1
|
Litviňuková M, Talavera-López C, Maatz H, Reichart D, Worth CL, Lindberg EL, Kanda M, Polanski K, Heinig M, Lee M, Nadelmann ER, Roberts K, Tuck L, Fasouli ES, DeLaughter DM, McDonough B, Wakimoto H, Gorham JM, Samari S, Mahbubani KT, Saeb-Parsy K, Patone G, Boyle JJ, Zhang H, Zhang H, Viveiros A, Oudit GY, Bayraktar OA, Seidman JG, Seidman CE, Noseda M, Hubner N, Teichmann SA. Cells of the adult human heart. Nature 2020; 588:466-472. [PMID: 32971526 PMCID: PMC7681775 DOI: 10.1038/s41586-020-2797-4] [Citation(s) in RCA: 992] [Impact Index Per Article: 198.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 09/18/2020] [Indexed: 12/15/2022]
Abstract
Cardiovascular disease is the leading cause of death worldwide. Advanced insights into disease mechanisms and therapeutic strategies require a deeper understanding of the molecular processes involved in the healthy heart. Knowledge of the full repertoire of cardiac cells and their gene expression profiles is a fundamental first step in this endeavour. Here, using state-of-the-art analyses of large-scale single-cell and single-nucleus transcriptomes, we characterize six anatomical adult heart regions. Our results highlight the cellular heterogeneity of cardiomyocytes, pericytes and fibroblasts, and reveal distinct atrial and ventricular subsets of cells with diverse developmental origins and specialized properties. We define the complexity of the cardiac vasculature and its changes along the arterio-venous axis. In the immune compartment, we identify cardiac-resident macrophages with inflammatory and protective transcriptional signatures. Furthermore, analyses of cell-to-cell interactions highlight different networks of macrophages, fibroblasts and cardiomyocytes between atria and ventricles that are distinct from those of skeletal muscle. Our human cardiac cell atlas improves our understanding of the human heart and provides a valuable reference for future studies.
Collapse
Affiliation(s)
- Monika Litviňuková
- Cellular Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.,Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Carlos Talavera-López
- Cellular Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.,EMBL - EBI, Wellcome Genome Campus, Hinxton, UK
| | - Henrike Maatz
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Daniel Reichart
- Department of Genetics, Harvard Medical School, Boston, MA, USA.,Department of Cardiology, University Heart & Vascular Center, University of Hamburg, Hamburg, Germany
| | - Catherine L Worth
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Eric L Lindberg
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Masatoshi Kanda
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,Department of Rheumatology and Clinical Immunology, Sapporo Medical University, Sapporo, Japan
| | - Krzysztof Polanski
- Cellular Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Matthias Heinig
- Institute of Computational Biology (ICB), HMGU, Neuherberg, Germany.,Department of Informatics, Technische Universitaet Muenchen (TUM), Munich, Germany
| | - Michael Lee
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Kenny Roberts
- Cellular Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Liz Tuck
- Cellular Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Eirini S Fasouli
- Cellular Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | | - Barbara McDonough
- Department of Genetics, Harvard Medical School, Boston, MA, USA.,Cardiovascular Division, Brigham and Women's Hospital, Boston, MA, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Hiroko Wakimoto
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Joshua M Gorham
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Sara Samari
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Krishnaa T Mahbubani
- Department of Surgery, University of Cambridge, NIHR Cambridge Biomedical Centre, Cambridge Biorepository for Translational Medicine, Cambridge, UK
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge, NIHR Cambridge Biomedical Centre, Cambridge Biorepository for Translational Medicine, Cambridge, UK
| | - Giannino Patone
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Joseph J Boyle
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Hongbo Zhang
- Cellular Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.,Department of Histology and Embryology of Zhongshan School of Medicine, Sun-Yat Sen University, Guangzhou, China
| | - Hao Zhang
- Division of Cardiology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.,Mazankowski Alberta Heart Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Anissa Viveiros
- Division of Cardiology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.,Mazankowski Alberta Heart Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Gavin Y Oudit
- Division of Cardiology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.,Mazankowski Alberta Heart Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Omer Ali Bayraktar
- Cellular Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - J G Seidman
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
| | - Christine E Seidman
- Department of Genetics, Harvard Medical School, Boston, MA, USA. .,Cardiovascular Division, Brigham and Women's Hospital, Boston, MA, USA. .,Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| | - Michela Noseda
- National Heart and Lung Institute, Imperial College London, London, UK. .,British Heart Foundation Centre of Regenerative Medicine, British Heart Foundation Centre of Research Excellence, Imperial College London, London, UK.
| | - Norbert Hubner
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany. .,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany. .,Charité-Universitätsmedizin, Berlin, Germany. .,Berlin Institute of Health (BIH), Berlin, Germany.
| | - Sarah A Teichmann
- Cellular Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK. .,Deptartment of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, UK.
| |
Collapse
|
2
|
Wang Y, Ding X, Tan Z, Xing K, Yang T, Wang Y, Sun D, Wang C. Genome-wide association study for reproductive traits in a Large White pig population. Anim Genet 2018; 49:127-131. [PMID: 29411893 PMCID: PMC5873431 DOI: 10.1111/age.12638] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2017] [Indexed: 11/27/2022]
Abstract
Using the PorcineSNP80 BeadChip, we performed a genome‐wide association study for seven reproductive traits, including total number born, number born alive, litter birth weight, average birth weight, gestation length, age at first service and age at first farrowing, in a population of 1207 Large White pigs. In total, we detected 12 genome‐wide significant and 41 suggestive significant SNPs associated with six reproductive traits. The proportion of phenotypic variance explained by all significant SNPs for each trait ranged from 4.46% (number born alive) to 11.49% (gestation length). Among them, 29 significant SNPs were located within known QTL regions for swine reproductive traits, such as corpus luteum number, stillborn number and litter size, of which one QTL region associated with litter size contained the ALGA0098819 SNP for total number born. Subsequently, we found that 376 functional genes contained or were near these significant SNPs. Of these, 14 genes—BHLHA15, OCM2, IL1B2, GCK, SMAD2, HABP2, PAQR5, GRB10, PRELID2, DMKN, GPI, GPIHBP1, ADCY2 and ACVR2B—were considered important candidates for swine reproductive traits based on their critical roles in embryonic development, energy metabolism and growth development. Our findings contribute to the understanding of the genetic mechanisms for reproductive traits and could have a positive effect on pig breeding programs.
Collapse
Affiliation(s)
- Y Wang
- Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100094, China
| | - X Ding
- Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100094, China
| | - Z Tan
- Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100094, China
| | - K Xing
- Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100094, China
| | - T Yang
- Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100094, China
| | - Y Wang
- Beijing Shunxin Agriculture Co., Ltd., Beijing, 101300, China
| | - D Sun
- Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100094, China
| | - C Wang
- Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100094, China
| |
Collapse
|
3
|
Miyata N, Watanabe Y, Tamura Y, Endo T, Kuge O. Phosphatidylserine transport by Ups2-Mdm35 in respiration-active mitochondria. J Cell Biol 2016; 214:77-88. [PMID: 27354379 PMCID: PMC4932372 DOI: 10.1083/jcb.201601082] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 06/03/2016] [Indexed: 01/07/2023] Open
Abstract
Phosphatidylethanolamine, an essential phospholipid for mitochondrial functions, is synthesized at the mitochondrial inner membrane. Miyata et al. demonstrate that Ups2–Mdm35, a protein complex in the mitochondrial intermembrane space, mediates phosphatidylserine transport for phosphatidylethanolamine synthesis in respiration-active mitochondria of Saccharomyces cerevisiae. Phosphatidylethanolamine (PE) is an essential phospholipid for mitochondrial functions and is synthesized mainly by phosphatidylserine (PS) decarboxylase at the mitochondrial inner membrane. In Saccharomyces cerevisiae, PS is synthesized in the endoplasmic reticulum (ER), such that mitochondrial PE synthesis requires PS transport from the ER to the mitochondrial inner membrane. Here, we provide evidence that Ups2–Mdm35, a protein complex localized at the mitochondrial intermembrane space, mediates PS transport for PE synthesis in respiration-active mitochondria. UPS2- and MDM35-null mutations greatly attenuated conversion of PS to PE in yeast cells growing logarithmically under nonfermentable conditions, but not fermentable conditions. A recombinant Ups2–Mdm35 fusion protein exhibited phospholipid-transfer activity between liposomes in vitro. Furthermore, UPS2 expression was elevated under nonfermentable conditions and at the diauxic shift, the metabolic transition from glycolysis to oxidative phosphorylation. These results demonstrate that Ups2–Mdm35 functions as a PS transfer protein and enhances mitochondrial PE synthesis in response to the cellular metabolic state.
Collapse
Affiliation(s)
- Non Miyata
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Yasunori Watanabe
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Yasushi Tamura
- Department of Material and Biological Chemistry, Faculty of Science, Yamagata University, Yamagata 990-8560, Japan
| | - Toshiya Endo
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Osamu Kuge
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
6
|
Itzhar N, Dessen P, Toujani S, Auger N, Preudhomme C, Richon C, Lazar V, Saada V, Bennaceur A, Bourhis JH, de Botton S, Bernheim A. Chromosomal minimal critical regions in therapy-related leukemia appear different from those of de novo leukemia by high-resolution aCGH. PLoS One 2011; 6:e16623. [PMID: 21339820 PMCID: PMC3038855 DOI: 10.1371/journal.pone.0016623] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 01/07/2011] [Indexed: 12/25/2022] Open
Abstract
Therapy-related acute leukemia (t-AML), is a severe complication of cytotoxic therapy used for primary cancer treatment. The outcome of these patients is poor, compared to people who develop de novo acute leukemia (p-AML). Cytogenetic abnormalities in t-AML are similar to those found in p-AML but present more frequent unfavorable karyotypes depending on the inducting agent. Losses of chromosome 5 or 7 are observed after alkylating agents while balanced translocations are found after topoisomerase II inhibitors. This study compared t-AML to p-AML using high resolution array CGH in order to find copy number abnormalities (CNA) at a higher resolution than conventional cytogenetics. More CNAs were observed in 30 t-AML than in 36 p-AML: 104 CNAs were observed with 63 losses and 41 gains (mean number 3.46 per case) in t-AML, while in p-AML, 69 CNAs were observed with 32 losses and 37 gains (mean number of 1.9 per case). In primary leukemia with a previously "normal" karyotype, 18% exhibited a previously undetected CNA, whereas in the (few) t-AML with a normal karyotype, the rate was 50%. Several minimal critical regions (MCRs) were found in t-AML and p-AML. No common MCRs were found in the two groups. In t-AML a 40 kb deleted MCR pointed to RUNX1 on 21q22, a gene coding for a transcription factor implicated in frequent rearrangements in leukemia and in familial thrombocytopenia. In de novo AML, a 1 Mb MCR harboring ERG and ETS2 was observed from patients with complex aCGH profiles. High resolution cytogenomics obtained by aCGH and similar techniques already published allowed us to characterize numerous non random chromosome abnormalities. This work supports the hypothesis that they can be classified into several categories: abnormalities common to all AML; those more frequently found in t-AML and those specifically found in p-AML.
Collapse
Affiliation(s)
- Nathalie Itzhar
- Institut de la Santé et de la Reherche Médicale U985, Génétique des tumeurs, Institut Gustave Roussy, Villejuif, France
- Université Paris XI, Paris Sud, Orsay, France
- Molecular Pathology, Villejuif, France
| | - Philippe Dessen
- Institut de la Santé et de la Reherche Médicale U985, Génétique des tumeurs, Institut Gustave Roussy, Villejuif, France
- Université Paris XI, Paris Sud, Orsay, France
- Institut Gustave Roussy, Functional Genomics Unit, Institut Gustave Roussy, Villejuif, France
| | - Saloua Toujani
- Institut de la Santé et de la Reherche Médicale U985, Génétique des tumeurs, Institut Gustave Roussy, Villejuif, France
- Université Paris XI, Paris Sud, Orsay, France
| | - Nathalie Auger
- Institut de la Santé et de la Reherche Médicale U985, Génétique des tumeurs, Institut Gustave Roussy, Villejuif, France
- Université Paris XI, Paris Sud, Orsay, France
- Molecular Pathology, Villejuif, France
| | - Claude Preudhomme
- Department of Hematology, Centre de Biologie-Pathologie, Centre Hospitalier Régional Universitaire de Lille, Lille, France
| | - Catherine Richon
- Institut Gustave Roussy, Functional Genomics Unit, Institut Gustave Roussy, Villejuif, France
| | - Vladimir Lazar
- Molecular Pathology, Villejuif, France
- Institut Gustave Roussy, Functional Genomics Unit, Institut Gustave Roussy, Villejuif, France
| | - Véronique Saada
- Molecular Pathology, Villejuif, France
- Department of Hematology, Institut Gustave Roussy, Villejuif, France
| | - Anelyse Bennaceur
- Molecular Pathology, Villejuif, France
- Department of Hematology, Institut Gustave Roussy, Villejuif, France
| | | | | | - Alain Bernheim
- Institut de la Santé et de la Reherche Médicale U985, Génétique des tumeurs, Institut Gustave Roussy, Villejuif, France
- Université Paris XI, Paris Sud, Orsay, France
- Molecular Pathology, Villejuif, France
- * E-mail:
| |
Collapse
|