1
|
Tabata S, Yamashita Y, Inai Y, Morita S, Kosako H, Takagi T, Shide K, Manabe S, Matsuoka TA, Shimoda K, Sonoki T, Ihara Y, Tamura S. C-Mannosyl tryptophan is a novel biomarker for thrombocytosis of myeloproliferative neoplasms. Sci Rep 2024; 14:18858. [PMID: 39143127 PMCID: PMC11324734 DOI: 10.1038/s41598-024-69496-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024] Open
Abstract
C-Mannosyl tryptophan (CMW), a unique glycosylated amino acid, is considered to be produced by degradation of C-mannosylated proteins in living organism. Although protein C-mannosylation is involved in the folding and secretion of substrate proteins, the pathophysiological function in the hematological system is still unclear. This study aimed to assess CMW in the human hematological disorders. The serum CMW levels of 94 healthy Japanese workers were quantified using hydrophilic interaction liquid chromatography. Platelet count was positively correlated with serum CMW levels. The clinical significance of CMW in thrombocytosis of myeloproliferative neoplasms (T-MPN) including essential thrombocythemia (ET) were investigated. The serum CMW levels of the 34 patients with T-MPN who presented with thrombocytosis were significantly higher than those of the 52 patients with control who had other hematological disorders. In patients with T-MPN, serum CMW levels were inversely correlated with anemia, which was related to myelofibrosis (MF). Bone marrow biopsy samples were obtained from 18 patients with ET, and serum CMW levels were simultaneously measured. Twelve patients with bone marrow fibrosis had significantly higher CMW levels than 6 patients without bone marrow fibrosis. Collectively, these results suggested that CMW could be a novel biomarker to predict MF progression in T-MPN.
Collapse
Affiliation(s)
- Shotaro Tabata
- Department of Hematology/Oncology, Wakayama Medical University, Wakayama, Japan
| | - Yusuke Yamashita
- Department of Hematology/Oncology, Wakayama Medical University, Wakayama, Japan
| | - Yoko Inai
- Department of Biochemistry, Wakayama Medical University, Wakayama, Japan
| | - Shuhei Morita
- The First Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan.
| | - Hideki Kosako
- Department of Hematology/Oncology, Wakayama Medical University, Wakayama, Japan
| | - Tomoyuki Takagi
- The First Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan
- Wakayama City Medical Association Seijinbyo Center, Wakayama, Japan
| | - Kotaro Shide
- Division of Hematology, Diabetes, and Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Shino Manabe
- School of Pharmacy and Pharmaceutical Sciences, Hoshi University, Tokyo, Japan
- Research Center for Pharmaceutical Development, Graduate School of Pharmaceutical Science & Faculty of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan
| | - Taka-Aki Matsuoka
- The First Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan
| | - Kazuya Shimoda
- Division of Hematology, Diabetes, and Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Takashi Sonoki
- Department of Hematology/Oncology, Wakayama Medical University, Wakayama, Japan
| | - Yoshito Ihara
- Department of Biochemistry, Wakayama Medical University, Wakayama, Japan.
| | - Shinobu Tamura
- Department of Hematology/Oncology, Wakayama Medical University, Wakayama, Japan.
- Department of Emergency and Critical Care Medicine, Wakayama Medical University, Wakayama, Japan.
| |
Collapse
|
2
|
Neog PR, Saini S, Konwar BK. Purification, and characterization of detergent-compatible serine protease from Bacillussafensis strain PRN1: A sustainable alternative to hazardous chemicals in detergent industry. Protein Expr Purif 2024; 219:106479. [PMID: 38574878 DOI: 10.1016/j.pep.2024.106479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/22/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
Owing to vast therapeutic, commercial, and industrial applications of microbial proteases microorganisms from different sources are being explored. In this regard, the gut microbiota of Monopteruscuchia were isolated and examined for the production of protease. All the isolates were primarily and secondarily screened on skim milk and gelatin agar plates. The protease-positive isolates were characterized morphologically, biochemically, and molecularly. Out of the 20 isolated strains,6 belonging to five different genera viz.Bacillus,Priestia,Aeromonas,Staphylococcus, and Serratia demonstrated proteolytic activity. Bacillussafensis strain PRN1 demonstrated the highest protease production and, thus, the largest hydrolytic clear zones in both skim milk agar (15 ± 1 mm) and gelatin (16 ± 1 mm) plates. The optimized parameters (time, pH, temperature, carbon, nitrogen) for highest protease activity and microbial growth of B.safensis strain PRN1 includes 72 h (OD600 = 0.56,1303 U/mL), pH 8 (OD600 = 0.83, 403.29 U/mL), 40 °C (OD600 = 1.75, 1849.11 U/mL), fructose (OD600 = 1.22, 1502 U/mL), and gelatin (OD600 = 1.88, 1015.33 U/mL). The enzyme was purified to homogeneity using salt-precipitation and gel filtration chromatography. The sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE) demonstrated that the purified enzyme was a monomer of a molecular weight of ∼33 kDa. The protease demonstrated optimal activity at pH 8 and 60 °C. It was strongly inhibited by phenylmethylsulfonyl fluoride (PMSF), demonstrating that it belongs to the serine-proteases family. The compatibility of the enzyme with surfactants and commercial detergents demonstrates its potential use in the detergent industry. Furthermore, the purified enzyme showed antibacterial and blood-stain removal properties.
Collapse
Affiliation(s)
- Panchi Rani Neog
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur, 784028, Assam, India
| | - Shubhangi Saini
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur, 784028, Assam, India
| | - Bolin Kumar Konwar
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur, 784028, Assam, India.
| |
Collapse
|
3
|
Hossain TJ, Das M, Ali F, Chowdhury SI, Zedny SA. Substrate preferences, phylogenetic and biochemical properties of proteolytic bacteria present in the digestive tract of Nile tilapia ( Oreochromis niloticus). AIMS Microbiol 2022; 7:528-545. [PMID: 35071947 PMCID: PMC8712536 DOI: 10.3934/microbiol.2021032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/20/2021] [Indexed: 12/31/2022] Open
Abstract
Vertebrate intestine appears to be an excellent source of proteolytic bacteria for industrial and probiotic use. We therefore aimed at obtaining the gut-associated proteolytic species of Nile tilapia (Oreochromis niloticus). We have isolated twenty six bacterial strains from its intestinal tract, seven of which showed exoprotease activity with the formation of clear halos on skim milk. Their depolymerization ability was further assessed on three distinct proteins including casein, gelatin, and albumin. All the isolates could successfully hydrolyze the three substrates indicating relatively broad specificity of their secreted proteases. Molecular taxonomy and phylogeny of the proteolytic isolates were determined based on their 16S rRNA gene barcoding, which suggested that the seven strains belong to three phyla viz. Firmicutes, Proteobacteria, and Actinobacteria, distributed across the genera Priestia, Citrobacter, Pseudomonas, Stenotrophomonas, Burkholderia, Providencia, and Micrococcus. The isolates were further characterized by a comprehensive study of their morphological, cultural, cellular and biochemical properties which were consistent with the phylogenetic annotations. To reveal their proteolytic capacity alongside substrate preferences, enzyme-production was determined by the diffusion assay. The Pseudomonas, Stenotrophomonas and Micrococcus isolates appeared to be most promising with maximum protease production on casein, gelatin, and albumin media respectively. Our findings present valuable insights into the phylogenetic and biochemical properties of gut-associated proteolytic strains of Nile tilapia.
Collapse
Affiliation(s)
- Tanim Jabid Hossain
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chattogram 4331, Bangladesh.,Biochemistry and Pathogenesis of Microbes Research Group, Chattogram 4331, Bangladesh
| | - Mukta Das
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chattogram 4331, Bangladesh.,Biochemistry and Pathogenesis of Microbes Research Group, Chattogram 4331, Bangladesh
| | - Ferdausi Ali
- Department of Microbiology, University of Chittagong, Chattogram 4331, Bangladesh
| | - Sumaiya Islam Chowdhury
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chattogram 4331, Bangladesh.,Biochemistry and Pathogenesis of Microbes Research Group, Chattogram 4331, Bangladesh
| | - Subrina Akter Zedny
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chattogram 4331, Bangladesh.,Biochemistry and Pathogenesis of Microbes Research Group, Chattogram 4331, Bangladesh
| |
Collapse
|
4
|
Ali F, Das S, Hossain TJ, Chowdhury SI, Zedny SA, Das T, Ahmed Chowdhury MN, Uddin MS. Production optimization, stability and oil emulsifying potential of biosurfactants from selected bacteria isolated from oil-contaminated sites. ROYAL SOCIETY OPEN SCIENCE 2021; 8:211003. [PMID: 34659780 PMCID: PMC8511774 DOI: 10.1098/rsos.211003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Oil pollution is of increasing concern for environmental safety and the use of microbial surfactants in oil remediation has become inevitable for their efficacy and ecofriendly nature. In this work, biosurfactants of bacteria isolated from oil-contaminated soil have been characterized. Four potent biosurfactant-producing strains (SD4, SD11, SD12 and SD13) were selected from 27 isolates based on drop collapse assay and emulsification index, and identified as species belonging to Bacillus, Burkholderia, Providencia and Klebsiella, revealed from their 16S rRNA gene-based analysis. Detailed morphological and biochemical characteristics of each selected isolate were determined. Their growth conditions for maximum biosurfactant production were optimized and found quite similar among the four isolates with a pH of 3.0 and temperature 37°C after 6 or 7 days of growth on kerosene. The biosurfactants of SD4, SD11 and SD12 appeared to be glycolipids and that of SD13 a lipopeptide. Emulsification activity of most of the biosurfactants was stable at low and high temperatures (4-100°C), a wide range of pH (2-10) and salt concentrations (2-7% NaCl). Each biosurfactant showed antimicrobial activity against two or more pathogenic bacteria. The biosurfactants were well-capable of emulsifying kerosene, diesel and soya bean, and could efficiently degrade diesel.
Collapse
Affiliation(s)
- Ferdausi Ali
- Department of Microbiology, University of Chittagong, Chattogram 4331, Bangladesh
| | - Sharup Das
- Department of Microbiology, University of Chittagong, Chattogram 4331, Bangladesh
| | - Tanim Jabid Hossain
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chattogram 4331, Bangladesh
| | - Sumaiya Islam Chowdhury
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chattogram 4331, Bangladesh
| | - Subrina Akter Zedny
- Department of Microbiology, University of Chittagong, Chattogram 4331, Bangladesh
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chattogram 4331, Bangladesh
| | - Tuhin Das
- Department of Microbiology, University of Chittagong, Chattogram 4331, Bangladesh
| | | | - Mohammad Seraj Uddin
- Department of Microbiology, University of Chittagong, Chattogram 4331, Bangladesh
| |
Collapse
|
5
|
Minakata S, Manabe S, Inai Y, Ikezaki M, Nishitsuji K, Ito Y, Ihara Y. Protein C-Mannosylation and C-Mannosyl Tryptophan in Chemical Biology and Medicine. Molecules 2021; 26:molecules26175258. [PMID: 34500691 PMCID: PMC8433626 DOI: 10.3390/molecules26175258] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/25/2022] Open
Abstract
C-Mannosylation is a post-translational modification of proteins in the endoplasmic reticulum. Monomeric α-mannose is attached to specific Trp residues at the first Trp in the Trp-x-x-Trp/Cys (W-x-x-W/C) motif of substrate proteins, by the action of C-mannosyltransferases, DPY19-related gene products. The acceptor substrate proteins are included in the thrombospondin type I repeat (TSR) superfamily, cytokine receptor type I family, and others. Previous studies demonstrated that C-mannosylation plays critical roles in the folding, sorting, and/or secretion of substrate proteins. A C-mannosylation-defective gene mutation was identified in humans as the disease-associated variant affecting a C-mannosylation motif of W-x-x-W of ADAMTSL1, which suggests the involvement of defects in protein C-mannosylation in human diseases such as developmental glaucoma, myopia, and/or retinal defects. On the other hand, monomeric C-mannosyl Trp (C-Man-Trp), a deduced degradation product of C-mannosylated proteins, occurs in cells and extracellular fluids. Several studies showed that the level of C-Man-Trp is upregulated in blood of patients with renal dysfunction, suggesting that the metabolism of C-Man-Trp may be involved in human kidney diseases. Together, protein C-mannosylation is considered to play important roles in the biosynthesis and functions of substrate proteins, and the altered regulation of protein C-manosylation may be involved in the pathophysiology of human diseases. In this review, we consider the biochemical and biomedical knowledge of protein C-mannosylation and C-Man-Trp, and introduce recent studies concerning their significance in biology and medicine.
Collapse
Affiliation(s)
- Shiho Minakata
- Department of Biochemistry, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama 641-0012, Japan; (S.M.); (Y.I.); (M.I.); (K.N.)
| | - Shino Manabe
- Pharmaceutical Department, The Institute of Medicinal Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa, Tokyo 142-8501, Japan;
- Research Center for Pharmaceutical Development, Graduate School of Pharmaceutical Science & Faculty of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Sendai, Miyagi 980-8578, Japan
| | - Yoko Inai
- Department of Biochemistry, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama 641-0012, Japan; (S.M.); (Y.I.); (M.I.); (K.N.)
| | - Midori Ikezaki
- Department of Biochemistry, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama 641-0012, Japan; (S.M.); (Y.I.); (M.I.); (K.N.)
| | - Kazuchika Nishitsuji
- Department of Biochemistry, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama 641-0012, Japan; (S.M.); (Y.I.); (M.I.); (K.N.)
| | - Yukishige Ito
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan;
- RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yoshito Ihara
- Department of Biochemistry, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama 641-0012, Japan; (S.M.); (Y.I.); (M.I.); (K.N.)
- Correspondence: ; Tel.: +81-73-441-0628
| |
Collapse
|
6
|
Hossain TJ, Chowdhury SI, Mozumder HA, Chowdhury MNA, Ali F, Rahman N, Dey S. Hydrolytic Exoenzymes Produced by Bacteria Isolated and Identified From the Gastrointestinal Tract of Bombay Duck. Front Microbiol 2020; 11:2097. [PMID: 32983064 PMCID: PMC7479992 DOI: 10.3389/fmicb.2020.02097] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/10/2020] [Indexed: 12/13/2022] Open
Abstract
Bacteria producing hydrolytic exoenzymes are of great importance considering their contribution to the host metabolism as well as for their various applications in industrial bioprocesses. In this work hydrolytic capacity of bacteria isolated from the gastrointestinal tract of Bombay duck (Harpadon nehereus) was analyzed and the enzyme-producing bacteria were genetically characterized. A total of twenty gut-associated bacteria, classified into seventeen different species, were isolated and screened for the production of protease, lipase, pectinase, cellulase and amylase enzymes. It was found that thirteen of the isolates could produce at least one of these hydrolytic enzymes among which protease was the most common enzyme detected in ten isolates; lipase in nine, pectinase in four, and cellulase and amylase in one isolate each. This enzymatic array strongly correlated to the previously reported eating behavior of Bombay duck. 16S rRNA gene sequence-based taxonomic classification of the enzyme-producing isolates revealed that the thirteen isolates were grouped into three different classes of bacteria consisting of eight different genera. Staphylococcus, representing ∼46% of the isolates, was the most dominant genus. Measurement of enzyme-production via agar diffusion technique revealed that one of the isolates which belonged to the genus Exiguobacterium, secreted the highest amount of lipolytic and pectinolytic enzymes, whereas a Staphylococcus species produced highest proteolytic activity. The Exiguobacterium sp. expressing a maximum of four hydrolases, appeared to be the most promising isolate of all.
Collapse
Affiliation(s)
- Tanim J. Hossain
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chattogram, Bangladesh
| | - Sumaiya I. Chowdhury
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chattogram, Bangladesh
| | - Halima A. Mozumder
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chattogram, Bangladesh
| | - Mohammad N. A. Chowdhury
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chattogram, Bangladesh
| | - Ferdausi Ali
- Department of Microbiology, University of Chittagong, Chattogram, Bangladesh
| | - Nabila Rahman
- Department of Biology, Chittagong Sunshine College, Chattogram, Bangladesh
| | - Sujan Dey
- Department of Microbiology, University of Chittagong, Chattogram, Bangladesh
| |
Collapse
|
7
|
Monomeric C-mannosyl tryptophan is a degradation product of autophagy in cultured cells. Glycoconj J 2020; 37:635-645. [PMID: 32803368 DOI: 10.1007/s10719-020-09938-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 07/30/2020] [Accepted: 08/06/2020] [Indexed: 12/14/2022]
Abstract
C-Mannosyl tryptophan (C-Man-Trp) is a unique glycosylated amino acid present in various eukaryotes. The C-Man-Trp structure can be found as a monomeric form or a part of post-translational modifications within polypeptide chains in living organisms. However, the mechanism of how monomeric C-Man-Trp is produced has not been fully investigated. In this study, we assessed levels of cellular C-Man-Trp by ultra performance liquid chromatography with a mass spectrometry assay system, and investigated whether the cellular C-Man-Trp is affected by autophagy induction. The intracellular C-Man-Trp level was significantly increased under serum and/or amino acid starvation in A549, HaCaT, HepG2, NIH3T3, and NRK49F cells. The increase in C-Man-Trp was also observed in NIH3T3 cells treated with rapamycin, an autophagy inducer. The up-regulation of C-Man-Trp caused by starvation was reversed by the inhibition of lysosomal enzymes. We further showed that C-Man-Trp is produced by incubating a synthetic C-mannosylated peptide (C-Man-Trp-Ser-Pro-Trp) or thrombospondin (TSP) in a lysosomal fraction that was prepared from a mouse liver, which provides supporting evidence that C-Man-Trp is a degradation product of the C-mannosylated peptide or protein following lysosome-related proteolysis. Taken together, we propose that the autophagic pathway is a novel pathway that at least partly contributes to intracellular C-Man-Trp production under certain conditions, such as nutrient starvation.
Collapse
|
8
|
Niwa Y, Simizu S. C-Mannosylation: Previous Studies and Future Research Perspectives. TRENDS GLYCOSCI GLYC 2018. [DOI: 10.4052/tigg.1755.1e] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Yuki Niwa
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University
| | - Siro Simizu
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University
| |
Collapse
|