1
|
Xiao M, Xue J, Jin E. SPOCK: Master regulator of malignant tumors (Review). Mol Med Rep 2024; 30:231. [PMID: 39392048 PMCID: PMC11487499 DOI: 10.3892/mmr.2024.13355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/20/2024] [Indexed: 10/12/2024] Open
Abstract
SPARC/osteonectin, CWCV and Kazal‑like domain proteoglycan (SPOCK) is a family of highly conserved multidomain proteins. In total, three such family members, SPOCK1, SPOCK2 and SPOCK3, constitute the majority of extracellular matrix glycoproteins. The SPOCK gene family has been demonstrated to serve key roles in tumor regulation by affecting MMPs, which accelerates the progression of cancer epithelial‑mesenchymal transition. In addition, they can regulate the cell cycle via overexpression, inhibit tumor cell proliferation by inactivating PI3K/AKT signaling and have been associated with numerous microRNAs that influence the expression of downstream genes. Therefore, the SPOCK gene family are potential cancer‑regulating genes. The present review summarizes the molecular structure, tissue distribution and biological function of the SPOCK family of proteins, in addition to its association with cancer. Furthermore, the present review documents the progress made in investigations into the role of SPOCK, whilst also discussing prospects for the future of SPOCK‑targeted therapy, to provide novel ideas for clinical application and treatment.
Collapse
Affiliation(s)
- Mingyuan Xiao
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110134, P.R. China
| | - Jiancheng Xue
- Department of Otolaryngology, Head and Neck Surgery, The Second People's Hospital of Shenzhen, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518035, P.R. China
- Shenzhen Clinical Research Center for Otolaryngology Diseases, The Second People's Hospital of Shenzhen, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518035, P.R. China
| | - Enli Jin
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110134, P.R. China
| |
Collapse
|
2
|
Liu Y, Han T, Wu J, Zhou J, Guo J, Miao R, Xu Z, Xing Y, Bai Y, Hu D. SPOCK1, as a potential prognostic and therapeutic biomarker for lung adenocarcinoma, is associated with epithelial-mesenchymal transition and immune evasion. J Transl Med 2023; 21:909. [PMID: 38087364 PMCID: PMC10717042 DOI: 10.1186/s12967-023-04616-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/11/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND The occurrence of epithelial-mesenchymal transition (EMT) and immune evasion is considered to contribute to poor prognosis in lung adenocarcinoma (LUAD). Therefore, this study aims to explore the key oncogenes that promote EMT and immune evasion and reveal the expression patterns, prognostic value, and potential biological functions. METHODS Firstly, we identified gene modules associated with EMT and Tumor Immune Dysfunction and Exclusion (TIDE) through weighted gene co-expression network analysis (WGCNA). Next, we utilized differential analysis and machine learning to identify the key genes and validate them. Moreover, we analyzed the correlation between key genes and tumor microenvironment remodeling, drug sensitivity, as well as mutation frequency. Furthermore, we explored and validated their malignant biological characteristics through in vitro experiments and clinical samples. Finally, potential drugs for LUAD were screened based on CMap and validated through experiments. RESULTS Firstly, WGCNA analysis revealed that red and green modules were highly correlated with EMT and TIDE. Among them, upregulated expression of SPOCK1 was observed in lung adenocarcinoma tissues and was associated with poor prognosis. Additionally, patients in the high SPOCK1 group showed more activation of malignant oncogenic pathways, higher infiltration of immunosuppressive components, and a higher frequency of mutations. The knockdown of SPOCK1 suppressed invasion and metastasis capabilities of lung adenocarcinoma cells, and the high expression of SPOCK1 was associated with low infiltration of CD8+ T cells. Therapeutic aspects, SPOCK1 can be a candidate indicator for drug sensitivity and CMap showed that VER-155008 was the drug candidate with the largest perturbation effect on the SPOCK1 expression profile. In vitro and in vivo experiments validated the cancer-inhibitory effect of VER-155008 in LUAD. CONCLUSION This study revealed through comprehensive bioinformatics analysis and experimental analysis that SPOCK1 can promote EMT and immune escape in LUAD, and it may serve as a promising candidate prognostic biomarker and therapeutic target for LUAD.
Collapse
Affiliation(s)
- Yafeng Liu
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St, Huainan, 232001, People's Republic of China
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, People's Republic of China
| | - Tao Han
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St, Huainan, 232001, People's Republic of China
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, People's Republic of China
| | - Jing Wu
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St, Huainan, 232001, People's Republic of China.
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, People's Republic of China.
| | - Jiawei Zhou
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St, Huainan, 232001, People's Republic of China
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, People's Republic of China
| | - Jianqiang Guo
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St, Huainan, 232001, People's Republic of China
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, People's Republic of China
| | - Rui Miao
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St, Huainan, 232001, People's Republic of China
| | - Zhi Xu
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St, Huainan, 232001, People's Republic of China
| | - Yingru Xing
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St, Huainan, 232001, People's Republic of China
- Department of Clinical Laboratory, Anhui Zhongke Gengjiu Hospital, Hefei, People's Republic of China
| | - Ying Bai
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St, Huainan, 232001, People's Republic of China.
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, People's Republic of China.
| | - Dong Hu
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St, Huainan, 232001, People's Republic of China.
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, People's Republic of China.
- Key Laboratory of Industrial Dust Prevention and Control & Occupational Safety and Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, People's Republic of China.
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
3
|
Karagiorgou Z, Fountas PN, Manou D, Knutsen E, Theocharis AD. Proteoglycans Determine the Dynamic Landscape of EMT and Cancer Cell Stemness. Cancers (Basel) 2022; 14:5328. [PMID: 36358747 PMCID: PMC9653992 DOI: 10.3390/cancers14215328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/23/2022] [Accepted: 10/25/2022] [Indexed: 03/15/2024] Open
Abstract
Proteoglycans (PGs) are pivotal components of extracellular matrices, involved in a variety of processes such as migration, invasion, morphogenesis, differentiation, drug resistance, and epithelial-to-mesenchymal transition (EMT). Cellular plasticity is a crucial intermediate phenotypic state acquired by cancer cells, which can modulate EMT and the generation of cancer stem cells (CSCs). PGs affect cell plasticity, stemness, and EMT, altering the cellular shape and functions. PGs control these functions, either by direct activation of signaling cascades, acting as co-receptors, or through regulation of the availability of biological compounds such as growth factors and cytokines. Differential expression of microRNAs is also associated with the expression of PGs and their interplay is implicated in the fine tuning of cancer cell phenotype and potential. This review summarizes the involvement of PGs in the regulation of EMT and stemness of cancer cells and highlights the molecular mechanisms.
Collapse
Affiliation(s)
- Zoi Karagiorgou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece
| | - Panagiotis N. Fountas
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece
| | - Dimitra Manou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece
| | - Erik Knutsen
- Department of Medical Biology, Faculty of Health Sciences, UiT the Arctic University of Norway, 9010 Tromsø, Norway
- Centre for Clinical Research and Education, University Hospital of North Norway, 9038 Tromsø, Norway
| | - Achilleas D. Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece
| |
Collapse
|
4
|
Váncza L, Tátrai P, Reszegi A, Baghy K, Kovalszky I. SPOCK1 with unexpected function. The start of a new career. Am J Physiol Cell Physiol 2022; 322:C688-C693. [PMID: 35235422 DOI: 10.1152/ajpcell.00033.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
SPOCK1, 2 and 3 are considered as matricellular proteoglycans without structural role. Their functions are only partly elucidated. SPOCK1 was detected in the brain as a member of the neural synapses, then in the neuromuscular junctions. It plays a role in the regulation of blood-brain barrier. Its best characterized activity was its oncogenic potential discovered in 2012. Its deleterious effect on tumor progression was detected on 36 different types of tumors by the end of 2020. However, its mode of actions is still not completely understood. Furthermore, even less was discovered about its physiological function. The fact that it was found to localize in the mitochondria and interfered with the lipid metabolism indicated, that the full discovery of SPOCK1 still waiting for us.
Collapse
Affiliation(s)
- Lóránd Váncza
- Semmelweis University 1st Department of Pathology and Experimental Cancer Research, Budapest, Hungary
| | | | - Andrea Reszegi
- Semmelweis University 1st Department of Pathology and Experimental Cancer Research, Budapest, Hungary
| | - Kornelia Baghy
- Semmelweis University 1st Department of Pathology and Experimental Cancer Research, Budapest, Hungary
| | - Ilona Kovalszky
- Semmelweis University 1st Department of Pathology and Experimental Cancer Research, Budapest, Hungary
| |
Collapse
|
5
|
SPOCK1 promotes metastasis in pancreatic cancer via NF-κB-dependent epithelial-mesenchymal transition by interacting with IκB-α. Cell Oncol (Dordr) 2021; 45:69-84. [PMID: 34855159 DOI: 10.1007/s13402-021-00652-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2021] [Indexed: 10/19/2022] Open
Abstract
BACKGROUND Sparc/osteonectin, cwcv and kazal-like domain proteoglycan 1 (SPOCK1) has been reported to function as an oncogene in a variety of cancer types. Increasing evidence suggests that SPOCK1 contributes to the metastatic cascade, including invasion, epithelial-mesenchymal transition (EMT) and micro-metastasis formation. As yet, however, the underlying mechanism is not clearly understood. Here, we evaluated the expression and clinicopathological significance of SPOCK1 in primary pancreatic cancer (PC) specimens and explored the mechanisms underlying SPOCK1-mediated PC cell growth and metastasis. METHODS The clinical relevance of SPOCK1 was evaluated in 81 patients with PC. The effect of SPOCK1 on proliferation, cell cycle progression, EMT and metastasis was examined in vitro and in vivo. The molecular mechanisms involved in SPOCK1-mediated regulation of NF-κB-dependent EMT were assessed in PC cell lines. RESULTS We found that SPOCK1 expression was increased in PC tissues and was associated with lymph node metastasis. Silencing or exogenous overexpression of SPOCK1 markedly altered the proliferation of PC cells through cell cycle transition. Overexpression of SPOCK1 promoted PC cell migration and invasion by regulating EMT progression. Moreover, we found that SPOCK1 contributes to EMT and metastasis by activating the NF-κB signalling pathway via direct interaction with IκBα. After NF-κB pathway inhibition by BAY11-7082, we found that PC cell motility and EMT induced by SPOCK1 were reversed. CONCLUSION From our data we conclude that SPOCK1 promotes PC metastasis via NF-κB-dependent EMT by interacting with IκBα. This newly identified mechanism may provide novel clues for the (targeted) treatment of PC patients.
Collapse
|
6
|
Zhu Y, Cheung ALM. Proteoglycans and their functions in esophageal squamous cell carcinoma. World J Clin Oncol 2021; 12:507-521. [PMID: 34367925 PMCID: PMC8317653 DOI: 10.5306/wjco.v12.i7.507] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/13/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a highly malignant disease that has a poor prognosis. Its high lethality is mainly due to the lack of symptoms at early stages, which culminates in diagnosis at a late stage when the tumor has already metastasized. Unfortunately, the common cancer biomarkers have low sensitivity and specificity in esophageal cancer. Therefore, a better understanding of the molecular mechanisms underlying ESCC progression is needed to identify novel diagnostic markers and therapeutic targets for intervention. The invasion of cancer cells into the surrounding tissue is a crucial step for metastasis. During metastasis, tumor cells can interact with extracellular components and secrete proteolytic enzymes to remodel the surrounding tumor microenvironment. Proteoglycans are one of the major components of extracellular matrix. They are involved in multiple processes of cancer cell invasion and metastasis by interacting with soluble bioactive molecules, surrounding matrix, cell surface receptors, and enzymes. Apart from having diverse functions in tumor cells and their surrounding microenvironment, proteoglycans also have diagnostic and prognostic significance in cancer patients. However, the functional significance and underlying mechanisms of proteoglycans in ESCC are not well understood. This review summarizes the proteoglycans that have been studied in ESCC in order to provide a comprehensive view of the role of proteoglycans in the progression of this cancer type. A long term goal would be to exploit these molecules to provide new strategies for therapeutic intervention.
Collapse
Affiliation(s)
- Yun Zhu
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | | |
Collapse
|
7
|
Wang B, Tang D, Liu Z, Wang Q, Xue S, Zhao Z, Feng D, Sheng C, Li J, Zhou Z. LINC00958 promotes proliferation, migration, invasion, and epithelial-mesenchymal transition of oesophageal squamous cell carcinoma cells. PLoS One 2021; 16:e0251797. [PMID: 34003875 PMCID: PMC8130937 DOI: 10.1371/journal.pone.0251797] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 05/03/2021] [Indexed: 02/03/2023] Open
Abstract
Oesophageal cancer is one of the deadliest cancers in the world. Oesophageal squamous cell carcinoma (ESCC) is the most prevalent histological type of oesophageal cancer. Oesophageal cancer has a poor prognosis because of its invasiveness. Thus, it is especially important to seek effective treatment methods. Research indicates that long non-coding RNAs (lncRNAs) play a significant role in the occurrence and development of oesophageal cancer. The aim of this study was to describe the role of LINC00958 in ESCC. Bioinformatics and real-time quantitative polymerase chain reaction (RT-qPCR) methods were utilized to predict and verify the expression of LINC00958 in ESCC. Related functional experiments, including cell proliferation, migration and invasion, were performed. In addition, a western blot and a dual luciferase reporter gene experiment were used to study the detailed carcinogenic mechanism of LINC00958. The results indicated there was a high expression of LINC00958 in ESCC, which promoted proliferation, migration, invasion and Epithelial–Mesenchymal Transition (EMT) of ESCC cells, and this effect may be via regulating miR-510-5p.
Collapse
Affiliation(s)
- Biqi Wang
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of environment and life, Beijing University of Technology, Beijing, China
| | - Duo Tang
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of environment and life, Beijing University of Technology, Beijing, China
| | - Zijia Liu
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of environment and life, Beijing University of Technology, Beijing, China
| | - Qian Wang
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of environment and life, Beijing University of Technology, Beijing, China
| | - Shan Xue
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of environment and life, Beijing University of Technology, Beijing, China
| | - Zijie Zhao
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of environment and life, Beijing University of Technology, Beijing, China
| | - Dongdong Feng
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of environment and life, Beijing University of Technology, Beijing, China
| | - Chao Sheng
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of environment and life, Beijing University of Technology, Beijing, China
| | - Jintao Li
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of environment and life, Beijing University of Technology, Beijing, China
| | - Zhixiang Zhou
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of environment and life, Beijing University of Technology, Beijing, China
- * E-mail:
| |
Collapse
|
8
|
Alshargabi R, Shinjo T, Iwashita M, Yamashita A, Sano T, Nishimura Y, Hayashi M, Zeze T, Fukuda T, Sanui T, Nishimura F. SPOCK1 induces adipose tissue maturation: New insights into the function of SPOCK1 in metabolism. Biochem Biophys Res Commun 2020; 533:1076-1082. [PMID: 33012508 DOI: 10.1016/j.bbrc.2020.09.129] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 09/26/2020] [Indexed: 11/24/2022]
Abstract
SPOCK1 is a calcium-binding matricellular proteoglycan that has been extensively studied in several cancer cells. Previously, we generated a mouse line overexpressing SPOCK1 (Spock1-Tg mouse) and showed that SPOCK1 might play an important role in drug-induced gingival overgrowth, indicating that it possesses physiological functions in non-cancer diseases as well. Although SPOCK1 was reported to be secreted from human adipocytes, its role in adipocyte physiology has not been addressed yet. In this study, SPOCK1 protein expression was confirmed in pancreas, adipose tissues, spleen, and liver of normal diet (ND)-fed mice. Interestingly, SPOCK1 was up-regulated in the pancreas and adipose tissues of the high-fat diet (HFD)-fed mice. Spock1-Tg mice fed with ND showed increased maturation in epididymal and inguinal adipose tissues. In addition, Spock1 overexpression strongly decreased expression of UCP-1 in adipose tissues, suggesting that SPOCK1 might regulate thermogenic function through suppression of UCP-1 expression. Finally, exogenous SPOCK1 treatment directly accelerated the differentiation of 3T3-L1 adipocytes, accompanied by the up-regulation of adipocyte differentiation-related gene expression. In conclusion, we demonstrated for the first time that SPOCK1 induced adipocyte differentiation via the up-regulation of adipogenesis-related genes.
Collapse
Affiliation(s)
- Rehab Alshargabi
- Section of Periodontology, Kyushu University Faculty of Dental Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takanori Shinjo
- Section of Periodontology, Kyushu University Faculty of Dental Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Misaki Iwashita
- Section of Periodontology, Kyushu University Faculty of Dental Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Akiko Yamashita
- Section of Periodontology, Kyushu University Faculty of Dental Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Tomomi Sano
- Section of Periodontology, Kyushu University Faculty of Dental Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yuki Nishimura
- Section of Periodontology, Kyushu University Faculty of Dental Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Masato Hayashi
- Section of Periodontology, Kyushu University Faculty of Dental Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Tatsuro Zeze
- Section of Periodontology, Kyushu University Faculty of Dental Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takao Fukuda
- Section of Periodontology, Kyushu University Faculty of Dental Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Terukazu Sanui
- Section of Periodontology, Kyushu University Faculty of Dental Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Fusanori Nishimura
- Section of Periodontology, Kyushu University Faculty of Dental Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
9
|
Yao LY, Ma J, Zeng XM, Ou-Yang J. MicroRNA-155-5p inhibits the invasion and migration of prostate cancer cells by targeting SPOCK1. Oncol Lett 2020; 20:353. [PMID: 33123264 PMCID: PMC7586282 DOI: 10.3892/ol.2020.12215] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 09/16/2020] [Indexed: 01/03/2023] Open
Abstract
The aim of the present study was to determine the effect of microRNA (miR)-155-5p on the expression of testican-1 (SPOCK1) and the invasion and migration of prostate cancer cells in vitro. Bioinformatics analysis and molecular biology assays revealed that SPOCK1 may be a direct target gene of miR-155-5p. In addition, a negative correlation was identified between SPCOK1 and miR-155-5p expression in prostate tumor tissues and cell lines. miR-155-5p mimic transfection inhibited SPOCK1 expression in PC3 cells and decreased cell migration and invasion abilities, while the expression of vimentin, N-cadherin, E-cadherin, β-catenin, matrix metalloproteinase (MMP)3 and MMP9 was upregulated. In summary, SPOCK1 was found to be a target gene of miR155-5p in prostate cancer, and miR-155-5p acts as a tumor-suppressor gene and may inhibit SPOCK1-mediated prostate cancer progression.
Collapse
Affiliation(s)
- Lin-Ya Yao
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China.,Department of Urology, Kunshan Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Kunshan, Jiangsu 215300, P.R. China
| | - Jun Ma
- Department of Urology, Kunshan Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Kunshan, Jiangsu 215300, P.R. China
| | - Xue-Ming Zeng
- Department of Urology, Kunshan Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Kunshan, Jiangsu 215300, P.R. China
| | - Jun Ou-Yang
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
10
|
Du Z, Lin Z, Wang Z, Liu D, Tian D, Xia L. SPOCK1 overexpression induced by platelet-derived growth factor-BB promotes hepatic stellate cell activation and liver fibrosis through the integrin α5β1/PI3K/Akt signaling pathway. J Transl Med 2020; 100:1042-1056. [PMID: 32291390 DOI: 10.1038/s41374-020-0425-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/16/2020] [Accepted: 03/20/2020] [Indexed: 12/13/2022] Open
Abstract
Sparc/osteonectin, cwcv, and kazal-like domain proteoglycan 1 (SPOCK1) is a matricellular protein which regulates cell proliferation, invasion, and survival but the function of SPOCK1 in liver fibrosis is obscure. In this study, we found that SPOCK1 expression increased significantly in fibrotic liver tissues and activated primary rat hepatic stellate cells (R-HSCs). SPOCK1 co-localized with α-smooth muscle actin (α-SMA) in the cytoplasm. Mechanistically, we found platelet-derived growth factor-BB (PDGF-BB) induced SPOCK1 expression by activating the PI3K/Akt/forkhead box M1 (FoxM1) signaling pathway. Intracellular SPOCK1 downregulation decreased the HSC activation, proliferation, and migration induced by PDGF-BB. Furthermore, intracellular SPOCK1 overexpression or recombinant SPOCK1 treatment promoted HSC activation, proliferation, and migration by activating the PI3K/Akt signaling pathway. Co-immunoprecipitation, double immunofluorescence staining indicated that SPOCK1 interacted with integrin α5β1, and neutralization of integrin α5β1 significantly reduced the role of recombinant SPOCK1 in HSCs. In vivo HSC-specific SPOCK1 knockdown following lentivirus administration dramatically ameliorated thioacetamide (TAA)-induced collagen deposition in rat livers. Collectively, our study indicates that SPOCK1 is crucial for hepatic fibrosis and it might be a promising therapeutic target.
Collapse
Affiliation(s)
- Zhipeng Du
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China.,Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Zhuoying Lin
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China.,Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Zhihui Wang
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China.,Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Danfei Liu
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China.,Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Dean Tian
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China. .,Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China.
| | - Limin Xia
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China. .,Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China.
| |
Collapse
|
11
|
Lavelle TJ, Alver TN, Heintz KM, Wernhoff P, Nygaard V, Nakken S, Øy GF, Bøe SL, Urbanucci A, Hovig E. Dysregulation of MITF Leads to Transformation in MC1R-Defective Melanocytes. Cancers (Basel) 2020; 12:cancers12071719. [PMID: 32605315 PMCID: PMC7408466 DOI: 10.3390/cancers12071719] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/20/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022] Open
Abstract
The MC1R/cAMP/MITF pathway is a key determinant for growth, differentiation, and survival of melanocytes and melanoma. MITF-M is the melanocyte-specific isoform of Microphthalmia-associated Transcription Factor (MITF) in human melanoma. Here we use two melanocyte cell lines to show that forced expression of hemagglutinin (HA) -tagged MITF-M through lentiviral transduction represents an oncogenic insult leading to consistent cell transformation of the immortalized melanocyte cell line Hermes 4C, being a melanocortin-1 receptor (MC1R) compound heterozygote, while not causing transformation of the MC1R wild type cell line Hermes 3C. The transformed HA-tagged MITF-M transduced Hermes 4C cells form colonies in soft agar and tumors in mice. Further, Hermes 4C cells display increased MITF chromatin binding, and transcriptional reprogramming consistent with an invasive melanoma phenotype. Mechanistically, forced expression of MITF-M drives the upregulation of the AXL tyrosine receptor kinase (AXL), with concomitant downregulation of phosphatase and tensin homolog (PTEN), leading to increased activation of the PI3K/AKT pathway. Treatment with AXL inhibitors reduces growth of the transformed cells by reverting AKT activation. In conclusion, we present a model system of melanoma development, driven by MITF-M in the context of MC1R loss of function, and independent of UV exposure. This model provides a basis for further studies of critical changes in the melanocyte transformation process.
Collapse
Affiliation(s)
- Timothy J. Lavelle
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway; (T.J.L.); (T.N.A.); (K.-M.H.); (P.W.); (V.N.); (S.N.); (G.F.Ø.)
| | - Tine Norman Alver
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway; (T.J.L.); (T.N.A.); (K.-M.H.); (P.W.); (V.N.); (S.N.); (G.F.Ø.)
| | - Karen-Marie Heintz
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway; (T.J.L.); (T.N.A.); (K.-M.H.); (P.W.); (V.N.); (S.N.); (G.F.Ø.)
| | - Patrik Wernhoff
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway; (T.J.L.); (T.N.A.); (K.-M.H.); (P.W.); (V.N.); (S.N.); (G.F.Ø.)
| | - Vegard Nygaard
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway; (T.J.L.); (T.N.A.); (K.-M.H.); (P.W.); (V.N.); (S.N.); (G.F.Ø.)
| | - Sigve Nakken
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway; (T.J.L.); (T.N.A.); (K.-M.H.); (P.W.); (V.N.); (S.N.); (G.F.Ø.)
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0424 Oslo, Norway
| | - Geir Frode Øy
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway; (T.J.L.); (T.N.A.); (K.-M.H.); (P.W.); (V.N.); (S.N.); (G.F.Ø.)
| | - Sigurd Leinæs Bøe
- Department of Medical Biochemistry, Oslo University Hospital, Radiumhospitalet, 0424 Oslo, Norway;
| | - Alfonso Urbanucci
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway; (T.J.L.); (T.N.A.); (K.-M.H.); (P.W.); (V.N.); (S.N.); (G.F.Ø.)
- Correspondence: (A.U.); (E.H.)
| | - Eivind Hovig
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway; (T.J.L.); (T.N.A.); (K.-M.H.); (P.W.); (V.N.); (S.N.); (G.F.Ø.)
- Department of Informatics, University of Oslo, 0316 Oslo, Norway
- Correspondence: (A.U.); (E.H.)
| |
Collapse
|
12
|
SPOCK1 is a novel inducer of epithelial to mesenchymal transition in drug-induced gingival overgrowth. Sci Rep 2020; 10:9785. [PMID: 32555336 PMCID: PMC7300011 DOI: 10.1038/s41598-020-66660-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 05/22/2020] [Indexed: 11/28/2022] Open
Abstract
Few studies have investigated the role of extracellular-matrix proteoglycans in the pathogenesis of drug-induced gingival overgrowth (DIGO). SPOCK1 is an extracellular proteoglycan that induces epithelial to mesenchymal transition (EMT) in several cancer cell lines and exhibits protease-inhibitory activity. However, the role of SPOCK1 in non-cancerous diseases such as DIGO has not been well-addressed. We demonstrated that the expression of SPOCK1, TGF-β1, and MMP-9 in calcium channel blocker-induced gingival overgrowth is higher than that in non-overgrowth tissues. Transgenic mice overexpressing Spock1 developed obvious gingival-overgrowth and fibrosis phenotypes, and positively correlated with EMT-like changes. Furthermore, in vitro data indicated a tri-directional interaction between SPOCK1, TGF-β1, and MMP-9 that led to gingival overgrowth. Our study shows that SPOCK1 up-regulation in a noncancerous disease and SPOCK1-induced EMT in gingival overgrowth occurs via cooperation and crosstalk between several potential signaling pathways. Therefore, SPOCK1 is a novel therapeutic target for gingival overgrowth and its expression is a potential risk of EMT induction in cancerous lesions.
Collapse
|
13
|
Sun LR, Li SY, Guo QS, Zhou W, Zhang HM. SPOCK1 Involvement in Epithelial-to-Mesenchymal Transition: A New Target in Cancer Therapy? Cancer Manag Res 2020; 12:3561-3569. [PMID: 32547193 PMCID: PMC7244346 DOI: 10.2147/cmar.s249754] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/22/2020] [Indexed: 12/24/2022] Open
Abstract
Background Cancer metastasis is the main obstacle to increasing the lifespan of cancer patients. Epithelial-to-mesenchymal transition (EMT) plays a significant role in oncogenic processes, including tumor invasion, intravasation, and micrometastasis formation, and is especially critical for cancer invasion and metastasis. The extracellular matrix (ECM) plays a crucial role in the occurrence of EMT corresponding to the change in adhesion between cells and matrices. Conclusion SPOCK1 is a critical regulator of the ECM and mediates EMT in cancer cells. This suggests an important role for SPOCK1 in tumorigenesis, migration and invasion. SPOCK1 is a critical regulator of some processes involved in cancer progression, including cancer cell proliferation, apoptosis and migration. Herein, the functions of SPOCK1 in cancer progression are expounded, revealing the association between SPOCK1 and EMT in cancer metastasis. SPOCK1 is a positive downstream regulator of transforming growth factor-β, and SPOCK1-mediated EMT regulates invasion and metastasis through the Wnt/β-catenin pathway and PI3K/Akt signaling pathway. It is of significance that SPOCK1 may be an attractive prognostic biomarker and therapeutic target in cancer treatment.
Collapse
Affiliation(s)
- Li-Rui Sun
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Si-Yu Li
- Department of Pathology, Hangzhou Third Hospital, Hangzhou, Zhejiang, People's Republic of China
| | - Qiu-Shi Guo
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Wei Zhou
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Hong-Mei Zhang
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| |
Collapse
|
14
|
Li J, Ke J, Fang J, Chen JP. A potential prognostic marker and therapeutic target: SPOCK1 promotes the proliferation, metastasis, and apoptosis of pancreatic ductal adenocarcinoma cells. J Cell Biochem 2019; 121:743-754. [PMID: 31478239 DOI: 10.1002/jcb.29320] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 07/15/2019] [Indexed: 01/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC), a common malignancy originated from the digestive system worldwide, has a poor clinical outcome. SPOCK1 is a widely investigated member of the Ca2+ -binding proteoglycan family and functions as an essential driver in several cancers. However, the complex regulatory role of SPOCK1 in PDAC is unclear. Bioinformatics analysis predicted an interrelationship between increased SPOCK1 expression and the clinical characteristics of patients with PDAC. The SPOCK1 expression levels in fresh tissue samples were confirmed, and SPOCK1 expression was then knocked down by lentivirus-mediated short hairpin RNA. Cell proliferation, metastasis, and apoptosis were detected through Cell Counting Kit-8, colony formation assays, invasion and migration assays, flow cytometric analysis, quantitative real-time polymerase chain reaction, and Western blot experiment. On the basis of the Cancer Genome Atlas database, we found a significantly higher level of SPOCK1 in PDAC than in adjacent nontumor tissues. Patients with PDAC with high SPOCK1 expression exhibited shorter overall survival time, as well as disease-free survival time. The knockdown of SPOCK1 significantly decreased the proliferation and metastasis of PCNA-1 and MIA PaCa-2 cells. Moreover, the knockdown of SPOCK1 led to cell cycle arrest in G0/G1 phase and increased the proportion of apoptotic PDAC cells by regulating members of the caspase and Bcl-2 families. Our data proved that SPOCK1 is a critical regulator of tumor proliferation and metastasis in PDAC cells. Therefore, SPOCK1 might be a potential prognostic and therapeutic target molecule in PDAC.
Collapse
Affiliation(s)
- Jia Li
- Laboratory of General Surgery, Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Jing Ke
- Laboratory of General Surgery, Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Jun Fang
- Laboratory of General Surgery, Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Jin-Peng Chen
- Laboratory of General Surgery, Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
15
|
Chien MH, Lin YW, Wen YC, Yang YC, Hsiao M, Chang JL, Huang HC, Lee WJ. Targeting the SPOCK1-snail/slug axis-mediated epithelial-to-mesenchymal transition by apigenin contributes to repression of prostate cancer metastasis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:246. [PMID: 31182131 PMCID: PMC6558790 DOI: 10.1186/s13046-019-1247-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 05/27/2019] [Indexed: 01/08/2023]
Abstract
Background Prostate cancer (PCa) is considered one of the most prevalent malignancy globally, and metastasis is a major cause of death. Apigenin (API) is a dietary flavonoid which exerts an antimetastatic effect in various cancer types. Sparc/osteonectin, cwcv, and kazal-like domains proteoglycan 1 (SPOCK1) is a crucial modulator of tumor growth and metastasis in cancers. However, the role and underlying regulatory mechanisms of SPOCK1 in the API-mediated antimetastatic effects of PCa remain unclear. Methods MTS, colony formation, wound-healing, and transwell assays were conducted to evaluate the effects of API on PCa cell proliferative, migratory, and invasive potentials. In vivo orthotopic bioluminescent xenograft model were employed to determine antitumor activity of API. PCa cells were transfected with either Snail-, Slug-, SPOCK1-overexpressing vector, or small hairpin (sh)SPOCK1 to determine the invasive abilities and expression levels of SPOCK1 and epithelial-to-mesenchymal transition (EMT) biomarkers in response to API treatment. Immunohistochemical (IHC) assays were carried out to evaluate the expression level of SPOCK1 in PCa xenografts and a PCa tissue array. Associations of SPOCK1 expression with clinicopathological features and prognoses of patients with PCa were analyzed by GEO or TCGA RNA-sequencing data. Results API significantly suppressed in vitro PCa cell proliferation, migration, and invasion and inhibited in vivo PCa tumor growth and metastasis. Moreover, survival times of animals were also prolonged after API treatment. Mechanistic studies revealed that API treatment resulted in downregulation of SPOCK1, which was accompanied by reduced expressions of mesenchymal markers and subsequent attenuation of invasive abilities of PCa cells. Overexpression of SPOCK1 in PCa xenografts resulted in significant promotion of tumor progression and relieved the anticancer activities induced by API, whereas knockdown of SPOCK1 had opposite effects. In clinical, SPOCK1 levels were higher in tumor tissues compared to non-tumor tissues, which was also significantly correlated with shorter disease-free survival in PCa patients. Conclusions Levels of SPOCK1 increase with the progression of human PCa which suggests that SPOCK1 may act as a prognostic marker or therapeutic target for patients with PCa. Suppression of SPOCK1-mediated EMT signaling contributes to the antiproliferative and antimetastatic activities of API in vitro and in vivo. Electronic supplementary material The online version of this article (10.1186/s13046-019-1247-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ming-Hsien Chien
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan.,Pulmonary Research Center, Wan Fang Hospital,
- Taipei Medical University, Taipei, Taiwan
| | - Yung-Wei Lin
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan.,Department of Urology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yu-Ching Wen
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan.,Department of Urology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yi-Chieh Yang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,The Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Michael Hsiao
- The Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Junn-Liang Chang
- Department of Pathology and Laboratory Medicine, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan.,Biomedical Engineering Department, Ming Chuan University, Taoyuan, Taiwan
| | - Hsiang-Ching Huang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wei-Jiunn Lee
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan. .,Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan. .,Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
16
|
Li P, Xiao Z, Luo J, Zhang Y, Lin L. MiR-139-5p, miR-940 and miR-193a-5p inhibit the growth of hepatocellular carcinoma by targeting SPOCK1. J Cell Mol Med 2019; 23:2475-2488. [PMID: 30710422 PMCID: PMC6433657 DOI: 10.1111/jcmm.14121] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 12/26/2022] Open
Abstract
The study was aimed to screen out miRNAs with differential expression in hepatocellular carcinoma (HCC), and to explore the influence of the expressions of these miRNAs and their target gene on HCC cell proliferation, invasion and apoptosis. MiRNAs with differential expression in HCC were screened out by microarray analysis. The common target gene of these miRNAs (miR‐139‐5p, miR‐940 and miR‐193a‐5p) was screened out by analysing the target genes profile (acquired from Targetscan) of the three miRNAs. Expression levels of miRNAs and SPOCK1 were determined by quantitative real time polymerase chain reaction (qRT‐PCR). The target relationships were verified by dual luciferase reporter gene assay and RNA pull‐down assay. Through 3‐(4,5‐dimethyl‐2‐thiazolyl)‐2,5‐diphenyl‐2‐H‐tetrazolium bromide,thiazolyl blue tetrazolium bromide (MTT) and transwell assays and flow cytometry, HCC cell viability, invasion and apoptosis were determined. In vivo experiment was conducted in nude mice to investigate the influence of three miRNAs on tumour growth. Down‐regulation of miR‐139‐5p, miR‐940 and miR‐193a‐5p was found in HCC. Overexpression of these miRNAs suppressed HCC cell viability and invasion, promoted apoptosis and inhibited tumour growth. SPOCK1, the common target gene of miR‐139‐5p, miR‐940 and miR‐193a‐5p, was overexpressed in HCC. SPOCK1 overexpression promoted proliferation and invasion, and restrained apoptosis of HCC cells. MiR‐139‐5p, miR‐940 and miR‐193a‐5p inhibited HCC development through targeting SPOCK1.
Collapse
Affiliation(s)
- Peng Li
- Cancer Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zhiwei Xiao
- Cancer Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jiajun Luo
- Cancer Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yaojun Zhang
- Department of Hepatobiliary Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Lizhu Lin
- Cancer Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
17
|
Theocharis AD, Karamanos NK. Proteoglycans remodeling in cancer: Underlying molecular mechanisms. Matrix Biol 2017; 75-76:220-259. [PMID: 29128506 DOI: 10.1016/j.matbio.2017.10.008] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 02/07/2023]
Abstract
Extracellular matrix is a highly dynamic macromolecular network. Proteoglycans are major components of extracellular matrix playing key roles in its structural organization and cell signaling contributing to the control of numerous normal and pathological processes. As multifunctional molecules, proteoglycans participate in various cell functions during morphogenesis, wound healing, inflammation and tumorigenesis. Their interactions with matrix effectors, cell surface receptors and enzymes enable them with unique properties. In malignancy, extensive remodeling of tumor stroma is associated with marked alterations in proteoglycans' expression and structural variability. Proteoglycans exert diverse functions in tumor stroma in a cell-specific and context-specific manner and they mainly contribute to the formation of a permissive provisional matrix for tumor growth affecting tissue organization, cell-cell and cell-matrix interactions and tumor cell signaling. Proteoglycans also modulate cancer cell phenotype and properties, the development of drug resistance and tumor stroma angiogenesis. This review summarizes the proteoglycans remodeling and their novel biological roles in malignancies with particular emphasis to the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Achilleas D Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiochemistry Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26500 Patras, Greece.
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiochemistry Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26500 Patras, Greece.
| |
Collapse
|
18
|
Chen D, Zhou H, Liu G, Zhao Y, Cao G, Liu Q. SPOCK1 promotes the invasion and metastasis of gastric cancer through Slug-induced epithelial-mesenchymal transition. J Cell Mol Med 2017; 22:797-807. [PMID: 28940639 PMCID: PMC5783867 DOI: 10.1111/jcmm.13357] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 07/20/2017] [Indexed: 01/05/2023] Open
Abstract
Metastasis is a crucial impediment to the successful treatment for gastric cancer. SPOCK1 has been demonstrated to facilitate cancer metastasis in certain types of cancers; however, the role of SPOCK1 in the invasion and metastasis of gastric cancer remains elusive. SPOCK1 and epithelial-mesenchymal transition (EMT)-related biomarkers were detected by immunohistochemistry and Western blot in gastric cancer specimens. Other methods including stably transfected against SPOCK1 into gastric cancer cells, Western blot, migration and invasion assays in vitro and metastasis assay in vivo were also performed. The elevated expression of SPOCK1 correlates with EMT-related markers in human gastric cancer tissue, clinical metastasis and a poor prognosis in patients with gastric cancer. In addition, knockdown of SPOCK1 expression significantly inhibits the invasion and metastasis of gastric cancer cells in vitro and in vivo, inversely, SPOCK1 overexpression results in the opposite effect. Interestingly, SPOCK1 expression has no effect on cell proliferation in vitro and in vivo. Regarding the mechanism(s) of SPOCK1-induced cells invasion and metastasis, we prove that Slug-induced EMT is involved in SPOCK1-facilitating gastric cancer cells invasion and metastasis. The elevated SPOCK1 expression is closely correlated with cancer metastasis and patient survival, and SPOCK1 promotes the invasion and metastasis of gastric cancer through Slug-mediated EMT, thereby possibly providing a novel therapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Dehu Chen
- Department of General Surgery, Taizhou People's Hospital, The Fifth Affiliated Hospital of Nantong University, Taizhou, Jiangsu, China
| | - Haihua Zhou
- Department of General Surgery, Taizhou People's Hospital, The Fifth Affiliated Hospital of Nantong University, Taizhou, Jiangsu, China
| | - Guiyuan Liu
- Department of General Surgery, Taizhou People's Hospital, The Fifth Affiliated Hospital of Nantong University, Taizhou, Jiangsu, China
| | - Yinghai Zhao
- Department of General Surgery, Taizhou People's Hospital, The Fifth Affiliated Hospital of Nantong University, Taizhou, Jiangsu, China
| | - Gan Cao
- Department of General Surgery, Taizhou People's Hospital, The Fifth Affiliated Hospital of Nantong University, Taizhou, Jiangsu, China
| | - Qinghong Liu
- Department of General Surgery, Taizhou People's Hospital, The Fifth Affiliated Hospital of Nantong University, Taizhou, Jiangsu, China
| |
Collapse
|
19
|
Wang Y, Wang W, Qiu E. SPOCK1 promotes the growth of Osteosarcoma cells through mTOR-S6K signaling pathway. Biomed Pharmacother 2017; 95:564-570. [PMID: 28869894 DOI: 10.1016/j.biopha.2017.08.116] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/20/2017] [Accepted: 08/24/2017] [Indexed: 12/17/2022] Open
Abstract
SPOCK1 belongs to the SPARC family, which plays an important role in proliferation, invasion and migration of various tumour cells. However, the functions of SPOCK1 in osteosarcoma cell growth and proliferation have not been fully elucidated. In the present study, we found that SPOCK1 is significantly upregulated in osteosarcoma tissue. Moreover, overexpression of SPOCK1 was associated with tumour size, metastasis, Enneking stage and pathological degree. Furthermore, knockdown of SPOCK1 expression suppressed the growth of osteosarcoma cells in vitro and reduced tumourigenicity in nude mice in vivo. Additionally, our data suggest that inactivation of the mTOR-S6K signaling pathway participated in inhibition of SPOCK1-mediated suppression of osteosarcoma cell growth. These findings represent a novel pathogenetic mechanism of osteosarcoma development that provides a potential target for therapeutic strategies for osteosarcoma.
Collapse
Affiliation(s)
- Yuming Wang
- Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Insititute, China.
| | - Wei Wang
- Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Insititute, China
| | - Enduo Qiu
- Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Insititute, China
| |
Collapse
|
20
|
Yan L, Sun K, Liu Y, Liang J, Cai K, Gui J. MiR-129-5p influences the progression of gastric cancer cells through interacting with SPOCK1. Tumour Biol 2017; 39:1010428317706916. [PMID: 28653880 DOI: 10.1177/1010428317706916] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The purpose of our study is to clarify the effect of microRNA-129-5p in the progression of human gastric cancer cells by regulating SPOCK1. The expression of microRNA-129-5p and SPOCK1 was tested by quantitative real-time polymerase chain reaction in tissues and cell lines. We validated the targeted relationship between microRNA-129-5p and SPOCK1 by dual luciferase reporter gene assay. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, colony formation, flow cytometry, transwell, and wound scratch assays were used to analyze the effects of microRNA-129-5p on SGC-7901 cell viability, proliferation, cell cycle and apoptosis, invasiveness, and migration. MicroRNA-129-5p was downregulated while SPOCK1 was upregulated in gastric cancer tissues and cell lines. The result of luciferase reporter gene assay demonstrated that microRNA-129-5p can target SPOCK1 by binding to the 3'untranslated region. The overexpression of microRNA-129-5p or the inhibition of SPOCK1 inhibited SGC-7901 viability, proliferation, migration, and invasion while promoted cell cycle arrest in G0/G1 stage and cell apoptosis. Our results suggested that microRNA-129-5p could directly specifically suppress SPOCK1, which might be one of the potential mechanisms in inhibiting cell processes including viability, proliferation, cell mitosis, migration, and invasiveness of gastric cancer cells.
Collapse
Affiliation(s)
- Lei Yan
- 1 Department of Histology and Embryology, Mudanjiang Medical University, Mudanjiang, People's Republic of China
| | - Kai Sun
- 2 Department of Biology, Mudanjiang Medical University, Mudanjiang, People's Republic of China
| | - Yang Liu
- 3 Department of Pathogenic Microbiology and Immunology, Mudanjiang Medical University, Mudanjiang, People's Republic of China
| | - Jun Liang
- 1 Department of Histology and Embryology, Mudanjiang Medical University, Mudanjiang, People's Republic of China
| | - Kerui Cai
- 1 Department of Histology and Embryology, Mudanjiang Medical University, Mudanjiang, People's Republic of China
| | - Jinqiu Gui
- 3 Department of Pathogenic Microbiology and Immunology, Mudanjiang Medical University, Mudanjiang, People's Republic of China
| |
Collapse
|
21
|
Huo X, Huo B, Wang H, Zhang H, Ma Z, Yang M, Wang H, Yu Z. Prognostic significance of the epithelial-mesenchymal transition factor zinc finger E-box-binding homeobox 2 in esophageal squamous cell carcinoma. Oncol Lett 2017; 14:2683-2690. [PMID: 28927031 PMCID: PMC5588115 DOI: 10.3892/ol.2017.6559] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 04/25/2017] [Indexed: 12/15/2022] Open
Abstract
Zinc finger E-box-binding homeobox 2 (ZEB2) has been reported to mediate epithelial-mesenchymal transition (EMT) and disease progression in several cancer types. However, the expression of ZEB2 in esophageal squamous cell carcinoma (OSCC) and its association with prognosis remains unclear. In the present study, a tissue microarray and immunohistochemistry were used to investigate ZEB2 and epithelial (E-)cadherin expression in OSCC tissues (n=218) and peritumoral esophageal tissues (POT; n=60). There was a significantly increased incidence of positive ZEB2 expression in OSCC tissues compared with the expression in POTs (P<0.012). By contrast, the incidence of positive E-cadherin expression in OSCC tissues was significantly decreased compared with the expression in POTs (P<0.004). ZEB2 expression in OSCC was associated with a number of clinicopathological factors, and it was also an independent predictive factor for shorter overall survival time (P<0.001). Overall, ZEB2 may promote OSCC metastasis and is a potential prognostic marker for malignancy.
Collapse
Affiliation(s)
- Xiaodong Huo
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin 300060, P.R. China.,Department of Oncology, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Bin Huo
- Department of Oncology, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Huixing Wang
- Pain Management Center, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Hongdian Zhang
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin 300060, P.R. China
| | - Zhao Ma
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin 300060, P.R. China
| | - Mingjian Yang
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin 300060, P.R. China
| | - Haitao Wang
- Department of Oncology, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Zhentao Yu
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin 300060, P.R. China
| |
Collapse
|
22
|
Regulation of SPOCK1 by dual strands of pre-miR-150 inhibit cancer cell migration and invasion in esophageal squamous cell carcinoma. J Hum Genet 2017; 62:935-944. [PMID: 28659612 DOI: 10.1038/jhg.2017.69] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 05/19/2017] [Accepted: 05/21/2017] [Indexed: 02/07/2023]
Abstract
Analysis of our microRNA (miRNA) expression signatures of human cancers based on RNA sequencing have shown that both strands of pre-miR-150, miR-150-5p (the guide strand) and miR-150-3p (the passenger strand), are significantly reduced in cancer tissues. We have investigated the functional significance of both strands of pre-miR-150 in cancer cells. The aim of this study was to investigate the antitumor function of these miRNAs and how these miRNAs regulated oncogenic targets in esophageal squamous cell carcinoma (ESCC). Ectopic expression studies demonstrated that both strands of pre-miR-150 miRNA inhibited ESCC cancer cell migration and invasion, indicating that both miR-150-5p and miR-150-3p acted as antitumor miRNAs. A combination of genome-wide gene expression analyses and in silico database searches showed that SPOCK1 (SPARC/osteonectin, cwcv and kazal-like domains proteoglycan 1) was a candidate target of miR-150-5p and miR-150-3p in ESCC cells. Luciferase reporter assays showed that SPOCK1 was directly regulated by these miRNAs. Silencing of SPOCK1 by small interfering RNA inhibited cancer cell migration and invasion. Overexpression of SPOCK1/SPOCK1 was confirmed by real-time PCR methods and immunohistochemistry. Taken together, downregulation of both strands of pre-miR-150 and overexpression of SPOCK1 are involved in ESCC pathogenesis. The involvement of passenger strand miRNAs in the regulation of cancer cell aggressiveness is a novel concept in RNA research.
Collapse
|
23
|
Veenstra VL, Damhofer H, Waasdorp C, Steins A, Kocher HM, Medema JP, van Laarhoven HW, Bijlsma MF. Stromal SPOCK1 supports invasive pancreatic cancer growth. Mol Oncol 2017; 11:1050-1064. [PMID: 28486750 PMCID: PMC5537700 DOI: 10.1002/1878-0261.12073] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/14/2017] [Accepted: 04/23/2017] [Indexed: 12/18/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is marked by an abundant stromal deposition. This stroma is suspected to harbor both tumor‐promoting and tumor‐suppressing properties. This is underscored by the disappointing results of stroma targeting in clinical studies. Given the complexity of tumor–stroma interaction in PDAC, there is a need to identify the stromal proteins that are predominantly tumor‐promoting. One possible candidate is SPOCK1 that we previously identified in a screening effort in PDAC. We extensively mined PDAC gene expression datasets, and used species‐specific transcript analysis in mixed‐species models for PDAC to study the patterns and driver mechanisms of SPOCK1 expression in PDAC. Advanced organotypic coculture models with primary patient‐derived tumor cells were used to further characterize the function of this protein. We found SPOCK1 expression to be predominantly stromal. Expression of SPOCK1 was associated with poor disease outcome. Coculture and ligand stimulation experiments revealed that SPOCK1 is expressed in response to tumor cell‐derived transforming growth factor‐beta. Functional assessment in cocultures demonstrated that SPOCK1 strongly affects the composition of the extracellular collagen matrix and by doing so, enables invasive tumor cell growth in PDAC. By defining the expression pattern and functional properties of SPOCK1 in pancreatic cancer, we have identified a stromal mediator of extracellular matrix remodeling that indirectly affects the aggressive behavior of PDAC cells. The recognition that stromal proteins actively contribute to the protumorigenic remodeling of the tumor microenvironment should aid the design of future clinical studies to target specific stromal targets.
Collapse
Affiliation(s)
- Veronique L Veenstra
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Academic Medical Center and Cancer Center Amsterdam, The Netherlands
| | - Helene Damhofer
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Academic Medical Center and Cancer Center Amsterdam, The Netherlands
| | - Cynthia Waasdorp
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Academic Medical Center and Cancer Center Amsterdam, The Netherlands
| | - Anne Steins
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Academic Medical Center and Cancer Center Amsterdam, The Netherlands
| | - Hemant M Kocher
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, UK
| | - Jan P Medema
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Academic Medical Center and Cancer Center Amsterdam, The Netherlands
| | - Hanneke W van Laarhoven
- Department of Medical Oncology, Academic Medical Center, University of Amsterdam, the Netherlands
| | - Maarten F Bijlsma
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Academic Medical Center and Cancer Center Amsterdam, The Netherlands
| |
Collapse
|
24
|
Li J, Xu L, Bao Z, Xu P, Chang H, Wu J, Bei Y, Xia L, Wu P, Cui G. High expression of PIWIL2 promotes tumor cell proliferation, migration and predicts a poor prognosis in glioma. Oncol Rep 2017; 38:183-192. [PMID: 28534979 DOI: 10.3892/or.2017.5647] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 12/05/2016] [Indexed: 11/05/2022] Open
Abstract
Piwi-like RNA-mediated gene silencing 2 (PIWIL2), has been reported as an oncogene tightly associated with the genesis and progression of various malignancies. Nevertheless, the function of the PIWIL2 protein in human gliomas has not yet been clarified. In this study, we sought to investigate the clinical significance of PIWIL2 expression and reveal its function in the pathological process of gliomas. Through western blot and immunohistochemical analyses we found that PIWIL2 was overexpressed in glioma tissues. Moreover, the expression level of PIWIL2 was also significantly correlated with the WHO grades of human gliomas and Ki-67 expression. Kaplan‑Meier curves indicated that PIWIL2 was a prognostic factor for the survival of glioma patients and a high expression of PIWIL2 was correlated with a poor prognosis. In vitro, knockdown of PIWIL2 in glioma cells was shown to induce cell cycle arrest and increase apoptosis. Furthermore, silencing of PIWIL2 expression also obviously suppressed the migration of glioma cells. All the results demonstrated that PIWIL2 plays a significant role in the pathogenesis of human gliomas and may be used as a potential diagnostic marker and a therapeutic target of glioma in the future.
Collapse
Affiliation(s)
- Jinquan Li
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Li Xu
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Zhen Bao
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Peng Xu
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Targets, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Hao Chang
- Department of Neurosurgery, Affiliated Wuxi Second Hospital of Nanjing Medical University, Wuxi, Jiangsu 214002, P.R. China
| | - Jingjing Wu
- Department of Oncology, Nantong Rich Hospital, Nantong, Jiangsu 226001, P.R. China
| | - Yuanqi Bei
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Targets, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Liuwan Xia
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Targets, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Peizhang Wu
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Targets, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Gang Cui
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
25
|
Zhao P, Guan HT, Dai ZJ, Ma YG, Liu XX, Wang XJ. Knockdown of SPOCK1 Inhibits the Proliferation and Invasion in Colorectal Cancer Cells by Suppressing the PI3K/Akt Pathway. Oncol Res 2017; 24:437-445. [PMID: 28281964 PMCID: PMC7838686 DOI: 10.3727/096504016x14685034103554] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Sparc/osteonectin, cwcv, and kazal-like domains proteoglycan (testican) 1 (SPOCK1), known as testican-1, were found to be involved in the development and progression of tumors. However, in colorectal cancer (CRC), the expression pattern of SPOCK1 and its functional role remain poorly investigated. In the present study, we explored the role of SPOCK1 in CRC. Our results demonstrated that SPOCK1 is overexpressed in CRC cell lines. SPOCK1 silencing significantly inhibited the proliferation in vitro and the tumor growth in vivo. Furthermore, SPOCK1 silencing significantly attenuated the migration/invasion by reversing the EMT process in CRC cells. Finally, knockdown of SPOCK1 obviously decreased the protein expression levels of p-PI3K and p-Akt in HCT116 cells. In total, our study demonstrated for the first time that knockdown of SPOCK1 inhibits the proliferation and invasion in CRC cells, possibly through the PI3K/Akt signaling pathway. Therefore, SPOCK1 may be a potential therapeutic target for the treatment of CRC.
Collapse
Affiliation(s)
- Ping Zhao
- Department of Gastroenterology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, P.R. China
| | | | | | | | | | | |
Collapse
|
26
|
A Genome-Wide Association Study Identifies Genetic Variants Associated with Mathematics Ability. Sci Rep 2017; 7:40365. [PMID: 28155865 PMCID: PMC5290743 DOI: 10.1038/srep40365] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 12/06/2016] [Indexed: 12/28/2022] Open
Abstract
Mathematics ability is a complex cognitive trait with polygenic heritability. Genome-wide association study (GWAS) has been an effective approach to investigate genetic components underlying mathematic ability. Although previous studies reported several candidate genetic variants, none of them exceeded genome-wide significant threshold in general populations. Herein, we performed GWAS in Chinese elementary school students to identify potential genetic variants associated with mathematics ability. The discovery stage included 494 and 504 individuals from two independent cohorts respectively. The replication stage included another cohort of 599 individuals. In total, 28 of 81 candidate SNPs that met validation criteria were further replicated. Combined meta-analysis of three cohorts identified four SNPs (rs1012694, rs11743006, rs17778739 and rs17777541) of SPOCK1 gene showing association with mathematics ability (minimum p value 5.67 × 10−10, maximum β −2.43). The SPOCK1 gene is located on chromosome 5q31.2 and encodes a highly conserved glycoprotein testican-1 which was associated with tumor progression and prognosis as well as neurogenesis. This is the first study to report genome-wide significant association of individual SNPs with mathematics ability in general populations. Our preliminary results further supported the role of SPOCK1 during neurodevelopment. The genetic complexities underlying mathematics ability might contribute to explain the basis of human cognition and intelligence at genetic level.
Collapse
|
27
|
Fan LC, Jeng YM, Lu YT, Lien HC. SPOCK1 Is a Novel Transforming Growth Factor-β-Induced Myoepithelial Marker That Enhances Invasion and Correlates with Poor Prognosis in Breast Cancer. PLoS One 2016; 11:e0162933. [PMID: 27626636 PMCID: PMC5023187 DOI: 10.1371/journal.pone.0162933] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 08/30/2016] [Indexed: 12/16/2022] Open
Abstract
In addition to contraction, myoepithelia have diverse paracrine effects, including a tumor suppression effect. However, certain myoepithelial markers have been shown to contribute to tumor progression. Transforming growth factor-β (TGF-β) is involved in the transdifferentiation of fibroblasts to contractile myofibroblasts. We investigated whether TGF-β can upregulate potential myoepithelial markers, which may have functional and clinicopathological significance in breast cancer. We found that TGF-β induced SPOCK1 expression in MCF10A, MCF12A, and M10 breast cells and demonstrated SPOCK1 as a novel myoepithelial marker that was immunolocalized within or beneath myoepithelia lining ductolobular units. A functional study showed that overexpression of SPOCK1 enhanced invasiveness in mammary immortalized and cancer cells. To further determine the biological significance of SPOCK1 in breast cancer, we investigated the expression of SPOCK1 in 478 invasive ductal carcinoma (IDC) cases through immunohistochemistry and correlated the expression with clinicopathological characteristics. SPOCK1 expression was significantly correlated with high pathological tumor size (P = 0.012), high histological grade (P = 0.013), the triple-negative phenotype (P = 0.022), and the basal-like phenotype (P = 0.026) and was correlated with a significantly poorer overall survival on univariate analysis (P = 0.001, log-rank test). Multivariate Cox regression analysis demonstrated that SPOCK1 expression maintained an independent poor prognostic factor of overall survival. Analysis of SPOCK1 expression on various non-IDC carcinoma subtypes showed an enrichment of SPOCK1 expression in metaplastic carcinoma, which is pathogenetically closely related to epithelial-mesenchymal transition (EMT). In conclusion, we identified SPOCK1 as a novel TGF-β–induced myoepithelial marker and further demonstrated that SPOCK1 enhanced invasion in breast cancer cells and correlated with poor prognosis in breast cancer clinical samples. The enrichment of SPOCK1 expression in metaplastic carcinoma and the correlation between SPOCK1 expression and high histological grading and basal-like phenotypes in IDC evidence an association between SPOCK1 and EMT.
Collapse
Affiliation(s)
- Li-Ching Fan
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Pathology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yung-Ming Jeng
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Pathology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yueh-Tong Lu
- Graduate Institute of Pathology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Huang-Chun Lien
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Pathology, College of Medicine, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
28
|
YANG JINGHUI, YANG QIWEI, YU JING, LI XIMENG, YU SHAN, ZHANG XUEWEN. SPOCK1 promotes the proliferation, migration and invasion of glioma cells through PI3K/AKT and Wnt/β-catenin signaling pathways. Oncol Rep 2016; 35:3566-76. [DOI: 10.3892/or.2016.4757] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 01/30/2016] [Indexed: 11/05/2022] Open
|
29
|
Zhou G, Ye J, Sun L, Zhang Z, Feng J. Overexpression of Dishevelled-2 contributes to proliferation and migration of human esophageal squamous cell carcinoma. J Mol Histol 2016; 47:287-95. [DOI: 10.1007/s10735-016-9674-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 03/29/2016] [Indexed: 12/11/2022]
|