1
|
Chen Z, Huang J, Li L. Recent advances in mass spectrometry (MS)-based glycoproteomics in complex biological samples. Trends Analyt Chem 2019; 118:880-892. [PMID: 31579312 PMCID: PMC6774629 DOI: 10.1016/j.trac.2018.10.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Protein glycosylation plays a key role in various biological processes and disease-related pathological progression. Mass spectrometry (MS)-based glycoproteomics is a powerful approach that provides a system-wide profiling of the glycoproteome in a high-throughput manner. There have been numerous significant technological advances in this field, including improved glycopeptide enrichment, hybrid fragmentation techniques, emerging specialized software packages, and effective quantitation strategies, as well as more dedicated workflows. With increasingly sophisticated glycoproteomics tools on hand, researchers have extensively adapted this approach to explore different biological systems both in terms of in-depth glycoproteome profiling and comparative glycoproteome analysis. Quantitative glycoproteomics enables researchers to discover novel glycosylation-based biomarkers in various diseases with potential to offer better sensitivity and specificity for disease diagnosis. In this review, we present recent methodological developments in MS-based glycoproteomics and highlight its utility and applications in answering various questions in complex biological systems.
Collapse
Affiliation(s)
- Zhengwei Chen
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Junfeng Huang
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53705, USA
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
2
|
Li Q, Xie Y, Wong M, Lebrilla CB. Characterization of Cell Glycocalyx with Mass Spectrometry Methods. Cells 2019; 8:E882. [PMID: 31412618 PMCID: PMC6721671 DOI: 10.3390/cells8080882] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/05/2019] [Accepted: 08/12/2019] [Indexed: 02/06/2023] Open
Abstract
The cell membrane plays an important role in protecting the cell from its extracellular environment. As such, extensive work has been devoted to studying its structure and function. Crucial intercellular processes, such as signal transduction and immune protection, are mediated by cell surface glycosylation, which is comprised of large biomolecules, including glycoproteins and glycosphingolipids. Because perturbations in glycosylation could result in dysfunction of cells and are related to diseases, the analysis of surface glycosylation is critical for understanding pathogenic mechanisms and can further lead to biomarker discovery. Different mass spectrometry-based techniques have been developed for glycan analysis, ranging from highly specific, targeted approaches to more comprehensive profiling studies. In this review, we summarized the work conducted for extensive analysis of cell membrane glycosylation, particularly those employing liquid chromatography with mass spectrometry (LC-MS) in combination with various sample preparation techniques.
Collapse
Affiliation(s)
- Qiongyu Li
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | - Yixuan Xie
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | - Maurice Wong
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | - Carlito B Lebrilla
- Department of Chemistry, University of California, Davis, CA 95616, USA.
- Department of Biochemistry, University of California, Davis, CA 95616, USA.
| |
Collapse
|
3
|
Liu T, Shang S, Li W, Qin X, Sun L, Zhang S, Liu Y. Assessment of Hepatocellular Carcinoma Metastasis Glycobiomarkers Using Advanced Quantitative N-glycoproteome Analysis. Front Physiol 2017; 8:472. [PMID: 28736531 PMCID: PMC5500640 DOI: 10.3389/fphys.2017.00472] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 06/21/2017] [Indexed: 12/27/2022] Open
Abstract
Hepatocelluar carcinoma (HCC) is one of the most common malignant tumors with high incidence of metastasis. Glycosylation is involved in fundamental molecular and cell biology process occurring in cancer including metastasis formation. In this study, lectin microarray, lectin blotting, lectin affinity chromatography and tandem 18O stable isotope labeling coupled with liquid chromatography-mass spectrometer (LC-MS) analysis were applied to quantify the changes in N-glycosite occupancy for HCC metastasis serum. Firstly, lectin microarray was used to screen glycoforms and Phaseolus vulgaris Leucoagglutinin (PHA-L) reactive structure (β1,6-GlcNAc branched N-glycan) was found to be increased significantly in HCC patients with metastasis compared with those with non-metastasis. Then, PHA-L affinity glycoproteins were enriched followed by N-glycosite occupancy measurement with strategy of tandem 18O stable isotope labeling. 11 glycoproteins with significantly changed N-glycosite occupancy were identified, they were associated with cell migration, invasion and adhesion through p38 mitogen-activated protein kinase signaling pathway and nuclear factor kappa B signaling pathway. Quantification of N-glycosite occupancy for PHA-L reactive glycoproteins could help to discover important glycoproteins of potential clinically significance in terms of HCC etiology. Also, understanding of N-glycosite occupancy alterations will aid the characterization of molecular mechanism of HCC metastasis as well as establishment of novel glycobiomarkers.
Collapse
Affiliation(s)
- Tianhua Liu
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan UniversityShanghai, China.,Institutes of Biomedical Sciences, Fudan UniversityShanghai, China
| | - Shuxin Shang
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical UniversityNanning, China
| | - Wei Li
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan UniversityShanghai, China.,Institutes of Biomedical Sciences, Fudan UniversityShanghai, China
| | - Xue Qin
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical UniversityNanning, China
| | - Lu Sun
- Institutes of Biomedical Sciences, Fudan UniversityShanghai, China
| | - Shu Zhang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan UniversityShanghai, China
| | - Yinkun Liu
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan UniversityShanghai, China.,Institutes of Biomedical Sciences, Fudan UniversityShanghai, China
| |
Collapse
|
4
|
Chandler KB, Costello CE. Glycomics and glycoproteomics of membrane proteins and cell-surface receptors: Present trends and future opportunities. Electrophoresis 2016; 37:1407-19. [PMID: 26872045 PMCID: PMC4889498 DOI: 10.1002/elps.201500552] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/02/2016] [Accepted: 02/02/2016] [Indexed: 12/16/2022]
Abstract
Membrane proteins mediate cell-cell interactions and adhesion, the transfer of ions and metabolites, and the transmission of signals from the extracellular environment to the cell interior. The extracellular domains of most cell membrane proteins are glycosylated, often at multiple sites. There is a growing awareness that glycosylation impacts the structure, interaction, and function of membrane proteins. The application of glycoproteomics and glycomics methods to membrane proteins has great potential. However, challenges also arise from the unique physical properties of membrane proteins. Successful analytical workflows must be developed and disseminated to advance functional glycoproteomics and glycomics studies of membrane proteins. This review explores the opportunities and challenges related to glycomic and glycoproteomic analysis of membrane proteins, including discussion of sample preparation, enrichment, and MS/MS analyses, with a focus on recent successful workflows for analysis of N- and O-linked glycosylation of mammalian membrane proteins.
Collapse
Affiliation(s)
- Kevin Brown Chandler
- Center for Biomedical Mass Spectrometry, Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Catherine E Costello
- Center for Biomedical Mass Spectrometry, Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
5
|
Fang F, Zhao Q, Sui Z, Liang Y, Jiang H, Yang K, Liang Z, Zhang L, Zhang Y. Glycan Moieties as Bait to Fish Plasma Membrane Proteins. Anal Chem 2016; 88:5065-71. [DOI: 10.1021/acs.analchem.6b01082] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Fei Fang
- National Chromatographic R. & A. Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Qun Zhao
- National Chromatographic R. & A. Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China
| | - Zhigang Sui
- National Chromatographic R. & A. Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China
| | - Yu Liang
- National Chromatographic R. & A. Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China
| | - Hao Jiang
- National Chromatographic R. & A. Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Kaiguang Yang
- National Chromatographic R. & A. Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China
| | - Zhen Liang
- National Chromatographic R. & A. Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China
| | - Lihua Zhang
- National Chromatographic R. & A. Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China
| | - Yukui Zhang
- National Chromatographic R. & A. Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China
| |
Collapse
|
6
|
Hamouda H, Kaup M, Ullah M, Berger M, Sandig V, Tauber R, Blanchard V. Rapid analysis of cell surface N-glycosylation from living cells using mass spectrometry. J Proteome Res 2014; 13:6144-6151. [PMID: 25348702 DOI: 10.1021/pr5003005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cell surfaces are covered with a dense carbohydrate layer referred to as the glycocalyx. Because different cell types express different glycan signatures, it is of paramount importance to have robust methods to analyze the glycome of living cells. To achieve this, a common procedure involves cell lysis and extraction of membrane (glyco)proteins and yields a major proportion of high-mannose N-glycans that most likely stem from intracellular proteins derived from the ER. Using HEK 293 cells as a model system, we developed a reproducible, sensitive, and fast method to profile surface N-glycosylation from living cells. We directly released glycopeptides from cell surfaces through tryptic digestion of freshly harvested and vital cells, thereby improving the detection and quantification of complex-type N-glycans by increasing their relative amount from 14 to 85%. It was also possible to detect 25 additional structures in HEK 293, 48 in AGE1.HN, 42 in CHO-K1, and 51 in Hep G2 cells. The additional signals provided deeper insight into cell-type-specific N-glycan features such as antennarity, fucosylation, and sialylation. Thus, this protocol, which can potentially be applied to any cells, will be useful in the fields of glycobiotechnology and biomarker discovery.
Collapse
Affiliation(s)
- Houda Hamouda
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité-Universitätsmedizin Berlin , Augustenburger Platz 1, 13353 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
7
|
Lin F, Tan HJ, Guan JS, Lim YP. Divide and conquer: subproteomic approaches toward gastric cancer biomarker and drug target discovery. Expert Rev Proteomics 2014; 11:515-30. [PMID: 24684179 DOI: 10.1586/14789450.2014.904751] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The discovery of biomarkers for early detection and treatment for gastric cancer are two important gaps that proteomics have the potential to fill. Advancements in mass spectrometry, sample preparation and separation strategies are crucial to proteomics-based discoveries and subsequent translations from bench to bedside. A great number of studies exploiting various subproteomic approaches have emerged for higher-resolution analysis (compared with shotgun proteomics) that permit interrogation of different post-translational and subcellular compartmentalized forms of the same proteins as determinants of disease phenotypes. This is a unique and key strength of proteomics over genomics. In this review, the salient features, competitive edges and pitfalls of various subproteomic approaches are discussed. We also highlight valuable insights from several subproteomic studies that have increased our understanding of the molecular etiology of gastric cancer and the findings that led to the discovery of potential biomarkers/drug targets that were otherwise not revealed by conventional shotgun expression proteomics.
Collapse
Affiliation(s)
- Fan Lin
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, MD4, level 1, 5 Science Drive 2, Singapore
| | | | | | | |
Collapse
|
8
|
Maryáš J, Faktor J, Dvořáková M, Struhárová I, Grell P, Bouchal P. Proteomics in investigation of cancer metastasis: Functional and clinical consequences and methodological challenges. Proteomics 2014; 14:426-40. [DOI: 10.1002/pmic.201300264] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 09/16/2013] [Accepted: 10/04/2013] [Indexed: 01/05/2023]
Affiliation(s)
- Josef Maryáš
- Department of Biochemistry; Faculty of Science; Masaryk University; Brno Czech Republic
| | - Jakub Faktor
- Department of Biochemistry; Faculty of Science; Masaryk University; Brno Czech Republic
- Regional Centre for Applied Molecular Oncology; Masaryk Memorial Cancer Institute; Brno Czech Republic
| | - Monika Dvořáková
- Department of Biochemistry; Faculty of Science; Masaryk University; Brno Czech Republic
- Regional Centre for Applied Molecular Oncology; Masaryk Memorial Cancer Institute; Brno Czech Republic
| | - Iva Struhárová
- Department of Biochemistry; Faculty of Science; Masaryk University; Brno Czech Republic
- Regional Centre for Applied Molecular Oncology; Masaryk Memorial Cancer Institute; Brno Czech Republic
| | - Peter Grell
- Department of Comprehensive Cancer Care; Masaryk Memorial Cancer Institute; Brno Czech Republic
| | - Pavel Bouchal
- Department of Biochemistry; Faculty of Science; Masaryk University; Brno Czech Republic
- Regional Centre for Applied Molecular Oncology; Masaryk Memorial Cancer Institute; Brno Czech Republic
| |
Collapse
|
9
|
Milovancev M, Hilgart-Martiszus I, McNamara MJ, Goodall CP, Seguin B, Bracha S, Wickramasekara SI. Comparative analysis of the surface exposed proteome of two canine osteosarcoma cell lines and normal canine osteoblasts. BMC Vet Res 2013; 9:116. [PMID: 23758893 PMCID: PMC3684535 DOI: 10.1186/1746-6148-9-116] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 06/05/2013] [Indexed: 11/10/2022] Open
Abstract
Background Osteosarcoma (OSA) is the most common primary bone tumor of dogs and carries a poor prognosis despite aggressive treatment. An improved understanding of the biology of OSA is critically needed to allow for development of novel diagnostic, prognostic, and therapeutic tools. The surface-exposed proteome (SEP) of a cancerous cell includes a multifarious array of proteins critical to cellular processes such as proliferation, migration, adhesion, and inter-cellular communication. The specific aim of this study was to define a SEP profile of two validated canine OSA cell lines and a normal canine osteoblast cell line utilizing a biotinylation/streptavidin system to selectively label, purify, and identify surface-exposed proteins by mass spectrometry (MS) analysis. Additionally, we sought to validate a subset of our MS-based observations via quantitative real-time PCR, Western blot and semi-quantitative immunocytochemistry. Our hypothesis was that MS would detect differences in the SEP composition between the OSA and the normal osteoblast cells. Results Shotgun MS identified 133 putative surface proteins when output from all samples were combined, with good consistency between biological replicates. Eleven of the MS-detected proteins underwent analysis of gene expression by PCR, all of which were actively transcribed, but varied in expression level. Western blot of whole cell lysates from all three cell lines was effective for Thrombospondin-1, CYR61 and CD44, and indicated that all three proteins were present in each cell line. Semi-quantitative immunofluorescence indicated that CD44 was expressed at much higher levels on the surface of the OSA than the normal osteoblast cell lines. Conclusions The results of the present study identified numerous differences, and similarities, in the SEP of canine OSA cell lines and normal canine osteoblasts. The PCR, Western blot, and immunocytochemistry results, for the subset of proteins evaluated, were generally supportive of the mass spectrometry data. These methods may be applied to other cell lines, or other biological materials, to highlight unique and previously unrecognized differences between samples. While this study yielded data that may prove useful for OSA researchers and clinicians, further refinements of the described techniques are expected to yield greater accuracy and produce a more thorough SEP analysis.
Collapse
Affiliation(s)
- Milan Milovancev
- Department of Clinical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA.
| | | | | | | | | | | | | |
Collapse
|