1
|
Lee BH, Chen YZ, Shen TL, Pan TM, Hsu WH. Proteomic characterization of extracellular vesicles derived from lactic acid bacteria. Food Chem 2023; 427:136685. [PMID: 37356267 DOI: 10.1016/j.foodchem.2023.136685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/08/2023] [Accepted: 06/18/2023] [Indexed: 06/27/2023]
Abstract
Lactobacillus species confer health benefits by their metabolites, secreted molecules, and population numbers. Extracellular vesicles (EVs) are nano-sized particles released from cells and mediate intercellular communications. EVs-encapsulated cargos are a crucial key to decide involved biological function. However, little is known about the composition of EVs, leaving mechanisms by which Lactobacillus-derived EVs affect recipient cells remaining unresolved. This study examined the composition of EV proteins from Lactobacillus species by using liquid chromatography coupled with tandem mass spectrometry, including L. plantarum, L. fermentum, and L. gasseri. The major proteins of EVs are associated with biological processes such as catalytic activity, gluco-neogenesis, cell wall organization, and glycolytic processes. Motif enrichment analysis revealed that EVs from L. plantarum and L. fermentum contained proteins with serine-rich motif. This is the first study to report the composition and comparison of EV proteins from Lactobacillus species, providing important information of EVs in functional food products development.
Collapse
Affiliation(s)
- Bao-Hong Lee
- Department of Horticulture, National Chiayi University, Chiayi 60004, Taiwan
| | - You-Zuo Chen
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan
| | - Tang-Long Shen
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei 106319, Taiwan; Center for Biotechnology, National Taiwan University, Taipei 106319, Taiwan
| | - Tzu-Ming Pan
- Department of Research and Development Division, SunWay Biotech Co., Ltd., Taipei 114067, Taiwan; Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei 106319, Taiwan
| | - Wei-Hsuan Hsu
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan.
| |
Collapse
|
2
|
Assandri MH, Malamud M, Trejo FM, Serradell MDLA. S-layer proteins as immune players: tales from pathogenic and non-pathogenic bacteria. CURRENT RESEARCH IN MICROBIAL SCIENCES 2023; 4:100187. [PMID: 37064268 PMCID: PMC10102220 DOI: 10.1016/j.crmicr.2023.100187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
In bacteria, as in other microorganisms, surface compounds interact with different pattern recognition receptors expressed by host cells, which usually triggers a variety of cellular responses that result in immunomodulation. The S-layer is a two-dimensional macromolecular crystalline structure formed by (glyco)-protein subunits that covers the surface of many species of Bacteria and almost all Archaea. In Bacteria, the presence of S-layer has been described in both pathogenic and non-pathogenic strains. As surface components, special attention deserves the role that S-layer proteins (SLPs) play in the interaction of bacterial cells with humoral and cellular components of the immune system. In this sense, some differences can be predicted between pathogenic and non-pathogenic bacteria. In the first group, the S-layer constitutes an important virulence factor, which in turn makes it a potential therapeutic target. For the other group, the growing interest to understand the mechanisms of action of commensal microbiota and probiotic strains has prompted the studies of the role of the S-layer in the interaction between the host immune cells and bacteria bearing this surface structure. In this review, we aim to summarize the main latest reports and the perspectives of bacterial SLPs as immune players, focusing on those from pathogenic and commensal/probiotic most studied species.
Collapse
|
3
|
Meng J, Wang YY, Hao YP. Application of two glycosylated Lactobacillus surface layer proteins in coating cationic liposomes. World J Microbiol Biotechnol 2023; 39:108. [PMID: 36856865 DOI: 10.1007/s11274-023-03549-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/14/2023] [Indexed: 03/02/2023]
Abstract
The ability of isolated surface layer proteins (SLPs) to reassemble on suitable surfaces enables the application of SLPs in various fields of nanotechnology. In this work, SLPs from Lactobacillus buchneri BNCC 187,964 and L. kefir BNCC 190,565 were extracted and verified as glycosylated proteins. They were applied to coat on the surface of cationic liposomes. The absorption of the two SLPs on liposomes induced the zeta potential reduction and particle size increase. The two kinds of SLP-coated liposomes demonstrated better thermal, light and pH stability than the control liposomes. And the L. kefir SLP showed better protective effects than the L. buchneri SLP. Moreover, both of the SLPs could endow liposomes with the function of binding ferritin as observed by transmission electron microscope. Fourier transform infrared spectroscopy illustrated that the interaction between the two SLPs and liposomes was similar. The recrystallization of the two SLPs on the liposomes might drive the lipid into a higher order state and hydrogen bonds were formed between the two SLPs and the liposomes. All the findings demonstrated that L. kefir SLP and L. buchneri SLP had great potential to be explored as effective coating agents to improve the stability and function of cationic liposomes.Please check and confirm that the authors and their respective affiliations have been correctly identified and amend if necessary.Yes, all have been checked.
Collapse
Affiliation(s)
- Jun Meng
- College of Food Science and Engineering, Henan University of Technology, 100 Lianhua Road, 450001, Zhengzhou, Henan Province, China.
| | - Yan-Yang Wang
- College of Food Science and Engineering, Henan University of Technology, 100 Lianhua Road, 450001, Zhengzhou, Henan Province, China
| | - Yun-Peng Hao
- College of Food Science and Technology, Henan Agricultural University, 95 Wenhua Road, 450002, Zhengzhou, Henan Province, China
| |
Collapse
|
4
|
Sharma DC, Satyanarayana T. Thermostable and alkalistable exopolygalacturonase of Bacillus pumilus dcsr1: Characteristics and applicability. Int J Biol Macromol 2020; 164:3340-3348. [DOI: 10.1016/j.ijbiomac.2020.08.204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/15/2020] [Accepted: 08/26/2020] [Indexed: 12/21/2022]
|
5
|
Ethanol tolerance assessment in recombinant E. coli of ethanol responsive genes from Lactobacillus buchneri NRRL B-30929. World J Microbiol Biotechnol 2020; 36:179. [PMID: 33155123 DOI: 10.1007/s11274-020-02953-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/23/2020] [Indexed: 01/24/2023]
Abstract
We previously identified specific proteins associated with ethanol stress response in a Lactobacillus buchneri strain capable of growing in 10% ethanol. In the current study, the exceptional roles of ethanol responsive genes are examined to determine if they can increase ethanol tolerance in E. coli host cells. The recombinant strains carrying ethanol responsive genes were subjected to growth analyses in media with and without 4% ethanol. Among the expression of these genes and growth analyses of the recombinant strains in ethanol, six genes Lbuc_0522 (NADPH-dependent methylglyoxal reductase), Lbuc_0354 (succinate semialdehyde dehydrogenase), Lbuc_1211(threonyl_tRNA synthetase), Lbuc_2051 (nitroreductase), Lbuc_0707 (branched chain amino acid aminotransferase) and Lbuc_1852 (proline-specific peptidase) conferred host cells tolerance to 4% ethanol. Six genes Lbuc_1523 (phage major capsid protein, HK 97 family), Lbuc_1319 (phosphoglycerate kinase), Lbuc_0787 encoding fumarylacetoacetate hydrolase, Lbuc_1219 encoding UDP-N-acetylmuramate-L-alanine ligase, Lbuc_0466 encoding ornithine carbamoyltransferase and Lbuc_0858 encoding glycine hydroxymethyltransferase showed no impact on growth in media with 4% ethanol with IPTG induction when compared with E. coli carrying control pET28b plasmid. The expression of two genes Lbuc_1557 (S-layer glycoprotein) and Lbuc_2157 (6-phosphogluconate dehydrogenase) resulted ethanol sensitivity phenotype.
Collapse
|
6
|
Malamud M, Cavallero GJ, Casabuono AC, Lepenies B, Serradell MDLÁ, Couto AS. Immunostimulation by Lactobacillus kefiri S-layer proteins with distinct glycosylation patterns requires different lectin partners. J Biol Chem 2020; 295:14430-14444. [PMID: 32817316 DOI: 10.1074/jbc.ra120.013934] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/12/2020] [Indexed: 12/12/2022] Open
Abstract
S-layer (glyco)-proteins (SLPs) form a nanostructured envelope that covers the surface of different prokaryotes and show immunomodulatory activity. Previously, we have demonstrated that the S-layer glycoprotein from probiotic Lactobacillus kefiri CIDCA 8348 (SLP-8348) is recognized by Mincle (macrophage inducible C-type lectin receptor), and its adjuvanticity depends on the integrity of its glycans. However, the glycan's structure has not been described so far. Herein, we analyze the glycosylation pattern of three SLPs, SLP-8348, SLP-8321, and SLP-5818, and explore how these patterns impact their recognition by C-type lectin receptors and the immunomodulatory effect of the L. kefiri SLPs on antigen-presenting cells. High-performance anion-exchange chromatography-pulse amperometric detector performed after β-elimination showed glucose as the major component in the O-glycans of the three SLPs; however, some differences in the length of hexose chains were observed. No N-glycosylation signals were detected in SLP-8348 and SLP-8321, but SLP-5818 was observed to have two sites carrying complex N-glycans based on a site-specific analysis and a glycomic workflow of the permethylated glycans. SLP-8348 was previously shown to enhance LPS-induced activation on both RAW264.7 macrophages and murine bone marrow-derived dendritic cells; we now show that SLP-8321 and SLP-5818 have a similar effect regardless of the differences in their glycosylation patterns. Studies performed with bone marrow-derived dendritic cells from C-type lectin receptor-deficient mice revealed that the immunostimulatory activity of SLP-8321 depends on its recognition by Mincle, whereas SLP-5818's effects are dependent on SignR3 (murine ortholog of human DC-SIGN). These findings encourage further investigation of both the potential application of these SLPs as new adjuvants and the protein glycosylation mechanisms in these bacteria.
Collapse
Affiliation(s)
- Mariano Malamud
- Cátedra de Microbiología, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina.,University of Veterinary Medicine Hannover, Immunology Unit & Research Center for Emerging Infections and Zoonoses, Hannover, Germany
| | - Gustavo J Cavallero
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica-Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Investigación en Hidratos de Carbono, Buenos Aires, Argentina
| | - Adriana C Casabuono
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica-Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Investigación en Hidratos de Carbono, Buenos Aires, Argentina
| | - Bernd Lepenies
- University of Veterinary Medicine Hannover, Immunology Unit & Research Center for Emerging Infections and Zoonoses, Hannover, Germany
| | - María de Los Ángeles Serradell
- Cátedra de Microbiología, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Alicia S Couto
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica-Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Investigación en Hidratos de Carbono, Buenos Aires, Argentina
| |
Collapse
|
7
|
Fina Martin J, Palomino MM, Cutine AM, Modenutti CP, Fernández Do Porto DA, Allievi MC, Zanini SH, Mariño KV, Barquero AA, Ruzal SM. Exploring lectin-like activity of the S-layer protein of Lactobacillus acidophilus ATCC 4356. Appl Microbiol Biotechnol 2019; 103:4839-4857. [PMID: 31053916 DOI: 10.1007/s00253-019-09795-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/22/2019] [Accepted: 03/23/2019] [Indexed: 02/06/2023]
Abstract
The surface layer (S-layer) protein of Lactobacillus acidophilus is a crystalline array of self-assembling, proteinaceous subunits non-covalently bound to the outmost bacterial cell wall envelope and is involved in the adherence of bacteria to host cells. We have previously described that the S-layer protein of L. acidophilus possesses anti-viral and anti-bacterial properties. In this work, we extracted and purified S-layer proteins from L. acidophilus ATCC 4356 cells to study their interaction with cell wall components from prokaryotic (i.e., peptidoglycan and lipoteichoic acids) and eukaryotic origin (i.e., mucin and chitin), as well as with viruses, bacteria, yeast, and blood cells. Using chimeric S-layer fused to green fluorescent protein (GFP) from different parts of the protein, we analyzed their binding capacity. Our results show that the C-terminal part of the S-layer protein presents lectin-like activity, interacting with different glycoepitopes. We further demonstrate that lipoteichoic acid (LTA) serves as an anchor for the S-layer protein. Finally, a structure for the C-terminal part of S-layer and possible binding sites were predicted by a homology-based model.
Collapse
Affiliation(s)
- Joaquina Fina Martin
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Cdad. Universitaria, Pabellón II, 4 piso, Lab QB40, C1428EGA, CABA, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Maria Mercedes Palomino
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Cdad. Universitaria, Pabellón II, 4 piso, Lab QB40, C1428EGA, CABA, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Anabella M Cutine
- Laboratorio de Glicómica Funcional y Molecular, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428, Buenos Aires, Argentina
| | - Carlos P Modenutti
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Cdad. Universitaria, Pabellón II, 4 piso, Lab QB40, C1428EGA, CABA, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Dario A Fernández Do Porto
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Cdad. Universitaria, Pabellón II, 4 piso, Lab QB40, C1428EGA, CABA, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Instituto de Cálculo, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mariana C Allievi
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Cdad. Universitaria, Pabellón II, 4 piso, Lab QB40, C1428EGA, CABA, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Sofia H Zanini
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Cdad. Universitaria, Pabellón II, 4 piso, Lab QB40, C1428EGA, CABA, Buenos Aires, Argentina
| | - Karina V Mariño
- Laboratorio de Glicómica Funcional y Molecular, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428, Buenos Aires, Argentina
| | - Andrea A Barquero
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Cdad. Universitaria, Pabellón II, 4 piso, Lab QB40, C1428EGA, CABA, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Sandra M Ruzal
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Cdad. Universitaria, Pabellón II, 4 piso, Lab QB40, C1428EGA, CABA, Buenos Aires, Argentina.
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
8
|
do Carmo FLR, Rabah H, De Oliveira Carvalho RD, Gaucher F, Cordeiro BF, da Silva SH, Le Loir Y, Azevedo V, Jan G. Extractable Bacterial Surface Proteins in Probiotic-Host Interaction. Front Microbiol 2018; 9:645. [PMID: 29670603 PMCID: PMC5893755 DOI: 10.3389/fmicb.2018.00645] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/19/2018] [Indexed: 01/09/2023] Open
Abstract
Some Gram-positive bacteria, including probiotic ones, are covered with an external proteinaceous layer called a surface-layer. Described as a paracrystalline layer and formed by the self-assembly of a surface-layer-protein (Slp), this optional structure is peculiar. The surface layer per se is conserved and encountered in many prokaryotes. However, the sequence of the corresponding Slp protein is highly variable among bacterial species, or even among strains of the same species. Other proteins, including surface layer associated proteins (SLAPs), and other non-covalently surface-bound proteins may also be extracted with this surface structure. They can be involved a various functions. In probiotic Gram-positives, they were shown by different authors and experimental approaches to play a role in key interactions with the host. Depending on the species, and sometime on the strain, they can be involved in stress tolerance, in survival within the host digestive tract, in adhesion to host cells or mucus, or in the modulation of intestinal inflammation. Future trends include the valorization of their properties in the formation of nanoparticles, coating and encapsulation, and in the development of new vaccines.
Collapse
Affiliation(s)
- Fillipe L R do Carmo
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil.,STLO, Agrocampus Ouest, INRA, Rennes, France
| | - Houem Rabah
- STLO, Agrocampus Ouest, INRA, Rennes, France.,Pôle Agronomique Ouest, Rennes, France
| | | | - Floriane Gaucher
- STLO, Agrocampus Ouest, INRA, Rennes, France.,Bioprox, Levallois-Perret, France
| | - Barbara F Cordeiro
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Sara H da Silva
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | | | - Vasco Azevedo
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Gwénaël Jan
- STLO, Agrocampus Ouest, INRA, Rennes, France
| |
Collapse
|
9
|
Bönisch E, Oh YJ, Anzengruber J, Hager FF, López-Guzmán A, Zayni S, Hinterdorfer P, Kosma P, Messner P, Duda KA, Schäffer C. Lipoteichoic acid mediates binding of a Lactobacillus S-layer protein. Glycobiology 2018; 28:148-158. [PMID: 29309573 PMCID: PMC5993097 DOI: 10.1093/glycob/cwx102] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/05/2017] [Accepted: 12/06/2017] [Indexed: 01/06/2023] Open
Abstract
The Gram-positive lactic acid bacterium Lactobacillus buchneri CD034 is covered by a two-dimensional crystalline, glycoproteinaceous cell surface (S-) layer lattice. While lactobacilli are extensively exploited as cell surface display systems for applied purposes, questions about how they stick their cell wall together are remaining open. This also includes the identification of the S-layer cell wall ligand. In this study, lipoteichoic acid was isolated from the L. buchneri CD034 cell wall as a significant fraction of the bacterium's cell wall glycopolymers, structurally characterized and analyzed for its potential to mediate binding of the S-layer to the cell wall. Combined component analyses and 1D- and 2D-nuclear magnetic resonance spectroscopy (NMR) revealed the lipoteichoic acid to be composed of on average 31 glycerol-phosphate repeating units partially substituted with α-d-glucose, and with an α-d-Galp(1→2)-α-d-Glcp(1→3)-1,2-diacyl-sn-Gro glycolipid anchor. The specificity of binding between the L. buchneri CD034 S-layer protein and purified lipoteichoic acid as well as their interaction force of about 45 pN were obtained by single-molecule force spectroscopy; this value is in the range of typical ligand-receptor interactions. This study sheds light on a functional implication of Lactobacillus cell wall architecture by showing direct binding between lipoteichoic acid and the S-layer of L. buchneri CD034.
Collapse
Affiliation(s)
- Eva Bönisch
- Department of NanoBiotechnology, NanoGlycobiology unit, Universität für Bodenkultur Wien, Muthgasse 11, Austria
- Present address: Shire, Industriestraße 67, A-1220 Wien, Austria
| | - Yoo Jin Oh
- Institute of Biophysics, Johannes-Kepler University Linz, A-4020 Linz, Austria
- Keysight Technologies Austria GmbH, A-4020 Linz, Austria
| | - Julia Anzengruber
- Department of NanoBiotechnology, NanoGlycobiology unit, Universität für Bodenkultur Wien, Muthgasse 11, Austria
- Present address: Shire, Industriestraße 67, A-1220 Wien, Austria
| | - Fiona F Hager
- Department of NanoBiotechnology, NanoGlycobiology unit, Universität für Bodenkultur Wien, Muthgasse 11, Austria
| | - Arturo López-Guzmán
- Department of NanoBiotechnology, NanoGlycobiology unit, Universität für Bodenkultur Wien, Muthgasse 11, Austria
| | - Sonja Zayni
- Department of NanoBiotechnology, NanoGlycobiology unit, Universität für Bodenkultur Wien, Muthgasse 11, Austria
| | - Peter Hinterdorfer
- Institute of Biophysics, Johannes-Kepler University Linz, A-4020 Linz, Austria
| | - Paul Kosma
- Department of Chemistry, Institute of Organic Chemistry, Universität für Bodenkultur Wien, Muthgasse 18, A-1190 Vienna, Austria
| | - Paul Messner
- Department of NanoBiotechnology, NanoGlycobiology unit, Universität für Bodenkultur Wien, Muthgasse 11, Austria
| | - Katarzyna A Duda
- Department of NanoBiotechnology, NanoGlycobiology unit, Universität für Bodenkultur Wien, Muthgasse 11, Austria
- Junior Group of Allergobiochemistry, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Airway Research Center North (ARCN), German Center for Lung Research, D−23845 Borstel, Germany
| | - Christina Schäffer
- Department of NanoBiotechnology, NanoGlycobiology unit, Universität für Bodenkultur Wien, Muthgasse 11, Austria
| |
Collapse
|
10
|
Rykov SV, Yegorov YE, Vishnyakova HS, Berezina OV. Designing a Cell Surface Display System of Protein Domains in Lactobacilli Based on S-Layer Proteins of Lactobacillus brevis ATCC 367. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2018. [DOI: 10.1134/s1068162018010156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Latousakis D, Juge N. How Sweet Are Our Gut Beneficial Bacteria? A Focus on Protein Glycosylation in Lactobacillus. Int J Mol Sci 2018; 19:ijms19010136. [PMID: 29301365 PMCID: PMC5796085 DOI: 10.3390/ijms19010136] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 12/22/2017] [Accepted: 12/27/2017] [Indexed: 02/07/2023] Open
Abstract
Protein glycosylation is emerging as an important feature in bacteria. Protein glycosylation systems have been reported and studied in many pathogenic bacteria, revealing an important diversity of glycan structures and pathways within and between bacterial species. These systems play key roles in virulence and pathogenicity. More recently, a large number of bacterial proteins have been found to be glycosylated in gut commensal bacteria. We present an overview of bacterial protein glycosylation systems (O- and N-glycosylation) in bacteria, with a focus on glycoproteins from gut commensal bacteria, particularly Lactobacilli. These emerging studies underscore the importance of bacterial protein glycosylation in the interaction of the gut microbiota with the host.
Collapse
Affiliation(s)
- Dimitrios Latousakis
- Quadram Institute Bioscience, The Gut Health and Food Safety Institute Strategic Programme, Norwich Research Park, Norwich NR4 7UA, UK.
| | - Nathalie Juge
- Quadram Institute Bioscience, The Gut Health and Food Safety Institute Strategic Programme, Norwich Research Park, Norwich NR4 7UA, UK.
| |
Collapse
|
12
|
Heinl S, Grabherr R. Systems biology of robustness and flexibility: Lactobacillus buchneri —A show case. J Biotechnol 2017; 257:61-69. [DOI: 10.1016/j.jbiotec.2017.01.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 01/19/2017] [Accepted: 01/24/2017] [Indexed: 12/25/2022]
|
13
|
Cavallero GJ, Malamud M, Casabuono AC, Serradell MDLÁ, Couto AS. A glycoproteomic approach reveals that the S-layer glycoprotein of Lactobacillus kefiri CIDCA 83111 is O- and N-glycosylated. J Proteomics 2017; 162:20-29. [PMID: 28433761 DOI: 10.1016/j.jprot.2017.04.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/17/2017] [Accepted: 04/10/2017] [Indexed: 12/12/2022]
Abstract
In Gram-positive bacteria, such as lactic acid bacteria, general glycosylation systems have not been documented so far. The aim of this work was to characterize in detail the glycosylation of the S-layer protein of Lactobacillus kefiri CIDCA 83111. A reductive β-elimination treatment followed by anion exchange high performance liquid chromatography analysis was useful to characterize the O-glycosidic structures. MALDI-TOF mass spectrometry analysis confirmed the presence of oligosaccharides bearing from 5 to 8 glucose units carrying galacturonic acid. Further nanoHPLC-ESI analysis of the glycopeptides showed two O-glycosylated peptides: the peptide sequence SSASSASSA already identified as a signature glycosylation motif in L. buchneri, substituted on average with eight glucose residues and decorated with galacturonic acid and another O-glycosylated site on peptide 471-476, with a Glc5-8GalA2 structure. As ten characteristic sequons (Asn-X-Ser/Thr) are present in the S-layer amino acid sequence, we performed a PNGase F digestion to release N-linked oligosaccharides. Anion exchange chromatography analysis showed mainly short N-linked chains. NanoHPLC-ESI in the positive and negative ion modes were useful to determine two different peptides substituted with short N-glycan structures. To our knowledge, this is the first description of the structure of N-glycans in S-layer glycoproteins from Lactobacillus species. SIGNIFICANCE A detailed characterization of protein glycosylation is essential to establish the basis for understanding and investigating its biological role. It is known that S-layer proteins from kefir-isolated L. kefiri strains are involved in the interaction of bacterial cells with yeasts present in kefir grains and are also capable to antagonize the adverse effects of different enteric pathogens. Therefore, characterization of type and site of glycosidic chains in this protein may help to understand these important properties. Furthermore, this is the first description of N-glycosidic chains in S-layer glycoprotein from Lactobacillus spp.
Collapse
Affiliation(s)
- Gustavo J Cavallero
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica - Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Investigación en Hidratos de Carbono (CIHIDECAR), Buenos Aires, Argentina, Intendente Güiraldes 2160, C1428GA, Ciudad Universitaria, Buenos Aires, Argentina
| | - Mariano Malamud
- Cátedra de Microbiología, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y 115, La Plata, 1900, Argentina
| | - Adriana C Casabuono
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica - Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Investigación en Hidratos de Carbono (CIHIDECAR), Buenos Aires, Argentina, Intendente Güiraldes 2160, C1428GA, Ciudad Universitaria, Buenos Aires, Argentina
| | - M de Los Ángeles Serradell
- Cátedra de Microbiología, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y 115, La Plata, 1900, Argentina
| | - Alicia S Couto
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica - Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Investigación en Hidratos de Carbono (CIHIDECAR), Buenos Aires, Argentina, Intendente Güiraldes 2160, C1428GA, Ciudad Universitaria, Buenos Aires, Argentina.
| |
Collapse
|
14
|
Malamud M, Carasi P, Bronsoms S, Trejo SA, Serradell MDLA. Lactobacillus kefiri shows inter-strain variations in the amino acid sequence of the S-layer proteins. Antonie Van Leeuwenhoek 2016; 110:515-530. [PMID: 28004217 DOI: 10.1007/s10482-016-0820-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 12/09/2016] [Indexed: 10/20/2022]
Abstract
The S-layer is a proteinaceous envelope constituted by subunits that self-assemble to form a two-dimensional lattice that covers the surface of different species of Bacteria and Archaea, and it could be involved in cell recognition of microbes among other several distinct functions. In this work, both proteomic and genomic approaches were used to gain knowledge about the sequences of the S-layer protein (SLPs) encoding genes expressed by six aggregative and sixteen non-aggregative strains of potentially probiotic Lactobacillus kefiri. Peptide mass fingerprint (PMF) analysis confirmed the identity of SLPs extracted from L. kefiri, and based on the homology with phylogenetically related species, primers located outside and inside the SLP-genes were employed to amplify genomic DNA. The O-glycosylation site SASSAS was found in all L. kefiri SLPs. Ten strains were selected for sequencing of the complete genes. The total length of the mature proteins varies from 492 to 576 amino acids, and all SLPs have a calculated pI between 9.37 and 9.60. The N-terminal region is relatively conserved and shows a high percentage of positively charged amino acids. Major differences among strains are found in the C-terminal region. Different groups could be distinguished regarding the mature SLPs and the similarities observed in the PMF spectra. Interestingly, SLPs of the aggregative strains are 100% homologous, although these strains were isolated from different kefir grains. This knowledge provides relevant data for better understanding of the mechanisms involved in SLPs functionality and could contribute to the development of products of biotechnological interest from potentially probiotic bacteria.
Collapse
Affiliation(s)
- Mariano Malamud
- Cátedra de Microbiología, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y 115, CP 1900, La Plata, Argentina.,CCT-La Plata, CONICET, Buenos Aires, Argentina
| | - Paula Carasi
- Cátedra de Microbiología, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y 115, CP 1900, La Plata, Argentina.,CCT-La Plata, CONICET, Buenos Aires, Argentina
| | - Sílvia Bronsoms
- Unidad de Proteómica del Servicio de Proteómica y Biología Estructural (SePBioEs), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Sebastián A Trejo
- CCT-La Plata, CONICET, Buenos Aires, Argentina.,Unidad de Proteómica del Servicio de Proteómica y Biología Estructural (SePBioEs), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Instituto Multidisciplinario de Biología Celular (IMBICE), CONICET, La Plata, Argentina
| | - María de Los Angeles Serradell
- Cátedra de Microbiología, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y 115, CP 1900, La Plata, Argentina. .,CCT-La Plata, CONICET, Buenos Aires, Argentina. .,Instituto de Ciencias de la Salud, Universidad Arturo Jauretche (UNAJ), Florencio Varela, Argentina.
| |
Collapse
|
15
|
Schäffer C, Messner P. Emerging facets of prokaryotic glycosylation. FEMS Microbiol Rev 2016; 41:49-91. [PMID: 27566466 DOI: 10.1093/femsre/fuw036] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/17/2016] [Accepted: 08/01/2016] [Indexed: 12/16/2022] Open
Abstract
Glycosylation of proteins is one of the most prevalent post-translational modifications occurring in nature, with a wide repertoire of biological implications. Pathways for the main types of this modification, the N- and O-glycosylation, can be found in all three domains of life-the Eukarya, Bacteria and Archaea-thereby following common principles, which are valid also for lipopolysaccharides, lipooligosaccharides and glycopolymers. Thus, studies on any glycoconjugate can unravel novel facets of the still incompletely understood fundamentals of protein N- and O-glycosylation. While it is estimated that more than two-thirds of all eukaryotic proteins would be glycosylated, no such estimate is available for prokaryotic glycoproteins, whose understanding is lagging behind, mainly due to the enormous variability of their glycan structures and variations in the underlying glycosylation processes. Combining glycan structural information with bioinformatic, genetic, biochemical and enzymatic data has opened up an avenue for in-depth analyses of glycosylation processes as a basis for glycoengineering endeavours. Here, the common themes of glycosylation are conceptualised for the major classes of prokaryotic (i.e. bacterial and archaeal) glycoconjugates, with a special focus on glycosylated cell-surface proteins. We describe the current knowledge of biosynthesis and importance of these glycoconjugates in selected pathogenic and beneficial microbes.
Collapse
Affiliation(s)
- Christina Schäffer
- Department of NanoBiotechnology, Institute of Biologically Inspired Materials, NanoGlycobiology unit, Universität für Bodenkultur Wien, A-1180 Vienna, Austria
| | - Paul Messner
- Department of NanoBiotechnology, Institute of Biologically Inspired Materials, NanoGlycobiology unit, Universität für Bodenkultur Wien, A-1180 Vienna, Austria
| |
Collapse
|
16
|
Tytgat HLP, Schoofs G, Vanderleyden J, Van Damme EJM, Wattiez R, Lebeer S, Leroy B. Systematic Exploration of the Glycoproteome of the Beneficial Gut Isolate Lactobacillus rhamnosus GG. J Mol Microbiol Biotechnol 2016; 26:345-58. [PMID: 27463506 DOI: 10.1159/000447091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 05/25/2016] [Indexed: 11/19/2022] Open
Abstract
Glycoproteins form an interesting class of macromolecules involved in bacterial-host interactions, but they are not yet widely explored in Gram-positive and beneficial species. Here, an integrated and widely applicable approach was followed to identify putative bacterial glycoproteins, combining proteome fractionation with 2D protein and glycostained gels and lectin blots. This approach was validated for the microbiota isolate Lactobacillus rhamnosus GG. The approach resulted in a list of putative glycosylated proteins receiving a 'glycosylation score'. Ultimately, we could identify 41 unique glycosylated proteins in L. rhamnosus GG (6 top-confidence, 10 high-confidence and 25 putative hits; classification based on glycosylation score). Most glycoproteins are associated with the cell wall and membrane. Identified glycoproteins include proteins involved in transport, translation, and sugar metabolism processes. A robust screening resulted in a comprehensive mapping of glycoproteins in L. rhamnosus GG. Our results reflect the glycosylation of sugar metabolism enzymes, transporters, and other proteins crucial for cell physiology. We hypothesize that protein glycosylation can confer an extra level of regulation, for example by affecting enzyme functions. This is the first systematic study of the glycoproteome of a probiotic and beneficial gut isolate.
Collapse
Affiliation(s)
- Hanne L P Tytgat
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
17
|
The yajC gene from Lactobacillus buchneri and Escherichia coli and its role in ethanol tolerance. J Ind Microbiol Biotechnol 2016; 43:441-50. [PMID: 26790414 DOI: 10.1007/s10295-015-1730-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 12/24/2015] [Indexed: 12/15/2022]
Abstract
The yajC gene (Lbuc_0921) from Lactobacillus buchneri NRRL B-30929 was identified from previous proteomics analyses in response to ethanol treatment. The YajC protein expression was increased by 15-fold in response to 10 % ethanol vs 0 % ethanol. The yajC gene encodes the smaller subunit of the preprotein translocase complex, which interacts with membrane protein SecD and SecF to coordinate protein transport and secretion across cytoplasmic membrane in Escherichia coli. The YajC protein was linked to sensitivity to growth temperatures in E. coli, involved in translocation of virulence factors during Listeria infection, and stimulating a T cell-mediated response of Brucella abortus. In this study, the L. buchneri yajC gene was over-expressed in E. coli. The strain carrying pET28byajC that produces YajC after isopropyl β-D-1-thiogalactopyranoside induction showed tolerance to 4 % ethanol in growth media, compared to the control carrying pET28b. This is the first report linking YajC to ethanol stress and tolerance.
Collapse
|
18
|
The sweet tooth of bacteria: common themes in bacterial glycoconjugates. Microbiol Mol Biol Rev 2015; 78:372-417. [PMID: 25184559 DOI: 10.1128/mmbr.00007-14] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Humans have been increasingly recognized as being superorganisms, living in close contact with a microbiota on all their mucosal surfaces. However, most studies on the human microbiota have focused on gaining comprehensive insights into the composition of the microbiota under different health conditions (e.g., enterotypes), while there is also a need for detailed knowledge of the different molecules that mediate interactions with the host. Glycoconjugates are an interesting class of molecules for detailed studies, as they form a strain-specific barcode on the surface of bacteria, mediating specific interactions with the host. Strikingly, most glycoconjugates are synthesized by similar biosynthesis mechanisms. Bacteria can produce their major glycoconjugates by using a sequential or an en bloc mechanism, with both mechanistic options coexisting in many species for different macromolecules. In this review, these common themes are conceptualized and illustrated for all major classes of known bacterial glycoconjugates, with a special focus on the rather recently emergent field of glycosylated proteins. We describe the biosynthesis and importance of glycoconjugates in both pathogenic and beneficial bacteria and in both Gram-positive and -negative organisms. The focus lies on microorganisms important for human physiology. In addition, the potential for a better knowledge of bacterial glycoconjugates in the emerging field of glycoengineering and other perspectives is discussed.
Collapse
|
19
|
Program Overview * Conference Program * Conference Posters * Conference Abstracts. Glycobiology 2014. [DOI: 10.1093/glycob/cwu087] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
20
|
Anzengruber J, Courtin P, Claes IJJ, Debreczeny M, Hofbauer S, Obinger C, Chapot-Chartier MP, Vanderleyden J, Messner P, Schäffer C. Biochemical characterization of the major N-acetylmuramidase from Lactobacillus buchneri. Microbiology (Reading) 2014; 160:1807-1819. [DOI: 10.1099/mic.0.078162-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacterial cell wall hydrolases are essential for peptidoglycan remodelling in regard to bacterial cell growth and division. In this study, peptidoglycan hydrolases (PGHs) of different Lactobacillus buchneri strains were investigated. First, the genome sequence of L. buchneri CD034 and L. buchneri NRRL B-30929 was analysed in silico for the presence of PGHs. Of 23 putative PGHs with different predicted hydrolytic specificities, the glycosyl hydrolase family 25 domain-containing homologues LbGH25B and LbGH25N from L. buchneri CD034 and NRRL B-30929, respectively, were selected and characterized in detail. Zymogram analysis confirmed hydrolysing activity on bacterial cell walls for both enzymes. Subsequent reversed-phase HPLC and MALDI-TOF MS analysis of the peptidoglycan breakdown products from L. buchneri strains CD034 and NRRL B-30929, and from Lactobacillus rhamnosus GG, which served as a reference, revealed that LbGH25B and LbGH25N have N-acetylmuramidase activity. Both enzymes were identified as cell wall-associated proteins by means of immunofluorescence microscopy and cellular fractionation, as well as by the ability of purified recombinant LbGH25B and LbGH25N to bind to L. buchneri cell walls in vitro. Moreover, similar secondary structures mainly composed of β-sheets and nearly identical thermal stabilities with T
m values around 49 °C were found for the two N-acetylmuramidases by far-UV circular dichroism spectroscopy. The functional and structural data obtained are discussed and compared to related PGHs. In this study, a major N-acetylmuramidase from L. buchneri was characterized in detail for the first time.
Collapse
Affiliation(s)
- Julia Anzengruber
- Department of NanoBiotechnology, NanoGlycobiology unit, Universität für Bodenkultur Wien, Muthgasse 11, 1190 Vienna, Austria
| | - Pascal Courtin
- AgroParisTech, UMR Micalis, Jouy-en-Josas, France
- INRA and AgroParisTech, UMR1319 Micalis, 78350 Jouy-en-Josas, France
| | - Ingmar J. J. Claes
- Center of Microbial and Plant Genetics, K.U. Leuven, 3001 Leuven, Belgium
| | - Monika Debreczeny
- VIBT Imaging Centre, Universität für Bodenkultur Wien, Muthgasse 11, 1190 Vienna, Austria
| | - Stefan Hofbauer
- Department of Chemistry, Universität für Bodenkultur Wien, Muthgasse 18, 1190 Vienna, Austria
| | - Christian Obinger
- Department of Chemistry, Universität für Bodenkultur Wien, Muthgasse 18, 1190 Vienna, Austria
| | - Marie-Pierre Chapot-Chartier
- AgroParisTech, UMR Micalis, Jouy-en-Josas, France
- INRA and AgroParisTech, UMR1319 Micalis, 78350 Jouy-en-Josas, France
| | - Jos Vanderleyden
- Center of Microbial and Plant Genetics, K.U. Leuven, 3001 Leuven, Belgium
| | - Paul Messner
- Department of NanoBiotechnology, NanoGlycobiology unit, Universität für Bodenkultur Wien, Muthgasse 11, 1190 Vienna, Austria
| | - Christina Schäffer
- Department of NanoBiotechnology, NanoGlycobiology unit, Universität für Bodenkultur Wien, Muthgasse 11, 1190 Vienna, Austria
| |
Collapse
|
21
|
Abstract
Prokaryotic glycosylation fulfills an important role in maintaining and protecting the structural integrity and function of the bacterial cell wall, as well as serving as a flexible adaption mechanism to evade environmental and host-induced pressure. The scope of bacterial and archaeal protein glycosylation has considerably expanded over the past decade(s), with numerous examples covering the glycosylation of flagella, pili, glycosylated enzymes, as well as surface-layer proteins. This article addresses structure, analysis, function, genetic basis, biosynthesis, and biomedical and biotechnological applications of cell-envelope glycoconjugates, S-layer glycoprotein glycans, and "nonclassical" secondary-cell wall polysaccharides. The latter group of polymers mediates the important attachment and regular orientation of the S-layer to the cell wall. The structures of these glycopolymers reveal an enormous diversity, resembling the structural variability of bacterial lipopolysaccharides and capsular polysaccharides. While most examples are presented for Gram-positive bacteria, the S-layer glycan of the Gram-negative pathogen Tannerella forsythia is also discussed. In addition, archaeal S-layer glycoproteins are briefly summarized.
Collapse
Affiliation(s)
- Paul Messner
- Department of NanoBiotechnology, NanoGlycobiology Unit, University of Natural Resources and Life Sciences, Vienna, Austria
| | | | | |
Collapse
|
22
|
Chaze T, Guillot A, Valot B, Langella O, Chamot-Rooke J, Di Guilmi AM, Trieu-Cuot P, Dramsi S, Mistou MY. O-Glycosylation of the N-terminal region of the serine-rich adhesin Srr1 of Streptococcus agalactiae explored by mass spectrometry. Mol Cell Proteomics 2014; 13:2168-82. [PMID: 24797265 DOI: 10.1074/mcp.m114.038075] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Serine-rich (Srr) proteins exposed at the surface of Gram-positive bacteria are a family of adhesins that contribute to the virulence of pathogenic staphylococci and streptococci. Lectin-binding experiments have previously shown that Srr proteins are heavily glycosylated. We report here the first mass-spectrometry analysis of the glycosylation of Streptococcus agalactiae Srr1. After Srr1 enrichment and trypsin digestion, potential glycopeptides were identified in collision induced dissociation spectra using X! Tandem. The approach was then refined using higher energy collisional dissociation fragmentation which led to the simultaneous loss of sugar residues, production of diagnostic oxonium ions and backbone fragmentation for glycopeptides. This feature was exploited in a new open source software tool (SpectrumFinder) developed for this work. By combining these approaches, 27 glycopeptides corresponding to six different segments of the N-terminal region of Srr1 [93-639] were identified. Our data unambiguously indicate that the same protein residue can be modified with different glycan combinations including N-acetylhexosamine, hexose, and a novel modification that was identified as O-acetylated-N-acetylhexosamine. Lectin binding and monosaccharide composition analysis strongly suggested that HexNAc and Hex correspond to N-acetylglucosamine and glucose, respectively. The same protein segment can be modified with a variety of glycans generating a wide structural diversity of Srr1. Electron transfer dissociation was used to assign glycosylation sites leading to the unambiguous identification of six serines and one threonine residues. Analysis of purified Srr1 produced in mutant strains lacking accessory glycosyltransferase encoding genes demonstrates that O-GlcNAcylation is an initial step in Srr1 glycosylation that is likely required for subsequent decoration with Hex. In summary, our data obtained by a combination of fragmentation mass spectrometry techniques associated to a new software tool, demonstrate glycosylation heterogeneity of Srr1, characterize a new protein modification, and identify six glycosylation sites located in the N-terminal region of the protein.
Collapse
Affiliation(s)
- Thibault Chaze
- From the ‡INRA, MICALIS UMR-1319, 78352 Jouy-en-Josas cedex, France; §AgroParisTech, MICALIS UMR-1319, 78352 Jouy-en-Josas cedex, France; ¶¶Institut Pasteur, Unité de Spectrométrie de Masse Structurale et Protéomique, 28 rue du Dr Roux, 75015 Paris, France
| | - Alain Guillot
- ¶INRA, PAPPSO, MICALIS UMR-1319, 78352 Jouy en Josas cedex, France
| | - Benoît Valot
- ‖INRA, PAPPSO, Génétique végétale UMR-320, Ferme du Moulon, 91190 Gif sur Yvette, France
| | - Olivier Langella
- ‖INRA, PAPPSO, Génétique végétale UMR-320, Ferme du Moulon, 91190 Gif sur Yvette, France
| | - Julia Chamot-Rooke
- ¶¶Institut Pasteur, Unité de Spectrométrie de Masse Structurale et Protéomique, 28 rue du Dr Roux, 75015 Paris, France; ‖‖CNRS UMR 3528, Institut Pasteur, 28 rue du Dr Roux, 75015 Paris, France
| | - Anne-Marie Di Guilmi
- **CEA, Institut de Biologie Structurale Jean-Pierre Ebel, F-38027 Grenoble, France
| | - Patrick Trieu-Cuot
- ‡‡Institut Pasteur, Unité de Biologie des Bactéries Pathogènes à Gram+, 28, rue du Dr Roux, 75015 Paris, France; §§Centre National de la Recherche Scientifique, CNRS ERL3526, Paris, France
| | - Shaynoor Dramsi
- ‡‡Institut Pasteur, Unité de Biologie des Bactéries Pathogènes à Gram+, 28, rue du Dr Roux, 75015 Paris, France; §§Centre National de la Recherche Scientifique, CNRS ERL3526, Paris, France
| | - Michel-Yves Mistou
- From the ‡INRA, MICALIS UMR-1319, 78352 Jouy-en-Josas cedex, France; §AgroParisTech, MICALIS UMR-1319, 78352 Jouy-en-Josas cedex, France;
| |
Collapse
|