1
|
Zhu Y, Liu X, Liu X, Shi Y, Li H, Ru S, Tian H. Toxicokinetics and reproductive toxicity of maternal bisphenol AF exposure during gestation in offspring of Sprague Dawley rats. Chem Biol Interact 2025; 409:111424. [PMID: 39938710 DOI: 10.1016/j.cbi.2025.111424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/10/2025] [Accepted: 02/10/2025] [Indexed: 02/14/2025]
Abstract
Bisphenol AF (BPAF) has been widely used as a main alternative to bisphenol A (BPA), and previous in vitro studies have shown that BPAF has higher reproductive toxicity potentials than BPA. However, data on in vivo toxicity of BPAF is still limited. In this study, Sprague Dawley rats were exposed to BPAF (0, 50, and 100 mg/kg/day) during gestation to study toxicokinetics and reproductive toxicity in offspring. The results showed that plasma concentrations BPAF peaked within 6 h after birth, followed by a two-phase decay, with clearance rates of approximately 3.0 l/h and terminal half-life values ranging from 77 h to 114 h, suggesting fast absorption and high persistence of BPAF. At postnatal day 21 (PND21), BPAF was found to be bioaccumulated in reproductive organs (testes and ovaries) of the offspring, resulting in adverse effects on reproduction in both sexes. Lower anogenital distance, reduced relative testicular weight, dissolved interstitial cells, fewer primary spermatocytes, decreased testosterone levels, and increased luteinizing hormone levels were detected in male offspring. In female offspring, vacuolization in follicular antrum, fewer follicles, increased 17β-estradiol levels, and increased luteinizing hormone levels in female offspring were found. Gene expression of scavenger receptor class B type I (SR-B1), 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR), sterol regulatory element-binding protein-1c (SREBP-1c), and several steroidogenic enzymes was significantly decreased in male offspring following maternal exposure to BPAF, suggesting that the decreases in testosterone levels is a result of inhibited cholesterol uptake, cholesterol de novo synthesis, and steroidogenesis. In addition, inhibition of pathways of phagosome and cell adhesion molecules might be the underlying molecular mechanism involved in BPAF-induced reproductive disorders in male offspring. This study provides the scientific basis for a comprehensive assessment of the safety of BPAF.
Collapse
Affiliation(s)
- Yaxuan Zhu
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Xiuxiang Liu
- Qingdao Women and Children's Hospital, Qingdao, 266034, China
| | - Xiuying Liu
- Wudi County Hospital of Traditional Chinese Medicine, Binzhou, 251900, China
| | - Yijiao Shi
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Huaxin Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Hua Tian
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
2
|
Hu R, Yang X, He J, Wu S. Oxidative Stress and Autophagy: Unraveling the Hidden Threat to Boars' Fertility. Antioxidants (Basel) 2024; 14:2. [PMID: 39857336 PMCID: PMC11761863 DOI: 10.3390/antiox14010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/11/2024] [Accepted: 12/21/2024] [Indexed: 01/27/2025] Open
Abstract
This review systematically examines the influence of oxidative stress on the reproductive function of male livestock, with a particular focus on the modulation of autophagy. Spermatogenesis, a highly precise biological process, is vulnerable to a range of internal and external factors, among which oxidative stress notably disrupts autophagic processes within the testes. This disruption results in diminished sperm quality, impaired testosterone synthesis, and compromised integrity of the blood-testis barrier. Furthermore, this review elucidates the molecular mechanisms by which oxidative stress-induced autophagy dysfunction impairs spermatogenesis and mitochondrial function, consequently reducing sperm motility. These findings aim to provide a theoretical foundation and serve as a reference for improving reproductive performance and sperm quality in livestock.
Collapse
Affiliation(s)
- Ruizhi Hu
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Xizi Yang
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Jianhua He
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Shusong Wu
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
3
|
Afzal A, Zhang Y, Afzal H, Saddozai UAK, Zhang L, Ji XY, Khawar MB. Functional role of autophagy in testicular and ovarian steroidogenesis. Front Cell Dev Biol 2024; 12:1384047. [PMID: 38827527 PMCID: PMC11140113 DOI: 10.3389/fcell.2024.1384047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/06/2024] [Indexed: 06/04/2024] Open
Abstract
Autophagy is an evolutionarily conserved cellular recycling process that maintains cellular homeostasis. Despite extensive research in endocrine contexts, the role of autophagy in ovarian and testicular steroidogenesis remains elusive. The significant role of autophagy in testosterone production suggests potential treatments for conditions like oligospermia and azoospermia. Further, influence of autophagy in folliculogenesis, ovulation, and luteal development emphasizes its importance for improved fertility and reproductive health. Thus, investigating autophagy in gonadal cells is clinically significant. Understanding these processes could transform treatments for endocrine disorders, enhancing reproductive health and longevity. Herein, we provide the functional role of autophagy in testicular and ovarian steroidogenesis to date, highlighting its modulation in testicular steroidogenesis and its impact on hormone synthesis, follicle development, and fertility therapies.
Collapse
Affiliation(s)
- Ali Afzal
- Shenzhen Institute of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, Guangdong, China
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| | - Yue Zhang
- Department of Obstetrics and Gynecology, 988 Hospital of People's Liberation Army, Zhengzhou, Henan, China
| | - Hanan Afzal
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| | - Umair Ali Khan Saddozai
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Lei Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China
| | - Xin-Ying Ji
- Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Zhengzhou, Henan, China
- Department of Medicine, Huaxian County People’s Hospital, Huaxian, Henan, China
| | - Muhammad Babar Khawar
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China
- Applied Molecular Biology and Biomedicine Lab, Department of Zoology, University of Narowal, Narowal, Pakistan
| |
Collapse
|
4
|
Xi H, Ren F, Li Y, Xian M, Wang L, Hu J. FSH inhibits autophagy and lysosomal biogenesis to regulate protein degradation in cultured goat Sertoli cells. Mol Cell Endocrinol 2022; 540:111505. [PMID: 34774699 DOI: 10.1016/j.mce.2021.111505] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 12/14/2022]
Abstract
Although the follicle-stimulating hormone (FSH) plays a vital role in male reproduction, the molecular relationships among FSH, autophagy, and the secretory function of Sertoli cells remain largely undetermined. In this study, we sought to investigate the effects of FSH on dairy goat Sertoli cell autophagy and the role of autophagy in protein clearance. FSH treatment of primary Sertoli cells was found to enhance the expression level of LC3-II, reduce p62 degradation and the number of lysosomes, and downregulate the levels of LAMP2 protein and lysosomal gene mRNAs. Further analyses revealed that starvation-induced autophagy promotes the translocation of transcription factor EB (TFEB) from the cytoplasm to nucleus and its binding to the promoter region of LAMP2, whereas FSH suppresses the nuclear translocation of TFEB. Moreover, we found that the FSH-mediated inhibition of autophagy extends the biological half-lives of androgen-binding protein (ABP), glial-derived neurotrophic factor (GDNF), and stem cell factor (SCF) and promotes the secretion of these proteins. Collectively, these observations indicate that FSH inhibits autophagy by reducing lysosomal biogenesis, which is associated with the suppression of TFEB nuclear translocation via activation of the PI3K/Akt/mTOR pathway, thereby extending the biological half-lives and enhancing the expression of ABP, GDNF, and SCF in dairy goat Sertoli cells.
Collapse
Affiliation(s)
- Huaming Xi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Fa Ren
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Yu Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Ming Xian
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Liqiang Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Jianhong Hu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, People's Republic of China.
| |
Collapse
|
5
|
Zhou L, Lv MQ, Ge P, Yang YQ, He DL, Wang HX, Zhou DX. The expression of Beclin-1 in testicular tissues of non-obstructive azoospermia patients and its predictive value in sperm retrieval rate. Transl Androl Urol 2021; 10:3267-3274. [PMID: 34532251 PMCID: PMC8421828 DOI: 10.21037/tau-21-320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/25/2021] [Indexed: 11/06/2022] Open
Abstract
Background Beclin-1 is an autophagy gene and higher levels suggest mammalian testicular damage. Our study aims at exploring the role of Beclin-1 in non-obstructive azoospermia (NOA) patients and clarifying the predictive value of Beclin-1for sperm retrieval in microdissection testicular sperm extraction (micro-TESE). Methods In the present study, 62 NOA patients were finally recruited. Serum hormone including luteinizing hormone (LH), follicle-stimulating hormone (FSH), estradiol II (E2), testosterone (T) and prolactin (PRL), as well as testicular volume were measured. Testicular histopathology was diagnosed by two independent pathologists. The expression of Beclin-1 was detected by real-time PCR in testicular tissue. Results Our study illustrated that Beclin-1 was differently expressed in three pathological types of NOA. Compared with hypospermatogenesis (HS, P=0.002) or maturation arrest (MA, P=0.049), Beclin-1 showed significantly up-regulated in Sertoli cell-only syndrome (SCOS) group. Moreover, Beclin-1 expression was obviously positive related with serum LH (rho =0.269, P=0.036), meanwhile significantly negative correlation with testicular volume (rho =-0.370, P=0.003), serum T (rho =-0.326, P=0.010), Johnsen score (rho =-0.318, P=0.012), and pathologic type (rho =-0.452, P<0.001). Furthermore, a logistic regression model demonstrated that Beclin-1 is an important predictor of failed sperm retrieval (OR =0.001, P=0.007), which exhibited a pretty AUC =78.6 (P=0.001). Conclusions Beclin-1 may play a critical role in spermatogenesis. Elevated Beclin-1 may be obviously associated with lower chances of positive sperm retrieval.
Collapse
Affiliation(s)
- Liang Zhou
- Department of Pathology, Medical School, Xi'an Jiaotong University, Xi'an, China.,Assisted Reproduction Center, Northwest Women and Children's Hospital, Xi'an, China.,Urology Department, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Mo-Qi Lv
- Department of Pathology, Medical School, Xi'an Jiaotong University, Xi'an, China
| | - Pan Ge
- Department of Pathology, Medical School, Xi'an Jiaotong University, Xi'an, China
| | - Yan-Qi Yang
- Department of Pathology, Medical School, Xi'an Jiaotong University, Xi'an, China
| | - Da-Lin He
- Urology Department, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Hai-Xu Wang
- Department of Pathology, Medical School, Xi'an Jiaotong University, Xi'an, China
| | - Dang-Xia Zhou
- Department of Pathology, Medical School, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
6
|
Wang C, Zhu J, Gong X, Liang Y, Xu S, Yu Y, Yang L, Xu J, Wang SL. Bioaccumulation of BDE47 in testes by TiO 2 nanoparticles aggravates the reproductive impairment of male zebrafish by disrupting intercellular junctions. Nanotoxicology 2021; 15:1073-1086. [PMID: 34416130 DOI: 10.1080/17435390.2021.1966538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
This study attempts to explore the potential impact of titanium dioxide nanoparticles (n-TiO2) on bioconcentration and reproductive impairments of male zebrafish in the presence of 2,2',4,4'-tetrabromodiphenyl ether (BDE47), the congener of PBDEs predominant in environment and most abundant in biosamples. n-TiO2 nanoparticles strongly adsorbed BDE47 to form BDE47/TiO2 complex, which was taken up into the testes of zebrafish, and increased the tissue burdens of both BDE47 and n-TiO2. Correspondingly, no observed toxic dose of n-TiO2 (100 μg/L) was found to aggravate the abnormal histological morphology of the testes and the decrease in egg production, gonadosomatic index, sexual hormone levels and related gene expression in zebrafish in the presence of BDE47 at 5 or 50 μg/L. In addition, n-TiO2 exacerbated the destruction resulting from the ultrastructural disassembly of intercellular connectivity of germ cells in zebrafish and the decrease in transepithelial electrical resistance in TM4 cells induced by BDE47. Furthermore, n-TiO2 enhanced BDE47 to initially activate p-JNK MAPK signaling pathway and subsequently triggered the downregulation of junction proteins (i.e., ZO-1, Connexin-43 and N-cadherin), leading to impaired cell-cell junctions in vivo and in vitro. Our results demonstrated that n-TiO2 should act as a carrier to facilitate the accumulation of BDE47 in zebrafish testes and result in a synergistic effect on BDE47-induced adverse reproductive outcomes via disruption of intercellular connectivity of zebrafish testes. This study is beneficial in providing a scientific basis for improving the health risk assessment of environmental pollutants, particularly those that coexist with nanoparticle contamination in realistic environments.
Collapse
Affiliation(s)
- Chao Wang
- State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, P. R. China.,Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, P. R. China
| | - Jiansheng Zhu
- State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, P. R. China.,Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, P. R. China
| | - Xing Gong
- State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, P. R. China.,Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, P. R. China
| | - Yinyin Liang
- State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, P. R. China.,Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, P. R. China
| | - Shuyu Xu
- State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, P. R. China
| | - Yongquan Yu
- State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, P. R. China.,Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, P. R. China
| | - Liu Yang
- State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, P. R. China.,Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, P. R. China
| | - Jiayi Xu
- State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, P. R. China.,Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, P. R. China
| | - Shou-Lin Wang
- State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, P. R. China.,Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, P. R. China
| |
Collapse
|
7
|
TSGA10 as a Potential Key Factor in the Process of Spermatid Differentiation/Maturation: Deciphering Its Association with Autophagy Pathway. Reprod Sci 2021; 28:3228-3240. [PMID: 34232471 DOI: 10.1007/s43032-021-00648-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 05/30/2021] [Indexed: 10/20/2022]
Abstract
Testis-specific gene antigen 10 (TSGA10) plays an important role in spermatogenesis. However, the exact TSGA10 role and its relationship with the autophagy pathway in the process of spermatids differentiation/maturation is still not clear. Therefore, the present study evaluates the role of TSGA10 gene in the spermatid differentiation/maturation through its effect on autophagy and explores possible underlying pathway(s). Sperm samples from patients with teratospermia were collected. The mRNA and protein level of TSGA10 in these samples were assessed by real-time PCR and western blotting. Using the ingenuity pathway analysis (IPA) software, the gene network and interactions of TSGA10 involved in sperm maturation and autophagy were investigated. Based on these analyses, the expression levels of identified genes in patient's samples and healthy controls were further evaluated. Moreover, using flow cytometry analysis, the levels of reactive oxygen species (ROS( production in teratospermic sperm samples were evaluated. The results showed that the expression levels of TSGA10 mRNA and protein decreased significantly in the teratospermic patients compared to controls (P < 0.05). Moreover, a significant reduction in the expression of the important genes involved in sperm maturation and autophagy was observed (P < 0.05). Also, the levels of ROS production in teratospermic sperm samples were shown to be significantly higher compared to those in normal sperms (P < 0.05). Our findings provide new evidence that simultaneous decrease in TSGA10 and autophagy beside the increased level of ROS production in sperm cells might be associated with the abnormalities in the spermatids differentiation/maturation and the formation of sperms with abnormal morphology.
Collapse
|
8
|
Asgari R, Bakhtiari M, Rezazadeh D, Vaisi-Raygani A, Mansouri K. Autophagy related gene expression status in patients diagnosed with azoospermia: A cross-sectional study. J Gene Med 2020; 22:e3161. [PMID: 31944482 DOI: 10.1002/jgm.3161] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 12/04/2019] [Accepted: 01/09/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Autophagy affects various aspects of the male reproductive system. Any defects in this process may lead to azoospermia. However, the exact molecular mechanisms of the autophagy pathway have remained largely obscure. Therefore, the present study aimed to investigate levels of autophagy pathway gene expression (i.e. Lc3B, Beclin1, ATG5 and Bcl2) in azoospermic patients. METHODS The levels of Lc3B, Beclin1, ATG5 and Bcl2 mRNA expression in azoospermic patients and fertile males were evaluated by a real-time polymerase chain reaction technique. In addition, diagnostic evaluation based on the receiver-operating characteristic (ROC) curve was performed. RESULTS The results obtained showed the decreased expression of Lc3B, Beclin1 and ATG5 genes in infertile patients compared to the control group (p < 0.05), whereas Bcl2 expression was increased in samples (p < 0.05). A diagnostic evaluation by ROC curve and calculation of the area under the curve showed that, using a cut-off relative quantification of 4.550, 0.052, 0.056 and 0.012, the sensitivity of Lc3B, Beclin1, ATG5 and Bcl2 genes was 87.5%, 93.8%, 93.8% and 90%, respectively. In addition, a specificity of 76.7%, 76.7%, 93.3% and 81.2%, respectively, was observed. CONCLUSIONS As a first study, the current research suggests that an alteration in the expression of autophagy pathway genes may be associated with male infertility. Based on our finding, the increased expression of Bcl2 and formation of Becline1/Bcl2 complex, which inhibits Beclin1 recruitment, may lead to a decrease of the autophagy process in azoospermic patients. Accordingly, upon further investigation, the autophagy could be considered as an important aspect during spermatogenesis.
Collapse
Affiliation(s)
- Rezvan Asgari
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mitra Bakhtiari
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Davood Rezazadeh
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Asad Vaisi-Raygani
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Department of Biochemistry, Medical School, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Kamran Mansouri
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
9
|
Knockout of MCT1 results in total absence of spermatozoa, sex hormones dysregulation, and morphological alterations in the testicular tissue. Cell Tissue Res 2019; 378:333-339. [PMID: 31073907 DOI: 10.1007/s00441-019-03028-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 04/04/2019] [Indexed: 12/18/2022]
Abstract
Lactate is a key metabolite for the normal occurrence of spermatogenesis. In the testis, lactate is produced by the Sertoli cells and transported to germline cells. Monocarboxylate transporters (MCTs) are key players in that process. Among the family of MCTs, MCT1 is at least partly responsible for lactate uptake by the germ cells. We aimed to perform a first assessment of the role of MCT1 in male reproductive potential. Mct1 conditional knockout (cKO) mice were used for morphometric evaluation, testicular morphology, and sperm parameter assessment. Serum steroid hormones levels were also measured. cKO animals showed a decrease in gonadosomatic index, testis weight, and seminiferous tubular diameters. Deletion of MCT1 also causes morphological changes in the organization of the seminiferous tubules and on Sertoli cell morphology. These changes resulted in failure of spermatogenesis with depletion of germ cells and total absence of spermatozoa. MCT1 cKO animals presented also hormonal dysregulation, with a decrease in serum 17β-estradiol levels. In conclusion, MCT1 is pivotal for male reproductive potential. Absence of MCT1 results in maintenance of undifferentiated spermatogonia pool and compromised sperm production.
Collapse
|
10
|
Abstract
Autophagy is a fundamental process that exists in all eukaryotic organisms, with a primary function of catabolizing undesirable components to provide energy and essential materials. Increasing evidence illustrates that autophagy is invovled in a broad range of cellular events within the male reproductive system. In the process of spermatogenesis, autophagy is crucial for the formation of specific structures that guarantee successful spermatogenesis, as well as for the degradation of certain constituents. The underlying connections between autophagy and androgen binding protein, lipid metabolism and testosterone biosynthesis would increase our understanding of male testicular endocrinology. Moreover, cumulative studies reveal that autophagy is a double-edged sword when the organism suffers from endocrine disrupting chemicals. This review contains a collection of the current literature concerning the above aspects of autophagy, which may provide insights for future study and exploration. Abbreviations: 3-MA: 3-methyladenine; ABP: androgen-binding protein; AKT: protein kinase B; AMPK: adenosine monophosphate-activated protein kinase; ART: assisted reproductive technologies; Atg: autophagy-related gene; CE: cholesteryl ester; CL: corpus luteum; CQ: chloroquine; CYP11A1: cholesterol side chain cleavage enzyme; CytC: cytochrome C; DEHP: di-2-ethylhexyl phthalate; DFCP1: double FYVE-containing protein 1; EDCs: endocrine-disrupting chemicals; ERK1/2: extracellular signal-regulated kinase 1/2; ES: ectoplasmic specialization; FC: free cholesterol; FIP2000: focal adhesion kinase family interacting protein of 200kDa; FSH: follicle stimulating hormone; HDL: high-density lipoprotein; IVF: in vitro fertilization; LC3: microtubule-associated protein light chain 3; LD: lipid droplet; LH: luteinising hormone; MC-LR: microcystin-LR; MEFs: mouse embryonic fibroblast cells; MT: microtubule; mtDNA: mitochondrial DNA; mTOR: mammalian target of rapamycin; NHERF2: Na+/H+ exchanger regulatory factor 2; NMR: naked mole-rat; PCD: programmed cell death; PDLIM1: PDZ and LIM domain 1; PGCs: primordial germ cells; PGF2α: prostaglandin F2α; PI3K: phosphatidylinositol-3-kinase; PI3P: phosphatidylinositol-3-phosphate; ROS: reactive oxygen species; SCG10: superior cervical ganglia protein 10; SR-BI: scavenger receptor class B, type I; StAR protein: steroidogenic acute regulatory protein; TC: total cholesterol; TEM: transmission electron microscopy; TUNEL: terminal deoxynucleotidyl transferase mediated dUTP nick end labeling; ULK1: mammalian uncoordinated-51-like kinase 1; WIPI: WD-repeat domain phosphoinositide-interacting.
Collapse
Affiliation(s)
- Yinci Zhu
- a Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai , China.,b Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics , Shanghai , China
| | - Qingqing Yin
- a Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai , China.,b Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics , Shanghai , China
| | - Dandan Wei
- a Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai , China.,b Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics , Shanghai , China
| | - Zhenyu Yang
- a Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai , China.,b Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics , Shanghai , China
| | - Yanzhi Du
- a Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai , China.,b Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics , Shanghai , China
| | - Yi Ma
- a Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai , China.,b Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics , Shanghai , China
| |
Collapse
|
11
|
Eid N, Kondo Y. Ethanol-induced mitophagy in rat Sertoli cells: Implications for male fertility. Andrologia 2018; 50:e12820. [PMID: 28488740 DOI: 10.1111/and.12820] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2017] [Indexed: 01/01/2023] Open
Abstract
Autophagy is a pro-survival mechanism involving lysosomal degradation of damaged cellular components following multiple forms of cellular stress. There is currently a lack of literature on the mechanism, and specifically on mitophagy (selective autophagy of damaged pro-apoptotic mitochondria) in Sertoli cells (SCs). Against such a background, the authors induced mitophagy in SCs of adult male rats using a single injection of ethanol (5 g/kg) and observed mitophagy in the SCs via transmission electron microscopy 24 hr later. In addition, we briefly discussed the possible clinical implications of enhanced autophagy and mitophagy in stressed SCs in our model and in other models of acute stress (e.g., heat and transplantation stress). Further studies on SC autophagy are required, as a full understanding of the molecular mechanisms controlling autophagy in stressed SCs may have therapeutic implications for infertility treatment.
Collapse
Affiliation(s)
- N Eid
- Department of Anatomy and Cell Biology, Division of Life Sciences, Osaka Medical College, Takatsuki, Osaka, Japan
| | - Y Kondo
- Department of Anatomy and Cell Biology, Division of Life Sciences, Osaka Medical College, Takatsuki, Osaka, Japan
| |
Collapse
|
12
|
Eid N, Ito Y, Horibe A, Hamaoka H, Kondo Y. A Method for In Vivo Induction and Ultrastructural Detection of Mitophagy in Sertoli Cells. Methods Mol Biol 2018; 1748:103-112. [PMID: 29453568 DOI: 10.1007/978-1-4939-7698-0_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
An emerging body of evidences based on in vitro studies indicate that mitophagy (selective autophagic clearance of damaged mitochondria) is a prosurvival mechanism, specifically under exposure to various stressors. Sertoli cells (SCs) play essential roles in maintenance of spermatogenesis via paracrine interactions with germ cells and other somatic cells in the testis; however, studies investigating mitophagy in SCs are still very few. In this chapter, we give a brief review of mechanisms and detection methods of mitophagy in SCs based on our recent publications on animal models of ethanol toxicity and current literature. In addition, we provide a method for induction and ultrastructural identification of mitophagy in SCs of adult Wistar rats using a single intraperitoneal injection (5 g/kg) of ethanol. Proper understanding of mitophagy features and mechanisms in SCs may have therapeutic implications for infertility associated with alcoholism and other diseases characterized by mitochondrial dysfunction.
Collapse
Affiliation(s)
- Nabil Eid
- Division of Life Sciences, Department of Anatomy and Cell Biology, Osaka Medical College, Osaka, Japan.
| | - Yuko Ito
- Division of Life Sciences, Department of Anatomy and Cell Biology, Osaka Medical College, Osaka, Japan
| | - Akio Horibe
- Division of Life Sciences, Department of Anatomy and Cell Biology, Osaka Medical College, Osaka, Japan
| | - Hitomi Hamaoka
- Division of Life Sciences, Department of Anatomy and Cell Biology, Osaka Medical College, Osaka, Japan
| | - Yoichi Kondo
- Division of Life Sciences, Department of Anatomy and Cell Biology, Osaka Medical College, Osaka, Japan
| |
Collapse
|
13
|
Abstract
Autophagy is an important cellular homeostatic process, it degrades most long-lived proteins and some organelles by lysosome to provide raw materials for the survival of the cells during nutrient or energy deprivation condition. Autophagy is active in Sertoli cells and involved in many cellular processes. However, the precise role of autophagy in Sertoli cells is still largely unknown. Thus, the assessment of autophagy in Sertoli cells should be helpful for investigating the functional roles of autophagy in Sertoli cells. This chapter describes some methods for assessing autophagy in Sertoli cells, including detection of LC3 maturation/aggregation, transmission electron microscopy, half-life assessments of long-lived proteins, immunofluorescence microscopy, and co-localization of autophagy-targeted proteins with autophagy components or lysosomal proteins.
Collapse
Affiliation(s)
- Chao Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Jehangir Khan
- Zoology Department, Buner Campus, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China.
| |
Collapse
|
14
|
Mutsuga M, Asaoka Y, Imura N, Miyoshi T, Togashi Y. Aminoglutethimide-induced lysosomal changes in adrenal gland in mice. ACTA ACUST UNITED AC 2017; 69:424-429. [DOI: 10.1016/j.etp.2017.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 03/16/2017] [Accepted: 04/03/2017] [Indexed: 10/19/2022]
|
15
|
Oliveira PF, Sousa M, Silva BM, Monteiro MP, Alves MG. Obesity, energy balance and spermatogenesis. Reproduction 2017; 153:R173-R185. [DOI: 10.1530/rep-17-0018] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/04/2017] [Accepted: 03/09/2017] [Indexed: 01/01/2023]
Abstract
Obesity has grown to pandemic proportions. It affects an increasing number of children, adolescents and young adults exposed to the silent comorbidities of this disorder for a longer period. Infertility has arisen as one important comorbidity associated with the energy dysfunction promoted by obesity. Spermatogenesis is a highly regulated process that is determined by specific energetic requirements. The reproductive potential of males relies on hormonal-dependent and -independent stimuli that control sperm quality. There are conflicting data concerning the impact of male overweight and obesity on sperm quality, as well as on the possible paternal-induced epigenetic trait inheritance of obesity. In addition, it remains a matter of debate whether massive weight loss induced by lifestyle interventions, drugs or bariatric surgery may or may not benefit obese men seeking fatherhood. Herein, we propose to discuss how energy balance may modulate hormonal signalling and sperm quality in overweight and obese men. We also discuss some molecular mechanisms that mediate obesity-related dysfunction in male reproductive system and how paternal obesity may lead to trait inheritance. Finally, we will discuss how lifestyle modifications and sustained weight loss, particularly the loss achieved by bariatric surgery, may revert some of the deleterious effects of obesity in men and their offspring.
Collapse
|
16
|
Horibe A, Eid N, Ito Y, Hamaoka H, Tanaka Y, Kondo Y. Upregulated Autophagy in Sertoli Cells of Ethanol-Treated Rats Is Associated with Induction of Inducible Nitric Oxide Synthase (iNOS), Androgen Receptor Suppression and Germ Cell Apoptosis. Int J Mol Sci 2017; 18:1061. [PMID: 28505146 PMCID: PMC5454973 DOI: 10.3390/ijms18051061] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/22/2017] [Accepted: 05/10/2017] [Indexed: 12/20/2022] Open
Abstract
This study was conducted to investigate the autophagic response of Sertoli cells (SCs) to acute ethanol toxicity using in vivo and in vitro models. Adult Wistar rats were intraperitoneally injected with either 5 g/kg ethanol or phosphate-buffered saline (for the control group) and sacrificed 0, 3, 6 and 24 h after injection. Compared to the control group, enhanced germ cell apoptosis was observed in the ethanol-treated rats (ETRs) in association with upregulation of iNOS and reduced expression of androgen receptor protein levels in SCs, which were resistant to apoptosis. Meanwhile, autophagy was upregulated in ETR SCs (peaking at 24 h) compared to the control group, as evidenced by transcription factor EB (TFEB) nuclear translocation, enhanced expression of microtubule-associated protein 1 light chain3-II (LC3-II), lysosome-associated membrane protein-2 (LAMP-2), pan cathepsin protein levels and reduced expression of p62. This upregulation of SC autophagy was confirmed ultrastructurally by enhanced formation of autophagic vacuoles and by immunofluorescent double labelling of autophagosomal and lysosomal markers. Study of cultured SCs confirmed enhanced autophagic response to ethanol toxicity, which was cytoprotective based on decreased viability of SCs upon blocking autophagy with 3-methyladenine (3-MA). The results highlighted the molecular mechanisms of prosurvival autophagy in ETR SCs for the first time, and may have significant implications for male fertility.
Collapse
Affiliation(s)
- Akio Horibe
- Department of Anatomy and Cell Biology, Division of Life Sciences, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan.
| | - Nabil Eid
- Department of Anatomy and Cell Biology, Division of Life Sciences, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan.
| | - Yuko Ito
- Department of Anatomy and Cell Biology, Division of Life Sciences, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan.
| | - Hitomi Hamaoka
- Department of Anatomy and Cell Biology, Division of Life Sciences, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan.
| | - Yoshihisa Tanaka
- Department of Anatomy and Cell Biology, Division of Life Sciences, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan.
| | - Yoichi Kondo
- Department of Anatomy and Cell Biology, Division of Life Sciences, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan.
| |
Collapse
|
17
|
Role of Autophagy in HIV Pathogenesis and Drug Abuse. Mol Neurobiol 2016; 54:5855-5867. [PMID: 27660273 DOI: 10.1007/s12035-016-0118-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 09/12/2016] [Indexed: 12/27/2022]
Abstract
Autophagy is a highly regulated process in which excessive cytoplasmic materials are captured and degraded during deprivation conditions. The unique nature of autophagy that clears invasive microorganisms has made it an important cellular defense mechanism in a variety of clinical situations. In recent years, it has become increasingly clear that autophagy is extensively involved in the pathology of HIV-1. To ensure survival of the virus, HIV-1 viral proteins modulate and utilize the autophagy pathway so that biosynthesis of the virus is maximized. At the same time, the abuse of illicit drugs such as methamphetamine, cocaine, morphine, and alcohol is thought to be a significant risk factor for the acquirement and progression of HIV-1. During drug-induced toxicity, autophagic activity has been proved to be altered in various cell types. Here, we review the current literature on the interaction between autophagy, HIV-1, and drug abuse and discuss the complex role of autophagy during HIV-1 pathogenesis in co-exposure to illicit drugs.
Collapse
|
18
|
Pourhassanali N, Roshan-Milani S, Kheradmand F, Motazakker M, Bagheri M, Saboory E. Zinc attenuates ethanol-induced Sertoli cell toxicity and apoptosis through caspase-3 mediated pathways. Reprod Toxicol 2016; 61:97-103. [PMID: 27033740 DOI: 10.1016/j.reprotox.2016.03.041] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 03/09/2016] [Accepted: 03/22/2016] [Indexed: 12/13/2022]
|
19
|
Liu C, Wang H, Shang Y, Liu W, Song Z, Zhao H, Wang L, Jia P, Gao F, Xu Z, Yang L, Gao F, Li W. Autophagy is required for ectoplasmic specialization assembly in sertoli cells. Autophagy 2016; 12:814-32. [PMID: 26986811 DOI: 10.1080/15548627.2016.1159377] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The ectoplasmic specialization (ES) is essential for Sertoli-germ cell communication to support all phases of germ cell development and maturity. Its formation and remodeling requires rapid reorganization of the cytoskeleton. However, the molecular mechanism underlying the regulation of ES assembly is still largely unknown. Here, we show that Sertoli cell-specific disruption of autophagy influenced male mouse fertility due to the resulting disorganized seminiferous tubules and spermatozoa with malformed heads. In autophagy-deficient mouse testes, cytoskeleton structures were disordered and ES assembly was disrupted. The disorganization of the cytoskeleton structures might be caused by the accumulation of a negative cytoskeleton organization regulator, PDLIM1, and these defects could be partially rescued by Pdlim1 knockdown in autophagy-deficient Sertoli cells. Altogether, our works reveal that the degradation of PDLIM1 by autophagy in Sertoli cells is important for the proper assembly of the ES, and these findings define a novel role for autophagy in Sertoli cell-germ cell communication.
Collapse
Affiliation(s)
- Chao Liu
- a State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China.,b University of Chinese Academy of Sciences , Beijing , China
| | - Hongna Wang
- a State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China.,b University of Chinese Academy of Sciences , Beijing , China
| | - Yongliang Shang
- a State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China.,b University of Chinese Academy of Sciences , Beijing , China
| | - Weixiao Liu
- a State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China
| | - Zhenhua Song
- a State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China.,b University of Chinese Academy of Sciences , Beijing , China
| | - Haichao Zhao
- a State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China.,b University of Chinese Academy of Sciences , Beijing , China
| | - Lina Wang
- a State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China.,b University of Chinese Academy of Sciences , Beijing , China
| | - Pengfei Jia
- c State Key Laboratory of Molecular Developmental Biology and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences , Beijing , China
| | - Fengyi Gao
- a State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China
| | - Zhiliang Xu
- a State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China.,b University of Chinese Academy of Sciences , Beijing , China
| | - Lin Yang
- c State Key Laboratory of Molecular Developmental Biology and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences , Beijing , China
| | - Fei Gao
- a State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China.,b University of Chinese Academy of Sciences , Beijing , China
| | - Wei Li
- a State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China.,b University of Chinese Academy of Sciences , Beijing , China
| |
Collapse
|
20
|
Cai J, Liu W, Hao J, Chen M, Li G. Increased expression of dermatopontin and its implications for testicular dysfunction in mice. Mol Med Rep 2016; 13:2431-8. [PMID: 26861869 PMCID: PMC4768960 DOI: 10.3892/mmr.2016.4879] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 01/11/2016] [Indexed: 12/25/2022] Open
Abstract
An array of specific and non-specific molecules, which are expressed in the testis, have been demonstrated to be responsible for testicular function. Our previous study revealed that dermatopontin (DPT) is expressed in Sertoli cells of the testis, however, its roles in testicular function remains somewhat elusive. In the present study, CdCl2- and busulfan-induced testicular dysfunction models were used to investigate the implications of DPT expression for testicular function. The mRNA and protein expression levels of DPT were detected using reverse transcription-quantitative polymerase chain reaction and western blotting, respectively. A negative correlation was observed between testicular damage and the expression of DPT, which suggested that an increase in DPT expression may be a marker for testicular dysfunction. This result was corroborated by the finding that transgenic mice exhibiting Sertoli cell-specific overexpression of DPT exhibited damage to their testicular morphology. Additionally, DPT overexpression in the testis affected the expression levels of claudin-11 and zonula occludens-1, which indicated that DPT may affect testicular function by affecting the integrity of the blood-testis barrier (BTB). In conclusion, the present study provided evidence to suggest that DPT may be indicative of mouse testicular dysfunction, since increased expression may be associated with damage to the BTB.
Collapse
Affiliation(s)
- Jun Cai
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Weijia Liu
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Jie Hao
- Experimental Research Center, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Maoxin Chen
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Gang Li
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
21
|
Eid N, Ito Y, Otsuki Y. Mitophagy in steatotic hepatocytes of ethanol-treated wild-type and Parkin knockout mice. Am J Physiol Gastrointest Liver Physiol 2015; 309:G513-G514. [PMID: 26374875 DOI: 10.1152/ajpgi.00254.2015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Nabil Eid
- Department of Anatomy and Cell Biology, Division of Life Sciences, Osaka Medical College, Daigaku machi, Takatsuki, Osaka, Japan
| | - Yuko Ito
- Department of Anatomy and Cell Biology, Division of Life Sciences, Osaka Medical College, Daigaku machi, Takatsuki, Osaka, Japan
| | - Yoshinori Otsuki
- Department of Anatomy and Cell Biology, Division of Life Sciences, Osaka Medical College, Daigaku machi, Takatsuki, Osaka, Japan
| |
Collapse
|
22
|
Narabayashi K, Ito Y, Eid N, Maemura K, Inoue T, Takeuchi T, Otsuki Y, Higuchi K. Indomethacin suppresses LAMP-2 expression and induces lipophagy and lipoapoptosis in rat enterocytes via the ER stress pathway. J Gastroenterol 2015; 50:541-554. [PMID: 25212253 DOI: 10.1007/s00535-014-0995-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 08/20/2014] [Indexed: 02/04/2023]
Abstract
BACKGROUND Indomethacin enhances small intestinal epithelial cell apoptosis, which may account for mucosal ulceration. However, the involvement of autophagy in indomethacin-induced enterocyte damage is unreported. METHODS Using light microscopy and electron microscopy techniques, Western blot analysis, and pharmacological inhibition of autophagy, we investigated the autophagic response of cultured rat enterocytes to indomethacin treatment (200 µM) at various time points. Furthermore, autophagy was examined in enterocytes of rats given indomethacin by gavage (10 mg/kg). RESULTS Our data indicate that indomethacin induced accumulation of cytoplasmic lipid droplets (LDs) in cultured enterocytes, which was associated with time-dependent autophagic responses. Initially (0-6 h), mediated by endoplasmic reticulum stress and suppression of mammalian target of rapamycin, a predominant cytoprotective lipophagy was activated in indomethacin-treated enterocytes, as evidenced by induction and colocalization of LC3-II with LDs, excessive formation of autophagosomes sequestering LDs (autolipophagosomes; ALPs), and decreased viability of enterocytes on blocking autophagy with 3-methyladenine. On prolonged exposure to indomethacin (6-24 h), there was a decrease of LAMP-2 expression in enterocytes coupled with accumulation of ALPs and LDs with fewer autolysosomes in addition to an elevation of lipoapoptosis. These time-dependent autophagic and apoptotic responses to indomethacin treatment were detected in enterocytes of indomethacin-treated rats, confirming in vitro results. CONCLUSIONS The findings of this study describe a novel mechanism of enterocyte damage by indomethacin mediated by endoplasmic reticulum stress, accumulation of LDs, and subsequent activation of the early phase of cytoprotective lipophagy. This is followed by a late phase characterized by reduced expression of lysosomal autophagic proteins, accumulation of ALPs, and enhanced lipoapoptosis.
Collapse
Affiliation(s)
- Ken Narabayashi
- Second Department of Internal Medicine, Osaka Medical College, Daigakumachi, Takatsuki, Osaka, 569-8686, Japan
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Testosterone regulates the autophagic clearance of androgen binding protein in rat Sertoli cells. Sci Rep 2015; 5:8894. [PMID: 25745956 PMCID: PMC4352847 DOI: 10.1038/srep08894] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 02/10/2015] [Indexed: 01/09/2023] Open
Abstract
Dysregulation of androgen-binding protein (ABP) is associated with a number of endocrine and andrology diseases. However, the ABP metabolism in Sertoli cells is largely unknown. We report that autophagy degrades ABP in rat Sertoli cells, and the autophagic clearance of ABP is regulated by testosterone, which prolongs the ABP biological half-life by inhibiting autophagy. Further studies identified that the autophagic clearance of ABP might be selectively regulated by testosterone, independent of stress (hypoxia)-induced autophagic degradation. These data demonstrate that testosterone up-regulates ABP expression at least partially by suppressing the autophagic degradation. We report a novel finding with respect to the mechanisms by which ABP is cleared, and by which the process is regulated in Sertoli cells.
Collapse
|
24
|
Han SP, Zhou DX, Lin P, Qin Z, An L, Zheng LR, Lei L. Formaldehyde exposure induces autophagy in testicular tissues of adult male rats. ENVIRONMENTAL TOXICOLOGY 2015; 30:323-331. [PMID: 24142868 DOI: 10.1002/tox.21910] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 09/17/2013] [Accepted: 09/20/2013] [Indexed: 06/02/2023]
Abstract
Formaldehyde, a ubiquitous environmental pollutant, has long been suspected of causing adverse male reproductive effects. However, the molecular and cellular mechanisms underlying this phenomenon remain elusive. The overall aim of this study is to clarify the role of autophagy in male reproductive injuries induced by formaldehyde exposure, by which we can further understand the molecular mechanism of spermatogenesis and develop new targets for prevention and treatment of male infertility. In this study, electron microscopy, Western blot, and RT-PCR analysis were used to detect autophagy in testicular tissues. Moreover, testicular weights, histopathology, and morphometry were used to evaluate the reproductive injuries of formaldehyde exposure. We found that formaldehyde exposure-induced autophagy in testicular tissues was dose dependent. Increasing autophagosomes in spermatogenetic cells was observed by electron microscopy in formaldehyde exposure group. In addition, RT-PCR and Western blot analysis showed the transcription levels of the LC3-II, as well as the conversion from LC3-I to LC3-II, an indicator of autophagy, significantly increased in testicular tissue of formaldehyde exposure group in a dose dependent manner when compared with those in control group. Furthermore, the alterations of autophage were basically consistent with the changes in testicular weight and morphologic findings. In summary, formaldehyde exposure triggered autophagy, and autophagy may be a scathing factor responsible for male reproductive impairment induced by formaldehyde.
Collapse
Affiliation(s)
- Shui-Ping Han
- Pathology Department, Medical School, Xi'an Jiaotong University, Xi-an City, Shaanxi Province, 710061, China
| | | | | | | | | | | | | |
Collapse
|
25
|
Shi SH, Jiang L, Xie HY, Zhu YF, Zhang WJ, Zheng SS. Secondary biliary cholestasis promotes testicular macrophage infiltration and autophagy in rats. Am J Reprod Immunol 2014; 73:301-12. [PMID: 25041469 DOI: 10.1111/aji.12292] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 06/24/2014] [Indexed: 11/29/2022] Open
Abstract
PROBLEM Cholestasis can cause translocation of gut bacteria, and endotoxemia, and systemic inflammation. Now, little is known about the effects of cholestasis on the testicular inflammation and autophagy. METHODS A rat biliary cholestasis model caused by common bile duct ligation (CBDL), together with biliary decompression (choledochoduodenostomy), was used. RESULTS The magnitude of MCP-1 expression and CD68(+) macrophage infiltration within testes was progressively up-regulated in rats along with increasing duration of CBDL and was maintained at relatively high level in rats with biliary decompression. The large up-regulation of testicular ATG-12, LC3II, and autophagic vacuoles was found with the extending duration of CBDL and kept at 5 weeks following biliary decompression. The autophagic contents were a large accumulation of mitophagy in testes in rats with CBDL, and cytosol components in rats with biliary decompression. CONCLUSION Secondary biliary cholestasis can promote inflammatory reaction and the activation of mitophagy and autophagy in testes.
Collapse
Affiliation(s)
- Shao-Hua Shi
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, China
| | | | | | | | | | | |
Collapse
|
26
|
Weckman A, Di Ieva A, Rotondo F, Syro LV, Ortiz LD, Kovacs K, Cusimano MD. Autophagy in the endocrine glands. J Mol Endocrinol 2014; 52:R151-63. [PMID: 24565917 DOI: 10.1530/jme-13-0241] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Autophagy is an important cellular process involving the degradation of intracellular components. Its regulation is complex and while there are many methods available, there is currently no single effective way of detecting and monitoring autophagy. It has several cellular functions that are conserved throughout the body, as well as a variety of different physiological roles depending on the context of its occurrence in the body. Autophagy is also involved in the pathology of a wide range of diseases. Within the endocrine system, autophagy has both its traditional conserved functions and specific functions. In the endocrine glands, autophagy plays a critical role in controlling intracellular hormone levels. In peptide-secreting cells of glands such as the pituitary gland, crinophagy, a specific form of autophagy, targets the secretory granules to control the levels of stored hormone. In steroid-secreting cells of glands such as the testes and adrenal gland, autophagy targets the steroid-producing organelles. The dysregulation of autophagy in the endocrine glands leads to several different endocrine diseases such as diabetes and infertility. This review aims to clarify the known roles of autophagy in the physiology of the endocrine system, as well as in various endocrine diseases.
Collapse
Affiliation(s)
- Andrea Weckman
- Division of Neurosurgery, Department of Surgery, St Michael's Hospital, University of Toronto, Toronto, Ontario, Canada Division of Pathology, Department of Laboratory Medicine, St Michael's Hospital, University of Toronto, Toronto, Ontario, Canada Department of Neurosurgery, Hospital Pablo Tobon Uribe and Clinica Medellin, Medellin, Colombia Division of Neurooncology, Instituto de Cancerologia, Clinic Las Americas, Medellin, Colombia
| | | | | | | | | | | | | |
Collapse
|
27
|
Chihara M, Otsuka S, Ichii O, Kon Y. Vitamin A deprivation affects the progression of the spermatogenic wave and initial formation of the blood-testis barrier, resulting in irreversible testicular degeneration in mice. J Reprod Dev 2013; 59:525-35. [PMID: 23934320 PMCID: PMC3934156 DOI: 10.1262/jrd.2013-058] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The blood testis-barrier (BTB) is essential for maintaining homeostasis in the
seminiferous epithelium. Although many studies have reported that vitamin A (VA) is
required for the maintenance of spermatogenesis, the relationships between the BTB,
spermatogenesis and VA have not been elucidated. In this study, we analyzed BTB
assembly and spermatogenesis in the testes of mice fed the VA-deficient (VAD) diet
from the prepubertal period to adulthood. During the prepubertal period, no changes
were observed in the initiation and progression of the first spermatogenic wave in
mice fed the VAD diet. However, the numbers of preleptotene/leptotene spermatocytes
derived from the second spermatogenic wave onwards were decreased, and initial BTB
formation was also delayed, as evidenced by the decreased expression of mRNAs
encoding BTB components and VA signaling molecules. From 60 days postpartum, mice fed
the VAD diet exhibited apoptosis of germ cells, arrest of meiosis, disruption of the
BTB, and dramatically decreased testis size. Furthermore, vacuolization and
calcification were observed in the seminiferous epithelium of adult mice fed the VAD
diet. Re-initiation of spermatogenesis by VA replenishment in adult mice fed the VAD
diet rescued BTB assembly after when the second spermatogenic wave initiated from the
arrested spermatogonia reached the preleptotene/leptotene spermatocytes. These
results suggested that BTB integrity was regulated by VA metabolism with meiotic
progression and that the impermeable BTB was required for persistent spermatogenesis
rather than meiotic initiation. In conclusion, consumption of the VAD diet led to
critical defects in spermatogenesis progression and altered the dynamics of BTB
assembly.
Collapse
Affiliation(s)
- Masataka Chihara
- Laboratory of Anatomy, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | | | | | | |
Collapse
|
28
|
Eid N, Ito Y, Otsuki Y. The autophagic response to alcohol toxicity: the missing layer. J Hepatol 2013; 59:398. [PMID: 23624249 DOI: 10.1016/j.jhep.2013.03.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 03/19/2013] [Accepted: 03/20/2013] [Indexed: 12/04/2022]
|
29
|
Qiu L, Zhang X, Zhang X, Zhang Y, Gu J, Chen M, Zhang Z, Wang X, Wang SL. Sertoli cell is a potential target for perfluorooctane sulfonate-induced reproductive dysfunction in male mice. Toxicol Sci 2013; 135:229-40. [PMID: 23761298 DOI: 10.1093/toxsci/kft129] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Perfluorooctane sulfonate (PFOS) is associated with male reproductive disorders, but its targets and mechanisms are poorly understood. We used in vitro and in vivo models to explore the roles of Sertoli cells and the blood-testis barrier (BTB) in PFOS-induced male reproductive dysfunction. First, we used primary Sertoli cell to estimate PFOS-induced cytotoxicity, junction proteins expression, and the changes of barrier function. ICR mice were then administered PFOS (0.25-50mg/kg/day) for 4 weeks. Sperm count, ultrastructure and permeability of the Sertoli cell-based BTB, and testicular PFOS were estimated. Furthermore, the expression and localization of proteins related to junctions between Sertoli cells and mitogen-activated protein kinase (MAPK) signaling pathway were evaluated. Apparent decreases in sperm count were found. PFOS significantly increased vacuolization in Sertoli cells in seminiferous tubules and BTB ultrastructural disassembly, which subsequently increased BTB permeability and testicular PFOS levels, which was confirmed by in vitro results that PFOS decreased transepithelial electrical resistance between Sertoli cells. Additionally, PFOS decreased the expression of junction proteins in Sertoli cells, which was further confirmed by in vivo results that PFOS decreased or dislocated junction proteins (i.e., ZO-1, occludin, claudin-11, and connexin-43) and increased proteins related to the MAPK signaling pathway (i.e., Erk and p38), whereas basal ectoplasmic specialization proteins did not change. The results were confirmed by SB203580, a p38 MAPK selective inhibitor. Sertoli cells appear to be a new cellular target for PFOS. Together with disruption of BTB integrity and function, these cells play an important role in PFOS-induced male reproductive toxicity.
Collapse
Affiliation(s)
- Lianglin Qiu
- State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Eid N, Ito Y, Maemura K, Otsuki Y. Elevated autophagic sequestration of mitochondria and lipid droplets in steatotic hepatocytes of chronic ethanol-treated rats: an immunohistochemical and electron microscopic study. J Mol Histol 2013; 44:311-326. [PMID: 23371376 DOI: 10.1007/s10735-013-9483-x] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 01/02/2013] [Indexed: 02/07/2023]
Abstract
Ethanol-induced hepatic steatosis may induce the progression of alcoholic liver disease. The involvement of autophagic clearance of damaged mitochondria (mitophagy) and lipid droplets (LDs) (lipophagy) in chronic ethanol-induced hepatic steatosis is not clearly understood. Adult Wistar rats were fed either 5 % ethanol in Lieber-DeCarli liquid diet or an isocaloric control diet for 10 weeks. Light microscopy showed marked steatosis in hepatocytes of ethanol-treated rats (ETRs), which was further revealed by transmission electron microscopy (TEM), where significant numbers of large LDs and damaged mitochondria were detected in steatotic hepatocytes. Moreover, TEM demonstrated that hepatocyte steatosis was associated with greatly enhanced autophagic vacuole (AV) formation compared to control hepatocytes. Mitochondria and LDs were the predominant contents of AVs in steatotic hepatocytes. Immunohistochemistry of LC3, a specific marker of early AVs (autophagosomes), demonstrated an extensive punctate pattern in hepatocytes of ETRs, while LC3 puncta were much less frequent in control hepatocytes. This was confirmed by immunoelectron microscopy (IEM), which showed localization of LC3 to autophagosomes sequestering damaged mitochondria and LDs. In addition, IEM revealed that PINK1 (a sensor of mitochondrial damage and marker of mitophagy) was overexpressed in mitochondria of ETRs. Enhanced autophagic lysosomal activity was evidenced by increased immunolabeling of LAMP-2, a marker of late AVs (autolysosomes) in hepatocytes of ETRs and colocalization of LC3 and lysosomal cathepsins using double immunofluorescence labeling. Increased AVs in hepatocytes of ETRs reflect ethanol toxicity and could represent a possible protective mechanism via stimulation of mitophagy and lipophagy.
Collapse
Affiliation(s)
- Nabil Eid
- Department of Anatomy and Cell Biology, Division of Life Sciences, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki 569-8686, Osaka, Japan
| | | | | | | |
Collapse
|
31
|
Current world literature. Curr Opin Pediatr 2012; 24:547-53. [PMID: 22790103 DOI: 10.1097/mop.0b013e3283566807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|