1
|
Li B, Cui J, Xu T, Xu Y, Long M, Li J, Liu M, Yang T, Du Y, Xu Q. Advances in the preparation, characterization, and biological functions of chitosan oligosaccharide derivatives: A review. Carbohydr Polym 2024; 332:121914. [PMID: 38431416 DOI: 10.1016/j.carbpol.2024.121914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 03/05/2024]
Abstract
Chitosan oligosaccharide (COS), which represent the positively charged basic amino oligosaccharide in nature, is the deacetylated and degraded products of chitin. COS has become the focus of intensive scientific investigation, with a growing body of practical and clinical studies highlighting its remarkable health-enhancing benefits. These effects encompass a wide range of properties, including antibacterial, antioxidant, anti-inflammatory, and anti-tumor activities. With the rapid advancements in chemical modification technology for oligosaccharides, many COS derivatives have been synthesized and investigated. These newly developed derivatives possess more stable chemical structures, improved biological activities, and find applications across a broader spectrum of fields. Given the recent interest in the chemical modification of COS, this comprehensive review seeks to consolidate knowledge regarding the preparation methods for COS derivatives, alongside discussions on their structural characterization. Additionally, various biological activities of COS derivatives have been discussed in detail. Lastly, the potential applications of COS derivatives in biomedicine have been reviewed and presented.
Collapse
Affiliation(s)
- Bing Li
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Jingchun Cui
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China.
| | - Tiantian Xu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Yunshu Xu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Mingxin Long
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Jiaqi Li
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Mingzhi Liu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Ting Yang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Yuguang Du
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Qingsong Xu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China.
| |
Collapse
|
2
|
Guo J, Hou L, Zhou J, Wang D, Cui Y, Feng X, Liu J. Porcine Circovirus Type 2 Vaccines: Commercial Application and Research Advances. Viruses 2022; 14:2005. [PMID: 36146809 PMCID: PMC9504358 DOI: 10.3390/v14092005] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Porcine circovirus type 2 (PCV2) infection can lead to porcine circovirus-associated disease (PCVAD), causing great economic losses to the global swine industry. Conventional vaccination programs are a major measure in the prevention and control of this disease. Currently, there are 5 commercially available PCV2 vaccines in the international market and 10 kinds commercially available PCV2 vaccines in the Chinese market that confer good efficacy against this virus by alleviating clinicopathological manifestations and enhancing growth performance in pigs. In addition, diverse experimental PCV2 vaccines with protective efficiency have been developed, including attenuated chimeric, nucleic acid, subunit, multivalent, and viral-vectored vaccines. These experimental vaccines have been shown to be relatively effective in improving the efficiency of pig production and simplifying prevention procedures. Adjuvants can be used to promote vaccines with higher protective immunity. Herein, we review the application of multiple commercial vaccines over the years and research advances in experimental vaccines, which provide the possibility for the development of superior vaccines to successfully prevent and control PCV2 infection in the future.
Collapse
Affiliation(s)
- Jinshuo Guo
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225012, China
| | - Lei Hou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225012, China
| | - Jianwei Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225012, China
| | - Dedong Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225012, China
| | - Yongqiu Cui
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225012, China
| | - Xufei Feng
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225012, China
| | - Jue Liu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225012, China
| |
Collapse
|
3
|
Yuan X, Zheng J, Jiao S, Cheng G, Feng C, Du Y, Liu H. A review on the preparation of chitosan oligosaccharides and application to human health, animal husbandry and agricultural production. Carbohydr Polym 2019; 220:60-70. [PMID: 31196551 DOI: 10.1016/j.carbpol.2019.05.050] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 05/14/2019] [Accepted: 05/14/2019] [Indexed: 12/12/2022]
Abstract
Chitosan oligosaccharides (COS) are the degraded products of chitin or chitosan prepared by chemical or enzymatic hydrolysis. As compared to chitosan, COS not only exhibit some specific physicochemical properties such as excellent water solubility, biodegradability and biocompatibility, but also have a variety of functionally biological activities including anti-inflammation, anti-bacteria, immunomodulation, neuroprotection and so on. This review aims to summarize the preparation and structural characterization methods of COS, and will discuss the application of COS or their derivatives to human health, animal husbandry and agricultural production. COS have been demonstrated to prevent the occurrence of human health-related diseases, enhance the resistance to diseases of livestock and poultry, and improve the growth and quality of crops in plant cultivation. Overall, COS have presented a broad developmental potential and application prospect in the healthy field that deserves further exploration.
Collapse
Affiliation(s)
- Xubing Yuan
- State Key Laboratory of Biochemical Engineering and Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Junping Zheng
- State Key Laboratory of Biochemical Engineering and Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| | - Siming Jiao
- State Key Laboratory of Biochemical Engineering and Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| | - Gong Cheng
- State Key Laboratory of Biochemical Engineering and Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| | - Cui Feng
- State Key Laboratory of Biochemical Engineering and Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| | - Yuguang Du
- State Key Laboratory of Biochemical Engineering and Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| | - Hongtao Liu
- State Key Laboratory of Biochemical Engineering and Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| |
Collapse
|