1
|
Jia L, Zheng H, Feng J, Ding Y, Sun X, Yu Y, Hao X, Wang J, Zhang X, Tian Y, Chen F, Cui J. Upregulation of Protein O-GlcNAcylation Levels Promotes Zebrafish Fin Regeneration. Mol Cell Proteomics 2025; 24:100936. [PMID: 40044042 PMCID: PMC12002929 DOI: 10.1016/j.mcpro.2025.100936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 04/06/2025] Open
Abstract
As one of the most important posttranslational modifications, glycosylation participates in various cellular activities in organisms and is closely associated with many pathogeneses. It has been reported that glycosylation affects the liver, spinal cord, and heart tissue regeneration. The zebrafish fin has become a valuable model due to its high regenerative capacity. The molecular mechanism of regeneration has been a hot research topic in the field for a long time. However, studies on the influence of glycosylation during limb regeneration in zebrafish are relatively scarce. We discovered that N-acetylglucosamine (O-GlcNAc) expression, identified by WGA, was elevated during the regeneration of the injured fin in zebrafish using lectin microarray. This phenomenon is due to the upregulation of the expression of OGT enzymes and elevated O-GlcNAcylation levels. To investigate the effects on the fin regeneration when O-GlcNAcylation changes, we used OSMI-1 or alloxan unilateral microinjection to decrease O-GlcNAcylation and observed that it prevented the fin regeneration. Conversely, the O-GlcNAcylation was impressed by a unilateral microinjection of thiamet-G or glucose into the fin, leading to a stimulation of the fin regeneration. To further understand the role of O-GlcNAcylation in fin regeneration, liquid chromatography-tandem mass spectrometry technology was performed to identify O-GlcNAc-glycoproteins. The results demonstrated that the O-GlcNAc glycoproteins, such as thrombospondin 4 and heparan sulfate proteoglycans, were involved in the regulation of zebrafish fin regeneration process and were closely associated with certain biological processes, such as stem cell differentiation, extracellular matrix-receptor interaction pathway, tissue remodeling, and so on. We demonstrated that O-GlcNAc glycoproteins are crucial for zebrafish fin regeneration, during which OGT promotes the process by upregulating the O-GlcNAcylation levels in the zebrafish fin.
Collapse
Affiliation(s)
- Liyuan Jia
- School of Medicine, Faculty of Life Science & Medicine, Northwest University, Xi'an, PR China; Laboratory of Tissue Engineering, College of Life Science, Faculty of Life Science & Medicine, Northwest University, Xi'an, PR China
| | - Hanxue Zheng
- Laboratory of Tissue Engineering, College of Life Science, Faculty of Life Science & Medicine, Northwest University, Xi'an, PR China
| | - Juantao Feng
- Laboratory of Tissue Engineering, College of Life Science, Faculty of Life Science & Medicine, Northwest University, Xi'an, PR China
| | - Yi Ding
- Laboratory of Tissue Engineering, College of Life Science, Faculty of Life Science & Medicine, Northwest University, Xi'an, PR China
| | - Xiaotian Sun
- Laboratory of Tissue Engineering, College of Life Science, Faculty of Life Science & Medicine, Northwest University, Xi'an, PR China
| | - Yuan Yu
- School of Medicine, Faculty of Life Science & Medicine, Northwest University, Xi'an, PR China; Laboratory of Tissue Engineering, College of Life Science, Faculty of Life Science & Medicine, Northwest University, Xi'an, PR China; Provincial Key Laboratory of Biotechnology of Shaanxi, Xi'an, PR China; Key Laboratory of Resource Biology and Biotechnology in Western China Ministry of Education, Xi'an, PR China
| | - Xue Hao
- Pediatric Orthopaedic Hospital, Honghui Hospital, Xi'an Jiaotong University, Xi'an, PR China
| | - Junxiang Wang
- School of Medicine, Faculty of Life Science & Medicine, Northwest University, Xi'an, PR China
| | - Xinyu Zhang
- School of Medicine, Faculty of Life Science & Medicine, Northwest University, Xi'an, PR China
| | - Yuanfeng Tian
- School of Medicine, Faculty of Life Science & Medicine, Northwest University, Xi'an, PR China
| | - Fulin Chen
- School of Medicine, Faculty of Life Science & Medicine, Northwest University, Xi'an, PR China; Laboratory of Tissue Engineering, College of Life Science, Faculty of Life Science & Medicine, Northwest University, Xi'an, PR China; Provincial Key Laboratory of Biotechnology of Shaanxi, Xi'an, PR China; Key Laboratory of Resource Biology and Biotechnology in Western China Ministry of Education, Xi'an, PR China.
| | - Jihong Cui
- School of Medicine, Faculty of Life Science & Medicine, Northwest University, Xi'an, PR China; Laboratory of Tissue Engineering, College of Life Science, Faculty of Life Science & Medicine, Northwest University, Xi'an, PR China; Provincial Key Laboratory of Biotechnology of Shaanxi, Xi'an, PR China; Key Laboratory of Resource Biology and Biotechnology in Western China Ministry of Education, Xi'an, PR China.
| |
Collapse
|
2
|
Kuno M, Tomita H, Endo M, Mori K, Hara A, Horaguchi T, Yokoi R, Matsumoto K, Hayashi H, Fukada M, Takao C, Sato Y, Asai R, Yasufuku I, Tajima JY, Kiyama S, Tanaka Y, Matsuhashi N. Evaluating glycocalyx morphology and composition in frozen and formalin-fixed liver tumor sections. Pathol Res Pract 2024; 263:155660. [PMID: 39423607 DOI: 10.1016/j.prp.2024.155660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND The glycocalyx (GCX) is a glycan structure on the vascular endothelium and cancer cells. It is crucial for blood flow regulation, tumor invasion, and cancer drug resistance. Understanding the role of GCX in human tumors could help develop new cancer biomarkers and therapies. AIM This study aimed to demonstrate microstructural changes in human primary and metastatic liver tumors (henceforth termed liver tumors) by visualizing GCX using surgical specimens and comparing formalin-fixed paraffin-embedded sections (FFPEs) with frozen sections. The results of lectin staining were also compared between frozen and FFPE specimens to determine which was more useful for accurately assessing GCX structure and composition. METHODS Liver tumors and normal tissue samples from three patients were collected and processed into FFPEs and frozen sections, respectively. Lanthanum nitrate staining and scanning electron microscopy (SEM) were used to assess the GCX structures. Twenty lectins were analyzed for their glycan components in the samples. RESULTS SEM revealed significant differences in GCX morphology among the cancer specimens. Frozen sections provided a more accurate GCX evaluation than FFPEs, showing distinct glycan compositions in hepatocellular carcinoma, colorectal carcinoma liver metastases, and melanoma liver metastases. Hepatocellular carcinoma samples exhibited a loss of N-acetylgalactosamine-related lectins. CONCLUSION The results revealed that liver tumors have distinct and bulky GCX compared to normal liver tissue, while frozen sections are more reliable for GCX evaluation. These findings highlight glycan alterations in liver tumors and contribute to the development of new cancer therapies targeting GCX on tumor cell surfaces.
Collapse
Affiliation(s)
- Masashi Kuno
- Department of Gastroenterological surgery, Gifu University School of Medicine, Gifu, Japan; Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Hiroyuki Tomita
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan; Center for One Medicine Innovative Translational Research, Gifu University Institute for Advanced Study, Gifu, Japan.
| | - Masahide Endo
- Department of Gastroenterological surgery, Gifu University School of Medicine, Gifu, Japan; Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kosuke Mori
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Akira Hara
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Takeshi Horaguchi
- Department of Gastroenterological surgery, Gifu University School of Medicine, Gifu, Japan
| | - Ryoma Yokoi
- Department of Gastroenterological surgery, Gifu University School of Medicine, Gifu, Japan
| | - Keita Matsumoto
- Department of Gastroenterological surgery, Gifu University School of Medicine, Gifu, Japan
| | - Hirokatsu Hayashi
- Department of Gastroenterological surgery, Gifu University School of Medicine, Gifu, Japan
| | - Masahiro Fukada
- Department of Gastroenterological surgery, Gifu University School of Medicine, Gifu, Japan
| | - Chika Takao
- Department of Gastroenterological surgery, Gifu University School of Medicine, Gifu, Japan
| | - Yuta Sato
- Department of Gastroenterological surgery, Gifu University School of Medicine, Gifu, Japan
| | - Ryuichi Asai
- Department of Gastroenterological surgery, Gifu University School of Medicine, Gifu, Japan
| | - Itaru Yasufuku
- Department of Gastroenterological surgery, Gifu University School of Medicine, Gifu, Japan
| | - Jesse Yu Tajima
- Department of Gastroenterological surgery, Gifu University School of Medicine, Gifu, Japan
| | - Shigeru Kiyama
- Department of Gastroenterological surgery, Gifu University School of Medicine, Gifu, Japan
| | - Yoshihiro Tanaka
- Department of Gastroenterological surgery, Gifu University School of Medicine, Gifu, Japan
| | - Nobuhisa Matsuhashi
- Department of Gastroenterological surgery, Gifu University School of Medicine, Gifu, Japan; Center for One Medicine Innovative Translational Research, Gifu University Institute for Advanced Study, Gifu, Japan.
| |
Collapse
|
3
|
Li X, Xiao Y, Chen X, Zhu Y, Du H, Shu J, Yu H, Ren X, Zhang F, Dang J, Zhang C, Su S, Li Z. Machine Learning Reveals Serum Glycopatterns as Potential Biomarkers for the Diagnosis of Nonalcoholic Fatty Liver Disease (NAFLD). J Proteome Res 2024; 23:2253-2264. [PMID: 38698681 DOI: 10.1021/acs.jproteome.4c00204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has emerged as the predominant chronic liver condition globally, and underdiagnosis is common, particularly in mild cases, attributed to the asymptomatic nature and traditional ultrasonography's limited sensitivity to detect early-stage steatosis. Consequently, patients may experience progressive liver pathology. The objective of this research is to ascertain the efficacy of serum glycan glycopatterns as a potential diagnostic biomarker, with a particular focus on the disease's early stages. We collected a total of 170 serum samples from volunteers with mild-NAFLD (Mild), severe-NAFLD (Severe), and non-NAFLD (None). Examination via lectin microarrays has uncovered pronounced disparities in serum glycopatterns identified by 19 distinct lectins. Following this, we employed four distinct machine learning algorithms to categorize the None, Mild, and Severe groups, drawing on the alterations observed in serum glycopatterns. The gradient boosting decision tree (GBDT) algorithm outperformed other models in diagnostic accuracy within the validation set, achieving an accuracy rate of 95% in differentiating the None group from the Mild group. Our research indicates that employing lectin microarrays to identify alterations in serum glycopatterns, when integrated with advanced machine learning algorithms, could constitute a promising approach for the diagnosis of NAFLD, with a special emphasis on its early detection.
Collapse
Affiliation(s)
- Xiaocheng Li
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Yaqing Xiao
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Xinhuan Chen
- Department of Health Science Center, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yayun Zhu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Haoqi Du
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, China
- School of Medicine, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, China
| | - Jian Shu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, China
- School of Medicine, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, China
| | - Hanjie Yu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Xiameng Ren
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Fan Zhang
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Jing Dang
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Chen Zhang
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Shi Su
- Department of Health Science Center, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Zheng Li
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, China
| |
Collapse
|
4
|
Yang J, Yin M, Hou Y, Li H, Guo Y, Yu H, Zhang K, Zhang C, Jia L, Zhang F, Li X, Bian H, Li Z. Role of ammonia for brain abnormal protein glycosylation during the development of hepatitis B virus-related liver diseases. Cell Biosci 2022; 12:16. [PMID: 35164881 PMCID: PMC8842931 DOI: 10.1186/s13578-022-00751-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/29/2022] [Indexed: 11/30/2022] Open
Abstract
Background Ammonia is the most typical neurotoxin in hepatic encephalopathy (HE), but the underlying pathophysiology between ammonia and aberrant glycosylation in HE remains unknown. Results Here, we used HBV transgenic mice and astrocytes to present a systems-based study of glycosylation changes and corresponding enzymes associated with the key factors of ammonia in HE. We surveyed protein glycosylation changes associated with the brain of HBV transgenic mice by lectin microarrays. Upregulation of Galβ1-3GalNAc mediated by core 1 β1,3-galactosyltransferase (C1GALT1) was identified as a result of ammonia stimulation. Using in vitro assays, we validated that upregulation of C1GALT1 is a driver of deregulates calcium (Ca2+) homeostasis by overexpression of inositol 1,4,5-trisphosphate receptor type 1 (IP3R1) in astrocytes. Conclusions We demonstrated that silencing C1GALT1 could depress the IP3R1 expression, an effective strategy to inhibit the ammonia-induced upregulation of Ca2+ activity, thereby C1GALT1 and IP3R1 may serve as therapeutic targets in hyperammonemia of HE. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00751-4.
Collapse
Affiliation(s)
- Jiajun Yang
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Mengqi Yin
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Yao Hou
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Hao Li
- Cell Engineering Research Centre and Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Yonghong Guo
- Department of Infectious Diseases, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Hanjie Yu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Kun Zhang
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Chen Zhang
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Liyuan Jia
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Fan Zhang
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Xia Li
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Huijie Bian
- Cell Engineering Research Centre and Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, China.
| | - Zheng Li
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, 710069, China.
| |
Collapse
|
5
|
Li J, Zhao T, Li J, Shen J, Jia L, Zhu B, Dang L, Ma C, Liu D, Mu F, Hu L, Sun S. Precision N-glycoproteomics reveals elevated LacdiNAc as a novel signature of intrahepatic cholangiocarcinoma. Mol Oncol 2021; 16:2135-2152. [PMID: 34855283 PMCID: PMC9168967 DOI: 10.1002/1878-0261.13147] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 11/02/2021] [Accepted: 11/30/2021] [Indexed: 12/09/2022] Open
Abstract
Primary liver cancer, mainly comprising hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC), remains a major global health problem. Although ICC is clinically different from HCC, their molecular differences are still largely unclear. In this study, precision N‐glycoproteomic analysis was performed on both ICC and HCC tumors as well as paracancer tissues to investigate their aberrant site‐specific N‐glycosylation. By using our newly developed glycoproteomic methods and novel algorithm, termed ‘StrucGP’, a total of 486 N‐glycan structures attached on 1235 glycosites were identified from 894 glycoproteins in ICC and HCC tumors. Notably, glycans with uncommon LacdiNAc (GalNAcβ1‐4GlcNAc) structures were distinguished from their isomeric glycans. In addition to several bi‐antennary and/or bisecting glycans that were commonly elevated in ICC and HCC, a number of LacdiNAc‐containing, tri‐antennary, and core‐fucosylated glycans were uniquely increased in ICC. More interestingly, almost all LacdiNAc‐containing N‐glycopeptides were enhanced in ICC tumor but not in HCC tumor, and this phenomenon was further confirmed by lectin histochemistry and the high expression of β1‐4 GalNAc transferases in ICC at both mRNA and protein expression levels. The novel N‐glycan alterations uniquely detected in ICC provide a valuable resource for future studies regarding to the discovery of ICC diagnostic biomarkers, therapeutic targets, and mechanism investigations.
Collapse
Affiliation(s)
- Jun Li
- College of Life ScienceNorthwest UniversityXi'anChina
| | - Ting Zhao
- College of Life ScienceNorthwest UniversityXi'anChina
| | - Jing Li
- College of Life ScienceNorthwest UniversityXi'anChina
| | - Jiechen Shen
- College of Life ScienceNorthwest UniversityXi'anChina
| | - Li Jia
- College of Life ScienceNorthwest UniversityXi'anChina
| | - Bojing Zhu
- College of Life ScienceNorthwest UniversityXi'anChina
| | - Liuyi Dang
- College of Life ScienceNorthwest UniversityXi'anChina
| | - Chen Ma
- College of Life ScienceNorthwest UniversityXi'anChina
| | - Didi Liu
- College of Life ScienceNorthwest UniversityXi'anChina
| | - Fan Mu
- Department of Hepatobiliary SurgeryInstitute of Advanced Surgical Technology and EngineeringThe First Affiliated Hospital of Xi'an Jiaotong UniversityChina
| | - Liangshuo Hu
- Department of Hepatobiliary SurgeryInstitute of Advanced Surgical Technology and EngineeringThe First Affiliated Hospital of Xi'an Jiaotong UniversityChina
| | - Shisheng Sun
- College of Life ScienceNorthwest UniversityXi'anChina
| |
Collapse
|
6
|
Wang W, Yu Y, Liu H, Zheng H, Jia L, Zhang J, Wang X, Yang Y, Chen F. Protein Core Fucosylation Regulates Planarian Head Regeneration via Neoblast Proliferation. Front Cell Dev Biol 2021; 9:625823. [PMID: 34336817 PMCID: PMC8322617 DOI: 10.3389/fcell.2021.625823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 06/21/2021] [Indexed: 01/22/2023] Open
Abstract
Protein glycosylation is an important posttranslational modification that plays a crucial role in cellular function. However, its biological roles in tissue regeneration remain interesting and primarily ambiguous. In this study, we profiled protein glycosylation during head regeneration in planarian Dugesia japonica using a lectin microarray. We found that 6 kinds of lectins showed increased signals and 16 kinds showed decreased signals. Interestingly, we found that protein core fucosylation, manifested by Lens culinaris agglutinin (LCA) staining, was significantly upregulated during planarian head regeneration. Lectin histochemistry indicated that the LCA signal was intensified within the wound and blastemal areas. Furthermore, we found that treatment with a fucosylation inhibitor, 2F-peracetyl-fucose, significantly retarded planarian head regeneration, while supplement with L-fucose could improve DjFut8 expression and stimulate planarian head regeneration. In addition, 53 glycoproteins that bound to LCA were selectively isolated by LCA-magnetic particle conjugates and identified by LC-MS/MS, including the neoblast markers DjpiwiA, DjpiwiB, DjvlgA, and DjvlgB. Overall, our study provides direct evidence for the involvement of protein core fucosylation in planarian regeneration.
Collapse
Affiliation(s)
- Wenjun Wang
- Lab of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Yuan Yu
- Lab of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China.,Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, China
| | - Hongbo Liu
- Lab of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Hanxue Zheng
- Lab of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Liyuan Jia
- Lab of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Jing Zhang
- Lab of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Xue Wang
- Lab of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Yang Yang
- Lab of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China.,Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, China
| | - Fulin Chen
- Lab of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China.,Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, China
| |
Collapse
|
7
|
Comprehensive analysis of glycosphingolipid glycans by lectin microarrays and MALDI-TOF mass spectrometry. Nat Protoc 2021; 16:3470-3491. [PMID: 34099941 DOI: 10.1038/s41596-021-00544-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 03/25/2021] [Indexed: 12/15/2022]
Abstract
Glycosphingolipids (GSLs) are ubiquitous glycoconjugates present on the cell membrane; they play significant roles in many bioprocesses such as cell adhesion, embryonic development, signal transduction and carcinogenesis. Analyzing such amphiphilic molecules is a major challenge in the field of glycosphingolipidomics. We provide a step-by-step protocol that uses a lectin microarray to analyze GSL glycans from cultured cells. The procedure describes (i) extraction of GSLs from cell pellets, (ii) N-monodeacylation using sphingolipid ceramide N-deacylase digestion to form lyso-GSLs, (iii) fluorescence labeling at the newly exposed amine group, (iv) preparation of a lectin microarray, (v) GSL-glycan analysis by a lectin microarray, (vi) complementary mass spectrometry analysis and (vii) data acquisition and analysis. This method is high-throughput, low cost and easy to conduct, and it provides detailed information about glycan linkages. This protocol takes ~10 d.
Collapse
|
8
|
Nascimento da Silva LC, Mendonça JSP, de Oliveira WF, Batista KLR, Zagmignan A, Viana IFT, Dos Santos Correia MT. Exploring lectin-glycan interactions to combat COVID-19: Lessons acquired from other enveloped viruses. Glycobiology 2021; 31:358-371. [PMID: 33094324 PMCID: PMC7665446 DOI: 10.1093/glycob/cwaa099] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/30/2020] [Accepted: 09/26/2020] [Indexed: 01/08/2023] Open
Abstract
The emergence of a new human coronavirus (SARS-CoV-2) has imposed great pressure on the health system worldwide. The presence of glycoproteins on the viral envelope opens a wide range of possibilities for application of lectins to address some urgent problems involved in this pandemic. In this work, we discuss the potential contributions of lectins from non-mammalian sources in the development of several fields associated with viral infections, most notably COVID-19. We review the literature on the use of non-mammalian lectins as a therapeutic approach against members of the Coronaviridae family, including recent advances in strategies of protein engineering to improve their efficacy. The applications of lectins as adjuvants for antiviral vaccines are also discussed. Finally, we present some emerging strategies employing lectins for the development of biosensors, microarrays, immunoassays and tools for purification of viruses from whole blood. Altogether, the data compiled in this review highlights the importance of structural studies aiming to improve our knowledge about the basis of glycan recognition by lectins and its repercussions in several fields, providing potential solutions for complex aspects that are emerging from different health challenges.
Collapse
Affiliation(s)
- Luís Cláudio Nascimento da Silva
- Programa de Pós-graduação em Biologia Microbiana, Laboratório de Patogenicidade Bacteriana, Universidade CEUMA, São Luís 65075-120, Brazil.,Programa de Pós-graduação em Biodiversidade e Biotecnologia da Amazônia Legal, Laboratório de Patogenicidade Bacteriana, Universidade CEUMA, São Luís 65075-120, Brazil
| | - Juliana Silva Pereira Mendonça
- Programa de Pós-graduação em Biologia Microbiana, Laboratório de Patogenicidade Bacteriana, Universidade CEUMA, São Luís 65075-120, Brazil
| | - Weslley Felix de Oliveira
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50.670-901, Brazil
| | - Karla Lílian Rodrigues Batista
- Programa de Pós-graduação em Biodiversidade e Biotecnologia da Amazônia Legal, Laboratório de Patogenicidade Bacteriana, Universidade CEUMA, São Luís 65075-120, Brazil
| | - Adrielle Zagmignan
- Programa de Pós-graduação em Biodiversidade e Biotecnologia da Amazônia Legal, Laboratório de Patogenicidade Bacteriana, Universidade CEUMA, São Luís 65075-120, Brazil
| | | | | |
Collapse
|
9
|
Liu L, Li D, Shu J, Wang L, Zhang F, Zhang C, Yu H, Chen M, Li Z, Guo X. Protein Glycopatterns in Bronchoalveolar Lavage Fluid as Novel Potential Biomarkers for Diagnosis of Lung Cancer. Front Oncol 2021; 10:568433. [PMID: 33520694 PMCID: PMC7840895 DOI: 10.3389/fonc.2020.568433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 11/30/2020] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is one of the most prevalent and life-threatening neoplasias worldwide due to the deficiency of ideal diagnostic biomarkers. Although aberrant glycosylation has been observed in human serum and tissue, little is known about the alterations in bronchoalveolar lavage fluid (BALF) that are extremely associated with lung cancer. In this study, our aim was to systematically investigate and assess the alterations of protein glycopatterns in BALF and possibility as biomarkers for diagnosis of lung cancer. Here, lectin microarrays and blotting analysis were utilized to detect the differential expression of BALF glycoproteins from patients with 80 adenocarcinomas (ADC), 77 squamous carcinomas (SCC), 51 small cell lung cancer (SCLC), and 73 benign pulmonary diseases (BPD). These 281 specimens were then randomly divided into a training cohort and validation cohort for constructing and verifying the diagnostic models based on the glycopattern abundances. Moreover, an independent test was performed with 120 newly collected BALF samples enrolled in the double-blind cohort to further assess the clinical application potential of the diagnostic models. According to the results, there were 15 (e.g., PHA-E, EEL, and BPL) and 14 lectins (e.g., PTL-II, LCA, and SJA) that individually showed significant variations in different types and stages of lung cancer compared to BPD. Notably, the diagnostic models achieved better discriminate power in the validation cohort and exhibited high accuracies of 0.917, 0.864, 0.712, 0.671, and 0.781 in the double-blind cohort for the diagnosis of lung cancer, early stage lung cancer, ADC, SCC, and SCLC, respectively. Taken together, the present study revealed that the abnormally altered protein glycopatterns in BALF are expected to be novel potential biomarkers for the identification and early diagnosis of lung cancer, which will contribute to explain the mechanism of the development of lung cancer from the perspective of glycobiology.
Collapse
Affiliation(s)
- Lina Liu
- Department of Clinical Laboratory, Xi’an No. 4 Hospital, Xi’an, China
- Department of Clinical Laboratory, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Dan Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jian Shu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi’an, China
| | - Li Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Fan Zhang
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi’an, China
| | - Chen Zhang
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi’an, China
| | - Hanjie Yu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi’an, China
| | - Mingwei Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Zheng Li
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi’an, China
| | - Xuan Guo
- Department of Clinical Laboratory, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
10
|
Dang K, Zhang W, Jiang S, Lin X, Qian A. Application of Lectin Microarrays for Biomarker Discovery. ChemistryOpen 2020; 9:285-300. [PMID: 32154049 PMCID: PMC7050261 DOI: 10.1002/open.201900326] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 02/05/2020] [Indexed: 12/12/2022] Open
Abstract
Many proteins in living organisms are glycosylated. As their glycan patterns exhibit protein-, cell-, and tissue-specific heterogeneity, changes in the glycosylation levels could serve as useful indicators of various pathological and physiological states. Thus, the identification of glycoprotein biomarkers from specific changes in the glycan profiles of glycoproteins is a trending field. Lectin microarrays provide a new glycan analysis platform, which enables rapid and sensitive analysis of complex glycans without requiring the release of glycans from the protein. Recent developments in lectin microarray technology enable high-throughput analysis of glycans in complex biological samples. In this review, we will discuss the basic concepts and recent progress in lectin microarray technology, the application of lectin microarrays in biomarker discovery, and the challenges and future development of this technology. Given the tremendous technical advancements that have been made, lectin microarrays will become an indispensable tool for the discovery of glycoprotein biomarkers.
Collapse
Affiliation(s)
- Kai Dang
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life SciencesNorthwestern Polytechnical UniversityXi'an710072, ShaanxiChina
| | - Wenjuan Zhang
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life SciencesNorthwestern Polytechnical UniversityXi'an710072, ShaanxiChina
| | - Shanfeng Jiang
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life SciencesNorthwestern Polytechnical UniversityXi'an710072, ShaanxiChina
| | - Xiao Lin
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life SciencesNorthwestern Polytechnical UniversityXi'an710072, ShaanxiChina
| | - Airong Qian
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life SciencesNorthwestern Polytechnical UniversityXi'an710072, ShaanxiChina
| |
Collapse
|
11
|
Jia L, Ma T, Liang Y, Du H, Shu J, Liu X, Zhang Z, Yu H, Chen M, Li Z. Alterations in serum protein glycopatterns related to small cell lung cancer, adenocarcinoma and squamous carcinoma of the lung. RSC Adv 2020; 10:7181-7193. [PMID: 35493902 PMCID: PMC9049724 DOI: 10.1039/c9ra10077f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/01/2020] [Indexed: 12/13/2022] Open
Abstract
Background: The main reason why lung cancer has maintained a high rate of morbidity and mortality is that its early diagnosis is difficult. No current lung cancer screening is recommended by any major medical organization due to the lack of sensitive and specific screening technologies. Thus, this study aimed to systematically investigate the correlation between the alterations in serum glycosylation and three main types of lung cancers (SCLC, ADC and SqCC). Materials and methods: We investigated the protein glycopatterns in sera from 333 subjects (65 healthy volunteers, 38 benign lung disease patients, 49 small cell lung cancer patients, and 181 NSCLC patients) using a lectin microarray. A serum microarray was produced to evaluate and verify the terminal carbohydrate moieties of the glycoproteins in individual serum samples from 30 cases simultaneously. Results: There were 16 lectins (e.g., RCA120, BS-I, and UEA-I), 24 lectins (e.g., HHL, PTL-I, and MAL-II), and 18 lectins (e.g., GSL-I, LEL, and ACA) that exhibited significant differences in serum protein glycopatterns in the patients with SCLC, ADC and SqCC compared with the controls (HV and BPD). There were 6 lectins (e.g., EEL, NPA, and LEL) that exhibited significantly increased NFIs in ADC and SqCC compared with SCLC. Also, there were 5 lectins (e.g., Jacalin, BS-I, and UEA-I) that exhibited significantly decreased NFIs in ADC compared with SCLC and SqCC. Conclusions: This study can facilitate the discovery of potential biomarkers for the differential diagnosis of lung cancer based on the precise alteration in serum protein glycopatterns.
Collapse
Affiliation(s)
- Liyuan Jia
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University Xi'an 710069 P. R. China
| | - Tianran Ma
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University Xi'an 710069 P. R. China
| | - Yiqian Liang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of School of Medicine of Xi'an, Jiaotong University Xi'an 710061 China
| | - Haoqi Du
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University Xi'an 710069 P. R. China
| | - Jian Shu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University Xi'an 710069 P. R. China
| | - Xiawei Liu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University Xi'an 710069 P. R. China
| | - Zhiwei Zhang
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University Xi'an 710069 P. R. China
| | - Hanjie Yu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University Xi'an 710069 P. R. China
| | - Mingwei Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of School of Medicine of Xi'an, Jiaotong University Xi'an 710061 China
| | - Zheng Li
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University Xi'an 710069 P. R. China
| |
Collapse
|
12
|
Yu H, Shu J, Li Z. Lectin microarrays for glycoproteomics: an overview of their use and potential. Expert Rev Proteomics 2020; 17:27-39. [PMID: 31971038 DOI: 10.1080/14789450.2020.1720512] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 01/21/2020] [Indexed: 02/06/2023]
Abstract
Introduction: Glycoproteomics is an important subdiscipline of proteomics, focusing on the role of protein glycosylation in various biological processes. Protein glycosylation is the enzymatic addition of sugars or oligosaccharides to proteins. Altered glycosylation often occurs in the early stages of disease development, for example, certain tumor-associated glycans have been shown to be expressed in precursor lesions of different types of cancer, making them powerful early diagnostic markers. Lectin microarrays have become a powerful tool for both the study of glycosylation and the diagnosis of various diseases including cancer.Areas covered: This review will discuss the most useful features of lectin microarrays, such as their technological advances, their capability for parallel/high-throughput analysis for the important glycopatterns of glycoprotein, and an overview of their use for glycosylation analysis of various complex protein samples, as well as their diagnostic potential in various diseases.Expert opinion: Lectin microarrays have proved to be useful in studying multiple lectin-glycan interactions in a single experiment and, with the advances made in the field, hold a promise of enabling glycopatterns of diseases in a fast and efficient manner. Lectin microarrays will become increasingly powerful early diagnostic tool for a variety of conditions.
Collapse
Affiliation(s)
- Hanjie Yu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Jian Shu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Zheng Li
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| |
Collapse
|
13
|
Zhang J, Zhong Y, Zhang P, Du H, Shu J, Liu X, Zhang H, Guo Y, Jia Z, Niu L, Yang F, Li Z. Identification of abnormal fucosylated-glycans recognized by LTL in saliva of HBV-induced chronic hepatitis, cirrhosis, and hepatocellular carcinoma. Glycobiology 2019; 29:242-259. [PMID: 30535277 DOI: 10.1093/glycob/cwy108] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 04/12/2018] [Accepted: 12/06/2018] [Indexed: 12/26/2022] Open
Abstract
The hepatitis B virus (HBV)-induced chronic liver diseases are serious health threats worldwide. There is evidence to display the alterations of salivary N-linked glycans related to the development of HBV-infected liver diseases. Here, we further investigated the alterations of fucosylated N/O-glycans recognized by LTL in saliva from 120 subjects (30 healthy volunteers (HV), 30 patients with hepatitis B (HB), 30 patients with hepatic cirrhosis (HC), and 30 patients with hepatocellular carcinoma (HCC)) using salivary microarrys and MALDI-TOF/TOF-MS. The results showed that the expression level of fucosylated glycans recognized by LTL was significantly increased in HCC compared with other subjects (P < 0.0001). Besides, the fucosylated glycoproteins were isolated from pooled saliva of HV, HB, HC, and HCC by LTL-magnetic particle conjugates. Then, N/O- glycans were released from the isolated glycoproteins with PNGase F and NaClO, and were identified by MALDI-TOF-MS, respectively. Totally, there were 21/20, 25/18, 29/19, and 28/24 N/O-glycan peaks that were identified and annotated with proposed structures in saliva of HV, HB, HC, and HCC. Among the total, there were 8 N-glycan peaks (e.g., m/z 1905.634, 2158.777 and 2905.036) and 15 O-glycan peaks (e.g., 1177.407, 1308.444 and 1322.444) that only presented in patients with HBV-induced liver diseases. One N-glycan peak (m/z 2205.766) was unique in HC, and 9 O-glycan peaks (e.g., m/z 1157.420, 1163.417 and 1193.402) were unique in HCC. This study could facilitate the discovery of biomarkers for HC and HCC based on precise alterations of fucosylated N/O-glycans in saliva.
Collapse
Affiliation(s)
- Jiaxu Zhang
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Yaogang Zhong
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Peixin Zhang
- Center of Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Haoqi Du
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Jian Shu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Xiawei Liu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Hua Zhang
- Department of Oncology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Yonghong Guo
- Department of Infectious Diseases, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhansheng Jia
- Center of Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Lili Niu
- Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institution of Biophysics, Chineses Academy of Sciences, Beijing, China
| | - Fuquan Yang
- Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institution of Biophysics, Chineses Academy of Sciences, Beijing, China
| | - Zheng Li
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| |
Collapse
|
14
|
Cui J, Zheng H, Zhang J, Jia L, Feng Y, Wang W, Li H, Chen F. Profiling of glycan alterations in regrowing limb tissues of Cynops orientalis. Wound Repair Regen 2017; 25:836-845. [PMID: 28857387 DOI: 10.1111/wrr.12580] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 07/31/2017] [Indexed: 02/02/2023]
Abstract
Glycans are known to play important roles in molecular recognition, cell-cell adhesion, molecular trafficking, receptor activation, and signal transduction during development and regeneration. Despite numerous investigations of regenerating salamander limbs, global analysis of the precise variation of glycans during the limb regeneration process has received little attention. Here, we have used lectin microarrays and lectin histochemistry to analyze the alterations and distribution of glycans during the early stages leading to blastema formation during Cynops orientalis limb regeneration in response to limb amputation. Compared with the control group, analysis at several time points (3, 7, and 14 days postamputation) using microarrays containing 37 lectins showed that limb tissues expressed significantly different complements of glycans recognized by 9 different lectins. Postamputation limb tissues showed higher expression of two glycan structures recognized by the lectins STL and LTL and lower expression of seven glycan structures recognized by PHA-E, MAL-I, SNA, UEA-I, PHA-E + L, VVA, and GNA. We also observed significant changes in glycans specifically at 7 days postamputation, including higher binding capacity by WFA, GSL-I, and NPA and lower binding capacity by PNA, HHL, ConA, LCA, GSL-II, and PWM. Next, we validated our lectin microarray data using lectin histochemistry in limb tissues. Glycans recognized by STL and GNA showed similar changes in signal intensity to those found in the lectin microarrays, with STL staining in the cytoplasm and GNA in the cytoplasm and nucleus. Our findings are the first report of significant postamputation changes in glycans in limb tissues and suggest that those glycans perform potentially important functions during the early stages of C. orientalis limb regeneration.
Collapse
Affiliation(s)
- Jihong Cui
- Lab of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an 710069, People's Republic of China.,Provincial Key Laboratory of Biotechnology of Shaanxi, Xi'an 710069, People's Republic of China.,Key Laboratory of Resource Biology and Biotechnology in Western China Ministry of Education, Xi'an, People's Republic of China
| | - Hanxue Zheng
- Lab of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an 710069, People's Republic of China
| | - Jing Zhang
- Lab of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an 710069, People's Republic of China
| | - Liyuan Jia
- Lab of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an 710069, People's Republic of China
| | - Yalong Feng
- Lab of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an 710069, People's Republic of China
| | - Wenjun Wang
- Lab of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an 710069, People's Republic of China
| | - Hongmin Li
- Lab of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an 710069, People's Republic of China.,Provincial Key Laboratory of Biotechnology of Shaanxi, Xi'an 710069, People's Republic of China.,Key Laboratory of Resource Biology and Biotechnology in Western China Ministry of Education, Xi'an, People's Republic of China
| | - Fulin Chen
- Lab of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an 710069, People's Republic of China.,Provincial Key Laboratory of Biotechnology of Shaanxi, Xi'an 710069, People's Republic of China.,Key Laboratory of Resource Biology and Biotechnology in Western China Ministry of Education, Xi'an, People's Republic of China
| |
Collapse
|
15
|
Qin Y, Zhong Y, Ma T, Zhang J, Yang G, Guan F, Li Z, Li B. A pilot study of salivary N-glycome in HBV-induced chronic hepatitis, cirrhosis, and hepatocellular carcinoma. Glycoconj J 2017; 34:523-535. [PMID: 28389847 DOI: 10.1007/s10719-017-9768-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/16/2017] [Accepted: 03/27/2017] [Indexed: 12/11/2022]
Abstract
Hepatitis B is a potentially life-threatening liver infection caused by the hepatitis B virus (HBV), which can lead to chronic liver disease and put people at high risk of death from cirrhosis of the liver and liver cancer. However, little is known about the correlation of salivary N-linked glycans related to HBV-infected liver diseases. Here we investigated N-linked glycome in saliva from 200 subjects (50 healthy volunteers (HV), 40 HBV-infected patients (HB), 50 cirrhosis patients (HC), and 60 hepatocellular carcinoma patients (HCC) using MALDI-TOF/TOF-MS. Representative MS spectra of N-glycans with signal-to-noise ratios >6 were annotated using the GlycoWorkbench program. A total of 40, 47, 29, and 33 N-glycan peaks were identified and annotated from HV, HB, HC, and HCC groups, respectively. There were 15 N-glycan peaks (e.g., m/z 1647.587, 1688.613 and 2101.755) were present in all groups. Three N-glycan peaks (m/z 2596.925, 2756.962, and 2921.031) were unique in HV group, 2 N-glycan peaks (m/z 1898.676 and 1971.692) were unique in HB group, 5 N-glycan peaks (m/z 1954.677, 2507.914, 2580.930, 2637.952, and 3092.120) were unique in HC group, and 3 N-glycan peaks (m/z 2240.830, 2507.914, and 3931.338) were unique in HCC group. The proportion of fucosylated N-glycans was apparently increased in the HCC group (84.8%) than in any other group (73.1% ± 0.01), however, the proportion of sialylated N-glycans was decreased in HCC group (12.1%) than in any other group (17.23% ± 0.003). Our data provide pivotal information to distinguish between HBV-associated hepatitis, cirrhosis and HCC, and facilitate the discovery of biomarkers for HCC during its early stages based on precise alterations of N-linked glycans in saliva.
Collapse
Affiliation(s)
- Yannan Qin
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University Health Science Center, 277 Yanta Xilu, Xi'an, 710061, China
| | - Yaogang Zhong
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, No. 229 Taibai Beilu, Xi'an, 710069, China
| | - Tianran Ma
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, No. 229 Taibai Beilu, Xi'an, 710069, China
| | - Jiaxu Zhang
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, No. 229 Taibai Beilu, Xi'an, 710069, China
| | - Ganglong Yang
- The Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Feng Guan
- The Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Zheng Li
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, No. 229 Taibai Beilu, Xi'an, 710069, China.
| | - Baozhen Li
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University Health Science Center, 277 Yanta Xilu, Xi'an, 710061, China.
| |
Collapse
|
16
|
Zhong Y, Guo Y, Liu X, Zhang J, Ma T, Shu J, Yang J, Zhang J, Jia Z, Li Z. Serum Glycopatterns as Novel Potential Biomarkers for Diagnosis of Acute-on-Chronic Hepatitis B Liver Failure. Sci Rep 2017; 7:45957. [PMID: 28383031 PMCID: PMC5382696 DOI: 10.1038/srep45957] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 03/08/2017] [Indexed: 02/06/2023] Open
Abstract
Acute-on-chronic hepatitis B liver failure (ACHBLF) is an increasingly recognized distinct disease entity encompassing an acute deterioration of liver function in patients with cirrhosis, so little is known about the alterations of protein glycopatterns in serum with its development. We aimed to identify the alterations of serum glycopatterns in ACHBLF and probe the possibility of them as novel potential biomarkers for diagnosis of ACHBLF. As a result, there were 18 lectins (e.g., WFA, GSL-II, and PNA) to give significantly alterations of serum glycopatterns in ACHBLF compared with healthy controls (HC) (all p ≤ 0.0386). Meanwhile, among these lectins, there were 12 lectins (e.g., WFA, GAL-II, and EEL) also exhibited significantly alterations of serum glycopatterns in ACHBLF compared with HBV-infected chronic hepatitis (cHB) (all p ≤ 0.0252). The receiver-operating characteristic (ROC) curve analysis indicated there were 5 lectins (PHA-E + L, BS-I, ECA, ACA, and BPL) had the greatest discriminatory power for distinguishing ACHBLF and HC or cHB, respectively (all p ≤ 0.00136). We provided a new basic insight into serum glycopatterns in ACHBLF and investigated the correlation of alterations in serum glycopatterns as novel potential biomarkers for diagnosis of ACHBLF.
Collapse
Affiliation(s)
- Yaogang Zhong
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi’an, P. R. China
| | - Yonghong Guo
- Department of infectious diseases, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710004, P. R. China
| | - Xiawei Liu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi’an, P. R. China
| | - Jiaxu Zhang
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi’an, P. R. China
| | - Tianran Ma
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi’an, P. R. China
| | - Jian Shu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi’an, P. R. China
| | - Jiajun Yang
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi’an, P. R. China
| | - Jing Zhang
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi’an, P. R. China
| | - Zhansheng Jia
- Center of infectious diseases, Tangdu Hospital, Fourth Military Medical University, Xi’an, P. R. China
| | - Zheng Li
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi’an, P. R. China
| |
Collapse
|
17
|
Chen JY, Liu LP, Xu JF. Prognostic value of increased expression of RACO-1 in patients with hepatitis B-related hepatocellular carcinoma. Ther Clin Risk Manag 2017; 13:191-200. [PMID: 28243109 PMCID: PMC5317312 DOI: 10.2147/tcrm.s125331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
RING domain AP-1 coactivator-1 (RACO-1) is a coactivator that links c-Jun to growth factor signaling and is essential for AP-1 function. This study aimed to investigate the expression and clinical significance of RACO-1 protein in hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) in China. A total of 136 tissue samples of HBV-related HCC were detected by immunohistochemistry (including 76 patients in training cohort and 60 patients in validation cohort). Correlation between RACO-1 expression and clinicopathologic features of HBV-related HCC was analyzed in both the cohorts. RACO-1 expression was significantly higher in HBV-related HCC tissues than in adjacent non-tumor liver tissues. All the patients were divided into two groups: the low expression group and the high expression group. RACO-1 expression was significantly related to vascular invasion (P=0.021), tumor numbers (P=0.046), International Union for Cancer Control/American Joint Committee on Cancer stage (P=0.006), cirrhosis (P=0.046), capsular (P=0.039), and Barcelona Clinic Liver Cancer stage (P=0.041) in training cohort. The validation cohort showed the same results. The high RACO-1 expression was the independent prognostic factor for HBV-related HCC patients in both training cohort and validation cohort. Our data implicate RACO-1 as a novel prognostic marker and a potential therapeutic target for HBV-related HCC.
Collapse
Affiliation(s)
- Jian-Yao Chen
- Department of Hepatobiliary Surgery, Shaoxing Second Hospital, Shaoxing
| | - Li-Ping Liu
- Department of Surgery, Zhuzhou Clinical Institute, Central South University School of Medicine, Zhuzhou
| | - Jiang-Feng Xu
- Department of Surgery, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
| |
Collapse
|