1
|
Giarolla J, Holdaway KA, Nazari M, Aiad L, Sarkar B, Georg GI. Targeting cyclin-dependent kinase 2 (CDK2) interactions with cyclins and Speedy 1 (Spy1) for cancer and male contraception. Future Med Chem 2025; 17:607-627. [PMID: 40034037 PMCID: PMC11901406 DOI: 10.1080/17568919.2025.2463868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/31/2025] [Indexed: 03/05/2025] Open
Abstract
The review discusses progress in discovering cyclin-dependent kinase 2 (CDK2) inhibitors for cancer treatment and their potential for male contraception. It summarizes first-, second-, and third-generation CDK inhibitors and selective CDK2 inhibitors currently in clinical trials for cancer. Novel strategies to discover allosteric inhibitors, covalent inhibitors, and degraders are also discussed.
Collapse
Affiliation(s)
- Jeanine Giarolla
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
- Departamento de Farmacia, School of Pharmaceutical Sciences, University of São Paulo—USP, São Paulo, SP, Brazil
| | - Kelsey A. Holdaway
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Maryam Nazari
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Laila Aiad
- Department of Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - Bidisha Sarkar
- Department of Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - Gunda I. Georg
- Medicinal Chemistry, University of Minnesota Twin Cities, Minneapolis, MN, USA
| |
Collapse
|
2
|
Ferraiuolo RM, Fifield BA, Hamm C, Porter LA. Stabilization of c-Myc by the atypical cell cycle regulator, Spy1, decreases efficacy of breast cancer treatments. Breast Cancer Res Treat 2022; 196:17-30. [PMID: 36029387 DOI: 10.1007/s10549-022-06715-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/14/2022] [Indexed: 11/02/2022]
Abstract
PURPOSE c-Myc is frequently upregulated in breast cancers, however, targeting c-Myc has proven to be a challenge. Targeting of downstream mediators of c-Myc, such as the 'cyclin-like' cell cycle regulator Spy1, may be a viable therapeutic option in a subset of breast cancer subtypes. METHODS Mouse mammary tumor cells isolated from MMTV-Myc mice and human breast cancer cell lines were used to manipulate Spy1 levels followed by tamoxifen or chemotherapeutic treatment with a variety of endpoints. Patient samples from TNBC patients were obtained and constructed into a TMA and stained for c-Myc and Spy1 protein levels. RESULTS Over time, MMTV-Myc cells show a decreased response to tamoxifen treatment with increasing levels of Spy1 in the tamoxifen-resistant cells. shRNA against Spy1 re-establishes tamoxifen sensitivity. Spy1 was found to be highly elevated in human TNBC cell and patient samples, correlating to c-Myc protein levels. c-Myc was found to be stabilized by Spy1 and knocking down Spy1 in TNBC cells shows a significant increase in response to chemotherapy treatments. CONCLUSION Understanding the interplay between protein expression level and response to treatment is a critical factor in developing novel treatment options for breast cancer patients. These data have shown a connection between Spy1 and c-Myc protein levels in more aggressive breast cancer cells and patient samples. Furthermore, targeting c-Myc has proven difficult, these data suggest targeting Spy1 even when c-Myc is elevated can confer an advantage to current chemotherapies.
Collapse
Affiliation(s)
- Rosa-Maria Ferraiuolo
- Department of Biomedical Sciences, University of Windsor, Windsor, ON, N9B 3P4, Canada
| | - Bre-Anne Fifield
- Department of Biomedical Sciences, University of Windsor, Windsor, ON, N9B 3P4, Canada.,WE-SPARK Health Institute, Windsor, ON, N9B 3P4, Canada
| | - Caroline Hamm
- Department of Biomedical Sciences, University of Windsor, Windsor, ON, N9B 3P4, Canada.,Windsor Regional Cancer Centre, Windsor Regional Hospital, Windsor, ON, N9C 3E6, Canada.,Western University, Windsor, ON, N9B 3P4, Canada.,WE-SPARK Health Institute, Windsor, ON, N9B 3P4, Canada
| | - Lisa A Porter
- Department of Biomedical Sciences, University of Windsor, Windsor, ON, N9B 3P4, Canada. .,WE-SPARK Health Institute, Windsor, ON, N9B 3P4, Canada.
| |
Collapse
|
3
|
Xue Q, Li G, Cao Y, Yin J, Zhu Y, Zhang H, Zhou C, Shen H, Dou X, Su Y, Wang K, Zou J, Han W. Identification of genes involved in inbreeding depression of reproduction in Langshan chickens. Anim Biosci 2020; 34:975-984. [PMID: 33152217 PMCID: PMC8100482 DOI: 10.5713/ajas.20.0248] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 10/05/2020] [Indexed: 12/31/2022] Open
Abstract
Objective Inbreeding depression of reproduction is a major concern in the conservation of native chicken genetic resources. Here, based on the successful development of strongly inbred (Sinb) and weakly inbred (Winb) Langshan chickens, we aimed to evaluate inbreeding effects on reproductive traits and identify candidate genes involved in inbreeding depression of reproduction in Langshan chickens. Methods A two-sample t-test was performed to estimate the differences in phenotypic values of reproductive traits between Sinb and Winb chicken groups. Three healthy chickens with reproductive trait values around the group mean values were selected from each of the groups. Differences in ovarian and hypothalamus transcriptomes between the two groups of chickens were analyzed by RNA sequencing (RNA-Seq). Results The Sinb chicken group showed an obvious inbreeding depression in reproduction, especially for traits of age at the first egg and egg number at 300 days (p<0.01). Furthermore, 68 and 618 differentially expressed genes (DEGs) were obtained in the hypothalamus and ovary between the two chicken groups, respectively. In the hypothalamus, DEGs were mainly enriched in the pathways related to vitamin metabolism, signal transduction and development of the reproductive system, such as the riboflavin metabolism, Wnt signaling pathway, extracellular matrix-receptor interaction and focal adhesion pathways, including stimulated by retinoic acid 6, serpin family F member 1, secreted frizzled related protein 2, Wnt family member 6, and frizzled class receptor 4 genes. In the ovary, DEGs were significantly enriched in pathways associated with basic metabolism, including amino acid metabolism, oxidative phosphorylation, and glycosaminoglycan degradation. A series of key DEGs involved in folate biosynthesis (gamma-glutamyl hydrolase, guanosine triphosphate cyclohydrolase 1), oocyte meiosis and ovarian function (cytoplasmic polyadenylation element binding protein 1, structural maintenance of chromosomes 1B, and speedy/RINGO cell cycle regulator family member A), spermatogenesis and male fertility (prostaglandin D2 synthase 21 kDa), Mov10 RISC complex RNA helicase like 1, and deuterosome assembly protein 1) were identified, and these may play important roles in inbreeding depression in reproduction. Conclusion The results improve our understanding of the regulatory mechanisms underlying inbreeding depression in chicken reproduction and provide a theoretical basis for the conservation of species resources.
Collapse
Affiliation(s)
- Qian Xue
- Poultry Institute, Chinese Academy of Agricultural Science, Yangzhou 225000, China.,Science and Technology Innovation Center, Poultry Institute of Jiangsu Province, Yangzhou 225000, China
| | - Guohui Li
- Poultry Institute, Chinese Academy of Agricultural Science, Yangzhou 225000, China.,Science and Technology Innovation Center, Poultry Institute of Jiangsu Province, Yangzhou 225000, China
| | - Yuxia Cao
- Poultry Institute, Chinese Academy of Agricultural Science, Yangzhou 225000, China
| | - Jianmei Yin
- Poultry Institute, Chinese Academy of Agricultural Science, Yangzhou 225000, China.,Science and Technology Innovation Center, Poultry Institute of Jiangsu Province, Yangzhou 225000, China
| | - Yunfen Zhu
- Poultry Institute, Chinese Academy of Agricultural Science, Yangzhou 225000, China
| | - Huiyong Zhang
- Poultry Institute, Chinese Academy of Agricultural Science, Yangzhou 225000, China.,Science and Technology Innovation Center, Poultry Institute of Jiangsu Province, Yangzhou 225000, China
| | - Chenghao Zhou
- Poultry Institute, Chinese Academy of Agricultural Science, Yangzhou 225000, China.,Science and Technology Innovation Center, Poultry Institute of Jiangsu Province, Yangzhou 225000, China
| | - Haiyu Shen
- Poultry Institute, Chinese Academy of Agricultural Science, Yangzhou 225000, China
| | - Xinhong Dou
- Poultry Institute, Chinese Academy of Agricultural Science, Yangzhou 225000, China
| | - Yijun Su
- Poultry Institute, Chinese Academy of Agricultural Science, Yangzhou 225000, China
| | - Kehua Wang
- Poultry Institute, Chinese Academy of Agricultural Science, Yangzhou 225000, China
| | - Jianmin Zou
- Poultry Institute, Chinese Academy of Agricultural Science, Yangzhou 225000, China
| | - Wei Han
- Poultry Institute, Chinese Academy of Agricultural Science, Yangzhou 225000, China.,Science and Technology Innovation Center, Poultry Institute of Jiangsu Province, Yangzhou 225000, China
| |
Collapse
|
4
|
Gonzalez L, Nebreda AR. RINGO/Speedy proteins, a family of non-canonical activators of CDK1 and CDK2. Semin Cell Dev Biol 2020; 107:21-27. [PMID: 32317145 DOI: 10.1016/j.semcdb.2020.03.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/27/2020] [Accepted: 03/31/2020] [Indexed: 12/26/2022]
Abstract
Cyclin-dependent kinases (CDKs) require the binding to a regulatory subunit to acquire enzymatic activity, and cyclins are the canonical CDK activators. However, there are specific situations in which CDKs can be activated by non-cyclin proteins that are less characterized. This review focuses on the family of RINGO/Speedy proteins, which have no sequence amino acid homology to cyclins but can bind to and activate CDK1 and CDK2. Interestingly, RINGO/Speedy proteins can activate CDKs under conditions in which CDK-cyclin complexes would not be active, and there is evidence that RINGO/Speedy-activated CDKs can phosphorylate different sites than the cyclin-activated CDKs. RINGO/Speedy proteins were originally described in Xenopus oocytes, but their roles in mammalian cells have also been addressed. We will summarize the properties of RINGO/Speedy proteins and how they trigger CDK activation, and discuss recent studies that characterized their physiological functions. In particular, studies using genetically modified mice have shown that RingoA, also known as Spy1, plays a key role in meiosis regulation. Emerging evidence also suggests a potential role for RingoA/Spy1 in cancer.
Collapse
Affiliation(s)
- Laura Gonzalez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Angel R Nebreda
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain; ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain.
| |
Collapse
|
5
|
Munguía-Reyes A, Balderas-Martínez YI, Becerril C, Checa M, Ramírez R, Ortiz B, Meléndez-Zajgla J, Pardo A, Selman M. R-Spondin-2 Is Upregulated in Idiopathic Pulmonary Fibrosis and Affects Fibroblast Behavior. Am J Respir Cell Mol Biol 2019; 59:65-76. [PMID: 29345973 DOI: 10.1165/rcmb.2017-0115oc] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterized by the expansion of the myofibroblast population, excessive extracellular matrix accumulation, and destruction of the lung parenchyma. The R-spondin family (RSPO) comprises a group of proteins essential for development. Among them, RSPO2 is expressed primarily in the lungs, and its mutations cause severe defects in the respiratory tract. Interestingly, RSPO2 participates in the canonical Wingless/int1 pathway, a critical route in the pathogenesis of IPF. Thus, the aim of this study was to examine the expression and putative role of RSPO2 in this disease. We found that RSPO2 and its receptor leucine-rich G protein-coupled receptor 6 were upregulated in IPF lungs, where they localized primarily in fibroblasts and epithelial cells. Stimulation of IPF and normal lung fibroblasts with recombinant human RSPO2 resulted in the deregulation of numerous genes, although the transcriptional response was essentially distinct. In IPF fibroblasts, RSPO2 stimulation induced the up- or downregulation of several genes involved in the Wingless/int1 pathway (mainly from noncanonical signaling). In both normal and IPF fibroblasts, RSPO2 modifies the expression of genes implicated in several pathways, including the cell cycle and apoptosis. In accordance with gene expression, the stimulation of normal and IPF fibroblasts with RSPO2 significantly reduced cell proliferation and induced cell death. RSPO2 also inhibited collagen production and increased the expression of matrix metalloproteinase 1. Silencing RSPO2 with shRNA induced the opposite effects. Our findings demonstrate, for the first time to our knowledge, that RSPO2 is upregulated in IPF, where it appears to have an antifibrotic role.
Collapse
Affiliation(s)
- Adrián Munguía-Reyes
- 1 Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City, Mexico
| | - Yalbi I Balderas-Martínez
- 1 Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City, Mexico.,2 Cátedra Consejo Nacional de Ciencia y Tecnología (CONACyT)-INER, Mexico City, Mexico
| | - Carina Becerril
- 1 Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City, Mexico
| | - Marco Checa
- 1 Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City, Mexico
| | - Remedios Ramírez
- 3 Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico; and
| | - Blanca Ortiz
- 1 Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City, Mexico
| | | | - Annie Pardo
- 3 Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico; and
| | - Moisés Selman
- 1 Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City, Mexico
| |
Collapse
|
6
|
Wang XD, Zhu MW, Shan D, Wang SY, Yin X, Yang YQ, Wang TH, Zhang CT, Wang Y, Liang WW, Zhang J, Jiang HZ, Dong GT, Jiang HQ, Qi Y, Feng HL. Spy1, a unique cell cycle regulator, alters viability in ALS motor neurons and cell lines in response to mutant SOD1-induced DNA damage. DNA Repair (Amst) 2019; 74:51-62. [DOI: 10.1016/j.dnarep.2018.12.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 12/09/2018] [Accepted: 12/20/2018] [Indexed: 02/06/2023]
|
7
|
Expression profile and potential functional differentiation of the Speedy/RINGO family in mice. Gene 2019; 683:80-86. [PMID: 30316922 DOI: 10.1016/j.gene.2018.10.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/01/2018] [Accepted: 10/11/2018] [Indexed: 11/23/2022]
Abstract
As novel cyclin-dependent kinase (CDK) activators, Speedy/RINGO (hereafter named Speedy) proteins can directly regulate the cell cycle of vertebrates by binding to and activating various CDKs. Previous studies have shown that Speedy genes are highly associated with different types of cancer and other diseases. However, Speedy genes have not been systematically identified in mice, and their function and expression profiles remain elusive, which greatly hinders the functional and mechanistic study of Speedy genes in vivo. Here, we comprehensively identified Speedy genes in the mouse genome. Phylogenetic analysis showed that the Speedy gene family should be divided into three subfamilies, rather than the previously reported two subfamilies. Mice have two of the three subfamilies of Speedy genes, namely, subfamilies A and E. Speedy subfamily C genes have been lost from the mouse genome. By combining experimental and bioinformatics approaches, we found that the genes from subfamilies A and E have different expression profiles, indicating their functional divergence, which was also consistent with the phylogenetic results. The genes belonging to subfamily E showed only slightly different expression profiles, indicating their similar functions. Coexpression network analysis showed that the genes coexpressed with mouse Speedy genes were primarily enriched in reproduction-related mechanisms and there were significant functional differences between genes from subfamilies A and E, further demonstrating functional differentiation. In summary, we provide a comprehensive landscape (from evolution to expression and function) of the Speedy family in mice; we also demonstrate that Speedy genes mainly participate in reproduction-related mechanisms and that they have undergone functional differentiation in mice.
Collapse
|
8
|
Jin Q, Liu G, Bao L, Ma Y, Qi H, Yun Z, Dai Y, Zhang S. High Spy1 expression predicts poor prognosis in colorectal cancer. Cancer Manag Res 2018; 10:2757-2765. [PMID: 30147372 PMCID: PMC6101001 DOI: 10.2147/cmar.s169329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background Spy1 (SPDYA) is a new discovered cell cycle protein capable of promoting cell proliferation dependent on cyclin-dependent kinase-2 activation. However, to the best of our knowledge, the expression of Spy1 in colorectal cancer (CRC) tissues remains virtually unknown. Materials and methods In this retrospective study, we investigated the mRNA and protein expression levels of Spy1 in CRC tissues and corresponding non-cancerous tissues with the analyses of quantitative real-time polymerase chain reaction, western blotting, and immunohistochemistry. In our research, the prognostic significances of Spy1 expression were further explored by univariate and multivariate survival analyses of 203 patients who were followed up. Results The results demonstrated that the levels of Spy1 mRNA were significantly higher in CRC tissues compared with corresponding non-cancerous tissues (p=0.0002). The results of immunohistochemistry demonstrated that the expressions of Spy1 were significantly associated with clinicopathological parameters, including T stage (χ2=7.126, p=0.028) and TNM stage (χ2=9.461, p=0.009). Kaplan-Meier analysis results indicated that high Spy1 expression (HR=2.573, p<0.001) and TNM stage (HR=1.494, p=0.011) were independent factors to predict poor prognosis for patients with CRC. Conclusion We concluded that high Spy1 expression is significantly associated with unfavorable prognosis in CRC and could serve as a potential prognostic marker in clinical diagnosis of CRC.
Collapse
Affiliation(s)
- Qin Jin
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, People's Republic of China,
| | - Gang Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot, People's Republic of China,
| | - Luri Bao
- Department of Pathology, Inner Mongolia Medical University, Hohhot, People's Republic of China
| | - Yuzhen Ma
- Centre of Reproductive Medicine, Inner Mongolia Hospital, Hohhot, People's Republic of China
| | - Huidong Qi
- Medical School of Nantong University, Nantong, People's Republic of China
| | - Zhizhong Yun
- Centre of Reproductive Medicine, Inner Mongolia Hospital, Hohhot, People's Republic of China
| | - Yanfeng Dai
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot, People's Republic of China,
| | - Shu Zhang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, People's Republic of China,
| |
Collapse
|
9
|
McGrath DA, Fifield BA, Marceau AH, Tripathi S, Porter LA, Rubin SM. Structural basis of divergent cyclin-dependent kinase activation by Spy1/RINGO proteins. EMBO J 2017; 36:2251-2262. [PMID: 28666995 DOI: 10.15252/embj.201796905] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/27/2017] [Accepted: 06/02/2017] [Indexed: 01/15/2023] Open
Abstract
Cyclin-dependent kinases (Cdks) are principal drivers of cell division and are an important therapeutic target to inhibit aberrant proliferation. Cdk enzymatic activity is tightly controlled through cyclin interactions, posttranslational modifications, and binding of inhibitors such as the p27 tumor suppressor protein. Spy1/RINGO (Spy1) proteins bind and activate Cdk but are resistant to canonical regulatory mechanisms that establish cell-cycle checkpoints. Cancer cells exploit Spy1 to stimulate proliferation through inappropriate activation of Cdks, yet the mechanism is unknown. We have determined crystal structures of the Cdk2-Spy1 and p27-Cdk2-Spy1 complexes that reveal how Spy1 activates Cdk. We find that Spy1 confers structural changes to Cdk2 that obviate the requirement of Cdk activation loop phosphorylation. Spy1 lacks the cyclin-binding site that mediates p27 and substrate affinity, explaining why Cdk-Spy1 is poorly inhibited by p27 and lacks specificity for substrates with cyclin-docking sites. We identify mutations in Spy1 that ablate its ability to activate Cdk2 and to proliferate cells. Our structural description of Spy1 provides important mechanistic insights that may be utilized for targeting upregulated Spy1 in cancer.
Collapse
Affiliation(s)
- Denise A McGrath
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, USA
| | - Bre-Anne Fifield
- Department of Biological Sciences, University of Windsor, Windsor, ON, Canada
| | - Aimee H Marceau
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, USA
| | - Sarvind Tripathi
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, USA
| | - Lisa A Porter
- Department of Biological Sciences, University of Windsor, Windsor, ON, Canada
| | - Seth M Rubin
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, USA
| |
Collapse
|