, boronate affinity, titanium dioxide affinity, hydrazide chemistry and other separation techniques. This review should aid in better understanding the syntheses and physicochemical properties of each type of stationary phases for enriching glycoproteins and glycopeptides.
Collapse
Affiliation(s)
- Bao-Yu Huang
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | | | | | | |
Collapse
|
9
|
Sun B, Hood L. Protein-centric N-glycoproteomics analysis of membrane and plasma membrane proteins. J Proteome Res 2014; 13:2705-14. [PMID: 24754784 PMCID: PMC4053080 DOI: 10.1021/pr500187g] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
![]()
The advent of proteomics technology
has transformed our understanding
of biological membranes. The challenges for studying membrane proteins
have inspired the development of many analytical and bioanalytical
tools, and the techniques of glycoproteomics have emerged as an effective
means to enrich and characterize membrane and plasma-membrane proteomes.
This Review summarizes the development of various glycoproteomics
techniques to overcome the hurdles formed by the unique structures
and behaviors of membrane proteins with a focus on N-glycoproteomics.
Example contributions of N-glycoproteomics to the understanding of
membrane biology are provided, and the areas that require future technical
breakthroughs are discussed.
Collapse
Affiliation(s)
- Bingyun Sun
- Department of Chemistry, Simon Fraser University , 8888 University Drive, Burnaby, British Columbia V5A1S6, Canada
| | | |
Collapse
|
10
|
Millioni R, Franchin C, Tessari P, Polati R, Cecconi D, Arrigoni G. Pros and cons of peptide isolectric focusing in shotgun proteomics. J Chromatogr A 2013; 1293:1-9. [PMID: 23639126 DOI: 10.1016/j.chroma.2013.03.073] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 03/27/2013] [Accepted: 03/28/2013] [Indexed: 02/03/2023]
Abstract
In shotgun proteomics, protein mixtures are proteolytically digested before tandem mass spectrometry (MS/MS) analysis. Biological samples are generally characterized by a very high complexity, therefore a step of peptides fractionation before the MS analysis is essential. This passage reduces the sample complexity and increases its compatibility with the sampling performance of the instrument. Among all the existing approaches for peptide fractionation, isoelectric focusing has several peculiarities that are theoretically known but practically rarely exploited by the proteomics community. The main aim of this review is to draw the readers' attention to these unique qualities, which are not accessible with other common approaches, and that represent important tools to increase confidence in the identification of proteins and some post-translational modifications. The general characteristics of different methods to perform peptide isoelectric focusing with natural and artificial pH gradients, the existing instrumentation, and the informatics tools available for isoelectric point calculation are also critically described. Finally, we give some general conclusions on this strategy, underlying its principal limitations.
Collapse
Affiliation(s)
- Renato Millioni
- Department of Medicine, University of Padova, Via Giustiniani 2, 35121 Padova, Italy; Proteomics Center of Padova University, VIMM and Padova University Hospital, Via G. Orus 2/B, 35129 Padova, Italy.
| | | | | | | | | | | |
Collapse
|
11
|
Thaysen-Andersen M, Larsen MR, Packer NH, Palmisano G. Structural analysis of glycoprotein sialylation – Part I: pre-LC-MS analytical strategies. RSC Adv 2013. [DOI: 10.1039/c3ra42960a] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|