1
|
Gotoh S, Kitaguchi K, Yabe T. Pectin Modulates Calcium Absorption in Polarized Caco-2 Cells via a Pathway Distinct from Vitamin D Stimulation. J Appl Glycosci (1999) 2023; 70:59-66. [PMID: 38143569 PMCID: PMC10738857 DOI: 10.5458/jag.jag.jag-2022_0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Pectin, a type of soluble fiber, promotes morphological changes in the small intestinal villi. Although its physiological significance is unknown, we hypothesized that changes in villus morphology enhance the efficiency of nutrient absorption in the small intestine and investigated the effect of pectin derived from persimmon on calcium absorption using polarized Caco-2 cells. In polarized Caco-2 cells, pectin altered the mRNA expression levels of substances involved in calcium absorption and the regulation of intracellular calcium concentration and significantly reduced calcium absorption. Although this was comparable to the results of absorption and permeability associated with the addition of active vitamin D, the simultaneous action of pectin and active vitamin D did not show any additive effects. Furthermore, as active vitamin D significantly increases the activity of intestinal alkaline phosphatase (ALP), which is known to be involved in the regulation of intestinal absorption of calcium and lipids, we also investigated the effect of pectin on intestinal ALP activity. As a result, it was found that, unlike the effect of active vitamin D, pectin significantly reduced intestinal ALP activity. These results suggest that pectin stimulates polarized Caco-2 cells through a mechanism distinct from the regulation of calcium absorption by vitamin D, modulating total calcium absorption from the elongated villi through morphological changes in the small intestine by suppressing it at the cellular level.
Collapse
Affiliation(s)
- Saki Gotoh
- The United Graduate School of Agricultural Science, Gifu University
| | - Kohji Kitaguchi
- The United Graduate School of Agricultural Science, Gifu University
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University
- Preemptive Food Research Center (PFRC), Gifu University Institute for Advanced Study
| | - Tomio Yabe
- The United Graduate School of Agricultural Science, Gifu University
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University
- Preemptive Food Research Center (PFRC), Gifu University Institute for Advanced Study
- Institute for Glyco-core Research (iGCORE), Gifu University
| |
Collapse
|
2
|
Rini DM, Yamamoto Y, Suzuki T. Partially hydrolyzed guar gum upregulates heat shock protein 27 in intestinal Caco-2 cells and mouse intestine via mTOR and ERK signaling. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:5165-5170. [PMID: 36914415 DOI: 10.1002/jsfa.12551] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/27/2023] [Accepted: 03/13/2023] [Indexed: 06/08/2023]
Abstract
BACKGROUND The intestinal epithelium acts as a barrier against harmful luminal materials, thus preventing intestinal diseases and maintaining intestinal health. Heat shock protein 27 (HSP27) promotes intestinal epithelial integrity under both physiological and stressed conditions. The effects of partially hydrolyzed guar gum (PHGG) on HSP27 expression in intestinal Caco-2 cells and mouse intestines were investigated. RESULTS The present study showed that PHGG upregulated HSP27 expression in Caco-2 cells without upregulating Hspb1, the gene encoding HSP27. Feeding PHGG increased HSP25 expression in epithelial cells of the small intestine of mice. Inhibition of protein translation using cycloheximide suppressed PHGG-mediated HSP27 expression, indicating that PHGG upregulated HSP27 via translational modulation. Signaling inhibition of the mechanistic target of rapamycin (mTOR) and phosphatidyl 3-inositol kinase reduced PHGG-mediated HSP27 expression, whereas mitogen-activated protein kinase kinase inhibition by U0126 increased HSP27 expression, irrespective of PHGG administration. PHGG increases mTOR phosphorylation and reduces extracellular signal-regulated protein kinase (ERK) phosphorylation. CONCLUSION PHGG-mediated translation of HSP27 in intestinal Caco-2 cells and mouse intestine via the mTOR and ERK signaling pathways may promote intestinal epithelial integrity. These findings help us better understand how dietary fibers regulate the physiological function of the intestines. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Dina Mustika Rini
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Hiroshima, Japan
- Department of Food Technology, Faculty of Engineering, Universitas Pembangunan Nasional "Veteran" Jawa Timur, Surabaya, Indonesia
| | - Yoshinari Yamamoto
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Hiroshima, Japan
| | - Takuya Suzuki
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Hiroshima, Japan
| |
Collapse
|
3
|
Li Y, Li P, Yu X, Zheng X, Gu Q. Exploitation of In Vivo-Emulated In Vitro System in Advanced Food Science. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37023249 DOI: 10.1021/acs.jafc.2c07289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Reasonable model construction contributes to the accuracy of experimental results. Multiple in vivo models offer reliable choices for effective evaluation, whereas their applications are hampered due to adverse features including high time-consumption, high cost and ethical contradictions. In vivo-emulated in vitro systems (IVE systems) have experienced rapid development and have been brought into food science for about two decades. IVE systems' flexibly gathers the strengths of in vitro and in vivo models into one, reflecting the results in an efficient, systematic and interacted manner. In this review, we comprehensively reviewed the current research progress of IVE systems based on the literature published in the recent two decades. By categorizing the IVE systems into 2D coculture models, spheroids and organoids, their applications were systematically summarized and typically exemplified. The pros and cons of IVE systems were also thoroughly discussed, drawing attention to present challenges and inspiring potential orientation and future perspectives. The wide applicability and multiple possibilities suggest IVE systems as an effective and persuasive platform in the future of advanced food science.
Collapse
Affiliation(s)
- Yonglu Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, People's Republic of China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou, 310018, Zhejiang, People's Republic of China
| | - Ping Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, People's Republic of China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou, 310018, Zhejiang, People's Republic of China
| | - Xin Yu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, People's Republic of China
- Zhejiang Key Laboratory for Agro-food Processing, Fuli Institute of Food Science, and National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Xiaodong Zheng
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, People's Republic of China
- Zhejiang Key Laboratory for Agro-food Processing, Fuli Institute of Food Science, and National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Qing Gu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, People's Republic of China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou, 310018, Zhejiang, People's Republic of China
| |
Collapse
|
4
|
Kong C, Beukema M, Wang M, de Haan BJ, de Vos P. Human milk oligosaccharides and non-digestible carbohydrates prevent adhesion of specific pathogens via modulating glycosylation or inflammatory genes in intestinal epithelial cells. Food Funct 2021; 12:8100-8119. [PMID: 34286788 DOI: 10.1039/d1fo00872b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Human milk oligosaccharides (hMOs) and non-digestible carbohydrates (NDCs) are known to inhibit the adhesion of pathogens to the gut epithelium, but the mechanisms involved are not well understood. Here, the effects of 2'-FL, 3-FL, DP3-DP10, DP10-DP60 and DP30-DP60 inulins and DM7, DM55 and DM69 pectins were studied on pathogen adhesion to Caco-2 cells. As the growth phase influences virulence, E. coli ET8, E. coli LMG5862, E. coli O119, E. coli WA321, and S. enterica subsp. enterica LMG07233 from both log and stationary phases were tested. Specificity for enteric pathogens was tested by including the lung pathogen K. pneumoniae LMG20218. Expression of the cell membrane glycosylation genes of galectin and glycocalyx and inflammatory genes was studied in the presence and absence of 2'-FL or NDCs. Inhibition of pathogen adhesion was observed for 2'-FL, inulins, and pectins. Pre-incubation with 2'-FL downregulated ICAM1, and pectins modified the glycosylation genes. In contrast, K. pneumoniae LMG20218 downregulated the inflammatory genes, but these were restored by pre-incubation with pectins, which reduced the adhesion of K. pneumoniae LMG20218. In addition, DM69 pectin significantly upregulated the inflammatory genes. 2'-FL and pectins but not inulins inhibited pathogen adhesion to the gut epithelial Caco-2 cells through changing the cell membrane glycosylation and inflammatory genes, but the effects were molecule-, pathogen-, and growth phase-dependent.
Collapse
Affiliation(s)
- Chunli Kong
- School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, China.
| | | | | | | | | |
Collapse
|
5
|
Kong C, Faas MM, de Vos P, Akkerman R. Impact of dietary fibers in infant formulas on gut microbiota and the intestinal immune barrier. Food Funct 2021; 11:9445-9467. [PMID: 33150902 DOI: 10.1039/d0fo01700k] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human milk (HM) is the gold standard for the nutrition of infants. An important component of HM is human milk oligosaccharides (hMOs), which play an important role in gut microbiota colonization and gut immune barrier establishment, and thereby contribute to the maturation of the immune system in early life. Guiding these processes is important as disturbances have life-long health effects and can lead to the development of allergic diseases. Unfortunately, not all infants can be exclusively fed with HM. These infants are routinely fed with infant formulas that contain hMO analogs and other non-digestible carbohydrates (NDCs) to mimic the effects of hMOs. Currently, the hMO analogs 2'-fucosyllactose (2'-FL), galacto-oligosaccharides (GOS), fructo-oligosaccharides (FOS), and pectins are added to infant formulas; however, these NDCs cannot mimic all hMO functions and therefore new NDCs and NDC mixtures need to become available for specific groups of neonates like preterm and disease-prone neonates. In this review, we discuss human data on the beneficial effects of infant formula supplements such as the specific hMO analog 2'-FL and NDCs as well as their mechanism of effects like stimulation of microbiota development, maturation of different parts of the gut immune barrier and anti-pathogenic effects. Insights into the structure-specific mechanisms by which hMOs and NDCs exert their beneficial functions might contribute to the development of new tailored NDCs and NDC mixtures. We also describe the needs for new in vitro systems that can be used for research on hMOs and NDCs. The current data suggest that "tailored infant formulas" for infants of different ages and healthy statuses are needed to ensure a healthy development of the microbiota and the gut immune system of infants.
Collapse
Affiliation(s)
- Chunli Kong
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands.
| | | | | | | |
Collapse
|
6
|
Gotoh S, Naka T, Kitaguchi K, Yabe T. Arabinogalactan in the side chain of pectin from persimmon is involved in the interaction with small intestinal epithelial cells. Biosci Biotechnol Biochem 2021; 85:1729-1736. [PMID: 33877300 DOI: 10.1093/bbb/zbab068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/14/2021] [Indexed: 11/12/2022]
Abstract
Pectin in Diospyros kaki (persimmon) is a complex polysaccharide and is classified as a dietary fiber. Pectin is characterized by the presence of side chains of neutral sugars, such as galactose residues; however, the structure and properties of these sugars vary greatly depending on the plant species from which it is derived. Here, we report the structural features of pectin extracted from persimmon. The polysaccharide was low-methoxy pectin with a degree of methyl esterification <50% and ratio of side chain galactan to arabinan in the rhamnogalacturonan-I region of pectin of 3-20. To investigate the physiological function of pectin from persimmon, we performed a coculture assay using Caco-2 cells. As a result, it was shown that the proliferation of undifferentiated Caco-2 cells was promoted, and further, the importance of arabinogalactan among the pectin structures was shown.
Collapse
Affiliation(s)
- Saki Gotoh
- The United Graduate School of Agricultural Science, Gifu University, Gifu, Japan
| | - Tomomi Naka
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Kohji Kitaguchi
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Tomio Yabe
- The United Graduate School of Agricultural Science, Gifu University, Gifu, Japan.,Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan.,Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu, Japan
| |
Collapse
|
7
|
Senescence-accelerated mouse prone 8 mice exhibit specific morphological changes in the small intestine during senescence and after pectin supplemented diet. Exp Gerontol 2020; 142:111099. [PMID: 33011215 DOI: 10.1016/j.exger.2020.111099] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 12/13/2022]
Abstract
Impairment of gastrointestinal function and reduction of nutrient absorption associated with aging contribute to increased risk of malnutrition in the elderly population, resulting in physical weakness and vulnerability to disease. The present study was performed to examine the relationships between aging-associated morphological changes of the small intestine and nutrient malabsorption using senescence-accelerated mouse prone 8 (SAMP8) mice. Comparison of the morphology of the small intestine of young (22-week-old) and senescent (43-week-old) SAMP8 mice showed no significant changes in villus length, while the mRNA expression levels of secretory cell marker genes were significantly reduced in senescent mice. In addition, crypts recovered from the small intestine of senescent mice showed a good capacity to form intestinal organoids ex vivo, suggesting that the regenerative capacity of intestinal stem cells (ISCs) was unaffected by accelerated senescence. These results indicated that changes induced by accelerated senescence in the small intestine of SAMP8 mice are different from changes reported previously in normal aging mouse models. Biochemical analyses of serum before and during senescence also indicated that senescent SAMP8 mice are not in a malabsorption state. Furthermore, a diet supplemented with persimmon pectin had a mild effect on the small intestine of senescent SAMP8 mice. Intestinal villus length was slightly increased in the medial part of the small intestine of pectin-fed mice. In contrast, intestinal crypt formation capacity was enhanced by the pectin diet. Organoid culture derived from the small intestine of mice fed pectin exhibited a greater number of lobes per organoid compared with those from mice fed a control diet, and Lyz1 and Olfm4 mRNA levels were significantly increased. In conclusion, accelerated senescence induced exclusive changes in the small intestine, which were not related to nutrient malabsorption. Therefore, the SAMP8 strain may not be a suitable model to evaluate the effects of aging on intestinal homeostasis and nutrient absorption impairment.
Collapse
|
8
|
Chen G, Bei B, Feng Y, Li X, Jiang Z, Si JY, Qing DG, Zhang J, Li N. Glycyrrhetinic Acid Maintains Intestinal Homeostasis via HuR. Front Pharmacol 2019; 10:535. [PMID: 31156441 PMCID: PMC6531911 DOI: 10.3389/fphar.2019.00535] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 04/29/2019] [Indexed: 02/06/2023] Open
Abstract
Glycyrrhetinic acid (GA) is one of the main components of the traditional Chinese medicine of licorice, which can coordinate and promote the effects of other medicines in the traditional prescription. We found that GA could promote the proliferation, decrease the apoptotic rate, and attenuate DFMO-elicited growth arrest and delay in restitution after wounding in IEC-6 cells via HuR. GA failed to promote proliferation and to suppress apoptosis after silencing HuR by siRNA in IEC-6 cells. Furthermore, with the model of small intestinal organoids developed from intestinal crypt stem cells, we found that GA could increase HuR and its downstream ki67 levels to promote intestinal organoid development. In the in vivo assay, GA was shown to maintain the integrity of the intestinal epithelium under the circumstance of 48 h-fasting in rats via raising HuR and its downstream genes such as EGF, EGFR, and MEK. These results suggested that via HuR modulation, GA could promote intestinal epithelium homeostasis, and therefore contribute to the absorption of constituents from other medicines co-existing in the traditional prescription with licorice in the small intestine. Our results provide a new perspective for understanding the effect of licorice on enhancing the therapeutic effect of traditional prescriptions according to the traditional Chinese medicine theory.
Collapse
Affiliation(s)
- Gang Chen
- School of Traditional Chinese Materia Medica, Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Shenyang Pharmaceutical University, Shenyang, China
| | - Bei Bei
- School of Traditional Chinese Materia Medica, Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Shenyang Pharmaceutical University, Shenyang, China
| | - Yuan Feng
- School of Traditional Chinese Materia Medica, Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Shenyang Pharmaceutical University, Shenyang, China
| | - Xuezheng Li
- Department of Pharmacy, Yanbian University, Yanji, China
| | - Zhe Jiang
- Department of Pharmacy, Yanbian University, Yanji, China
| | - Jian-Yong Si
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences Peking Union Medical College, Beijing, China
| | - De-Gang Qing
- XinJiang Institute of Chinese Materia Medica and Ethnodrug, Ürümqi, China
| | - Juan Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences Peking Union Medical College, Beijing, China.,XinJiang Institute of Chinese Materia Medica and Ethnodrug, Ürümqi, China
| | - Ning Li
- School of Traditional Chinese Materia Medica, Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
9
|
LGR5 and BMI1 Increase Pig Intestinal Epithelial Cell Proliferation by Stimulating WNT/β-Catenin Signaling. Int J Mol Sci 2018; 19:ijms19041036. [PMID: 29601474 PMCID: PMC5979389 DOI: 10.3390/ijms19041036] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 03/25/2018] [Accepted: 03/27/2018] [Indexed: 12/13/2022] Open
Abstract
Leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5) and B-cell-specific Moloney murine leukemia virus insertion site 1 (BMI1) are markers of fast-cycling and quiescent intestinal stem cells, respectively. To determine the functions of these proteins in large animals, we investigated their effects on the proliferation of intestinal epithelial cells from pigs. Our results indicated that LGR5 and BMI1 are highly conserved proteins and that the pig proteins have greater homology with the human proteins than do mouse proteins. Overexpression of either LGR5 or BMI1 promoted cell proliferation and WNT/β-catenin signaling in pig intestinal epithelial cells (IPEC-J2). Moreover, the activation of WNT/β-catenin signaling by recombinant human WNT3A protein increased cell proliferation and LGR5 and BMI1 protein levels. Conversely, inhibition of WNT/β-catenin signaling using XAV939 reduced cell proliferation and LGR5 and BMI1 protein levels. This is the first report that LGR5 and BMI1 can increase proliferation of pig intestinal epithelial cells by activating WNT/β-catenin signaling.
Collapse
|
10
|
Igwe EO, Charlton KE. A Systematic Review on the Health Effects of Plums (Prunus domestica and Prunus salicina). Phytother Res 2016; 30:701-31. [PMID: 26992121 DOI: 10.1002/ptr.5581] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 11/30/2015] [Accepted: 01/09/2016] [Indexed: 12/16/2022]
Abstract
In recent times, plums have been described as foods with health-promoting properties. Research on the health effects of plum continue to show promising results on its antiinflammatory, antioxidant and memory-improving characteristics. The increased interest in plum research has been attributed to its high phenolic content, mostly the anthocyanins, which are known to be natural antioxidants. A systematic review of literature was carried out to summarize the available evidence on the impact of plums (Prunus species; domestica and salicina) on disease risk factors and health outcomes. A number of databases were searched according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines for relevant studies on plum health effects in vitro, animal studies and clinical trials. A total of 73 relevant peer-reviewed journal articles were included in this review. The level of evidence remains low. Of the 25 human studies, 6 were confirmatory studies of moderate quality, while 19 were exploratory. Plums have been shown to possess antioxidant and antiallergic properties, and consumption is associated with improved cognitive function, bone health parameters and cardiovascular risk factors. Most of the human trials used the dried version of plums rather than fresh fruit, thus limiting translation to dietary messages of the positioning of plums in a healthy diet. Evidence on the health effect of plums has not been extensively studied, and the available evidence needs further confirmation. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Ezinne O Igwe
- School of Medicine, University of Wollongong, Northfields Avenue, Wollongong, New South Wales, 2522, Australia
| | - Karen E Charlton
- School of Medicine, University of Wollongong, Northfields Avenue, Wollongong, New South Wales, 2522, Australia
| |
Collapse
|