1
|
Chen J, Sun T, Lin B, Wu B, Wu J. The Essential Role of Proteoglycans and Glycosaminoglycans in Odontogenesis. J Dent Res 2024; 103:345-358. [PMID: 38407002 DOI: 10.1177/00220345231224228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024] Open
Abstract
Tooth development and regeneration are regulated through a complex signaling network. Previous studies have focused on the exploration of intracellular signaling regulatory networks, but the regulatory roles of extracellular networks have only been revealed recently. Proteoglycans, which are essential components of the extracellular matrix (ECM) and pivotal signaling molecules, are extensively involved in the process of odontogenesis. Proteoglycans are composed of core proteins and covalently attached glycosaminoglycan chains (GAGs). The core proteins exhibit spatiotemporal expression patterns during odontogenesis and are pivotal for dental tissue formation and periodontium development. Knockout of core protein genes Biglycan, Decorin, Perlecan, and Fibromodulin has been shown to result in structural defects in enamel and dentin mineralization. They are also closely involved in the development and homeostasis of periodontium by regulating signaling transduction. As the functional component of proteoglycans, GAGs are negatively charged unbranched polysaccharides that consist of repeating disaccharides with various sulfation groups; they provide binding sites for cytokines and growth factors in regulating various cellular processes. In mice, GAG deficiency in dental epithelium leads to the reinitiation of tooth germ development and the formation of supernumerary incisors. Furthermore, GAGs are critical for the differentiation of dental stem cells. Inhibition of GAGs assembly hinders the differentiation of ameloblasts and odontoblasts. In summary, core proteins and GAGs are expressed distinctly and exert different functions at various stages of odontogenesis. Given their unique contributions in odontogenesis, this review summarizes the roles of proteoglycans and GAGs throughout the process of odontogenesis to provide a comprehensive understanding of tooth development.
Collapse
Affiliation(s)
- J Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - T Sun
- Department of Periodontology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - B Lin
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - B Wu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
- Southern Medical University-Shenzhen Stomatology Hospital (Pingshan), ShenZhen, China
| | - J Wu
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Wang H, Wang X, Huang L, Wang C, Yu F, Ye L. Overburdened ferroptotic stress impairs tooth morphogenesis. eLife 2023; 12:RP88745. [PMID: 37991825 PMCID: PMC10665014 DOI: 10.7554/elife.88745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023] Open
Abstract
The role of regulated cell death in organ development, particularly the impact of non-apoptotic cell death, remains largely uncharted. Ferroptosis, a non-apoptotic cell death pathway known for its iron dependence and lethal lipid peroxidation, is currently being rigorously investigated for its pathological functions. The balance between ferroptotic stress (iron and iron-dependent lipid peroxidation) and ferroptosis supervising pathways (anti-lipid peroxidation systems) serves as the key mechanism regulating the activation of ferroptosis. Compared with other forms of regulated necrotic cell death, ferroptosis is critically related to the metabolism of lipid and iron which are also important in organ development. In our study, we examined the role of ferroptosis in organogenesis using an ex vivo tooth germ culture model, investigating the presence and impact of ferroptotic stress on tooth germ development. Our findings revealed that ferroptotic stress increased during tooth development, while the expression of glutathione peroxidase 4 (Gpx4), a crucial anti-lipid peroxidation enzyme, also escalated in dental epithelium/mesenchyme cells. The inhibition of ferroptosis was found to partially rescue erastin-impaired tooth morphogenesis. Our results suggest that while ferroptotic stress is present during tooth organogenesis, its effects are efficaciously controlled by the subsequent upregulation of Gpx4. Notably, an overabundance of ferroptotic stress, as induced by erastin, suppresses tooth morphogenesis.
Collapse
Affiliation(s)
- Haisheng Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan UniversityChengduChina
| | - Xiaofeng Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan UniversityChengduChina
- Department of Endodontics, West China School of Stomatology, Sichuan UniversityChengduChina
| | - Liuyan Huang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan UniversityChengduChina
- Department of Endodontics, West China School of Stomatology, Sichuan UniversityChengduChina
| | - Chenglin Wang
- Department of Endodontics, West China School of Stomatology, Sichuan UniversityChengduChina
| | - Fanyuan Yu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan UniversityChengduChina
- Department of Endodontics, West China School of Stomatology, Sichuan UniversityChengduChina
| | - Ling Ye
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan UniversityChengduChina
- Department of Endodontics, West China School of Stomatology, Sichuan UniversityChengduChina
| |
Collapse
|
3
|
Wei L, Xu Y, Du M, Fan Y, Zou R, Xu X, Zhang Q, Zhang YZ, Wang W, Li F. A novel 4-O-endosulfatase with high potential for the structure-function studies of chondroitin sulfate/dermatan sulfate. Carbohydr Polym 2023; 305:120508. [PMID: 36737182 DOI: 10.1016/j.carbpol.2022.120508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/15/2022] [Accepted: 12/24/2022] [Indexed: 12/30/2022]
Abstract
The sulfation patterns of chondroitin sulfate (CS)/dermatan sulfate (DS), which encode unique biological information, play critical roles in the various biological functions of CS/DS chains. CS/DS sulfatases, which can specifically hydrolyze sulfate groups, could potentially be essential tools for deciphering and changing the biological information encoded by these sulfation patterns. However, endosulfatase with high activity to efficiently hydrolyze the sulfate groups inside CS/DS polysaccharides have rarely been identified, which hinders the practical applications of CS/DS sulfatases. Herein, a novel CS/DS 4-O-endosulfatase (endoBI4SF) with a strong ability to completely remove 4-O-sulfated groups inside various CS/DS polysaccharides was identified and successfully used to investigate the biological roles of 4-O-sulfated CS/DS in vitro and in vivo. This study provides a much-needed tool to tailor the sulfation patterns and explore the related functions of 4-O-sulfated CS/DS chains in vitro and in vivo.
Collapse
Affiliation(s)
- Lin Wei
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology and State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Rd, Qingdao 266237, People's Republic of China
| | - Yingying Xu
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology and State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Rd, Qingdao 266237, People's Republic of China
| | - Min Du
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology and State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Rd, Qingdao 266237, People's Republic of China
| | - Ying Fan
- Qingdao Special Servicemen Recuperation Center of PLA Navy, Qingdao 266071, People's Republic of China
| | - Ruyi Zou
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology and State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Rd, Qingdao 266237, People's Republic of China
| | - Xiangyu Xu
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology and State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Rd, Qingdao 266237, People's Republic of China
| | - Qingdong Zhang
- School of Life Science and Technology, Weifang Medical University, 7166 Baotong West Street, Weifang 261053, People's Republic of China
| | - Yu-Zhong Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, People's Republic of China
| | - Wenshuang Wang
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology and State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Rd, Qingdao 266237, People's Republic of China.
| | - Fuchuan Li
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology and State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Rd, Qingdao 266237, People's Republic of China; College of Marine Life Sciences, Ocean University of China, Qingdao, People's Republic of China.
| |
Collapse
|
4
|
Wei L, Zhang Q, Lu D, Du M, Xu X, Wang W, Zhang YZ, Yuan X, Li F. Identification and Action Patterns of Two Chondroitin Sulfate Sulfatases From a Marine Bacterium Photobacterium sp. QA16. Front Microbiol 2022; 12:775124. [PMID: 35140691 PMCID: PMC8819143 DOI: 10.3389/fmicb.2021.775124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/24/2021] [Indexed: 11/13/2022] Open
Abstract
Chondroitin sulfate (CS)/dermatan sulfate (DS) is a kind of sulfated polyanionic, linear polysaccharide belonging to glycosaminoglycan. CS/DS sulfatases, which specifically hydrolyze sulfate groups from CS/DS oligo-/polysaccharides, are potential tools for structural and functional studies of CD/DS. However, only a few sulfatases have been reported and characterized in detail to date. In this study, two CS/DS sulfatases, PB_3262 and PB_3285, were identified from the marine bacterium Photobacterium sp. QA16 and their action patterns were studied in detail. PB_3262 was characterized as a novel 4-O-endosulfatase that can effectively and specifically hydrolyze the 4-O-sulfate group of disaccharide GlcUAβ1–3GalNAc(4-O-sulfate) but not GlcUAβ1–3GalNAc(4,6-O-sulfate) and IdoUAα1–3GalNAc(4-O-sulfate) in CS/DS oligo-/polysaccharides, which is very different from the identified 4-O-endosulfatases in the substrate profile. In contrast, PB_3285 specifically hydrolyzes the 6-O-sulfate groups of GalNAc(6-O-sulfate) residues located at the reducing ends of the CS chains and is the first recombinantly expressed 6-O-exosulfatase to effectively act on CS oligosaccharides.
Collapse
Affiliation(s)
- Lin Wei
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao, China
| | - Qingdong Zhang
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao, China
- School of Life Sciences and Technology, Weifang Medical University, Weifang, China
| | - Danrong Lu
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao, China
- School of Life Sciences and Technology, Weifang Medical University, Weifang, China
| | - Min Du
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao, China
| | - Xiangyu Xu
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao, China
| | - Wenshuang Wang
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao, China
| | - Yu-Zhong Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xunyi Yuan
- Department of General Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
- *Correspondence: Xunyi Yuan,
| | - Fuchuan Li
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao, China
- Fuchuan Li,
| |
Collapse
|
5
|
Wang Z, Sun J, Li Y, Song G, Su H, Yu W, Gong Q. Cloning, expression, and characterization of a glycosaminoglycan lyase from Vibrio sp. H240. Enzyme Microb Technol 2021; 154:109952. [PMID: 34871823 DOI: 10.1016/j.enzmictec.2021.109952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/04/2021] [Accepted: 11/15/2021] [Indexed: 11/29/2022]
Abstract
Glycosaminoglycan lyase is an effective tool for the functional studies of glycosaminoglycans and for the preparation of oligosaccharides. In this study, a new glycosaminoglycan lyase HCLaseV with a molecular weight of 90 kDa was cloned, expressed, and characterized from Vibrio sp. H240. The lyase belonged to the polysaccharide lyase (PL)- 8 family. HCLaseV showed enzyme activities toward chondroitin sulfate A, chondroitin sulfate B, chondroitin sulfate C, and hyaluronic acid. HCLaseV exhibited the highest activity against HA at pH 7.0 and 40 °C. HCLaseV was an endo-type enzyme whose degradation end-product was unsaturated disaccharides. Ca2+ inhibited the activity of HCLaseV to a certain extent, which was different from most of the enzymes in the PL-8 family. Mutagenesis studies showed that the Ca2+ inhibition might be related to the Asn244 residue. The sequence homology was evaluated by mutagenesis studies, and the catalytic residues in HCLaseV were presumed to be His278, Trp485, and Tyr287. These characteristics are helpful for further basic research and application.
Collapse
Affiliation(s)
- Zheng Wang
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, PR China; Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China; Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Junhao Sun
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, PR China; Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China; Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Yunlu Li
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, PR China; Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China; Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Guanrui Song
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, PR China; Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China; Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Hai Su
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, PR China; Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China; Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Wengong Yu
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, PR China; Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China; Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Qianhong Gong
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, PR China; Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China; Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China.
| |
Collapse
|
6
|
Sánchez N, González-Ramírez MC, Contreras EG, Ubilla A, Li J, Valencia A, Wilson A, Green JBA, Tucker AS, Gaete M. Balance Between Tooth Size and Tooth Number Is Controlled by Hyaluronan. Front Physiol 2020; 11:996. [PMID: 32982773 PMCID: PMC7476214 DOI: 10.3389/fphys.2020.00996] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/22/2020] [Indexed: 12/20/2022] Open
Abstract
While the function of proteins and genes has been widely studied during vertebrate development, relatively little work has addressed the role of carbohydrates. Hyaluronan (HA), also known as hyaluronic acid, is an abundant carbohydrate in embryonic tissues and is the main structural component of the extracellular matrix of epithelial and mesenchymal cells. HA is able to absorb large quantities of water and can signal by binding to cell-surface receptors. During organ development and regeneration, HA has been shown to regulate cell proliferation, cell shape, and migration. Here, we have investigated the function of HA during molar tooth development in mice, in which, similar to humans, new molars sequentially bud off from a pre-existing molar. Using an ex vivo approach, we found that inhibiting HA synthesis in culture leads to a significant increase in proliferation and subsequent size of the developing molar, while the formation of sequential molars was inhibited. By cell shape analysis, we observed that inhibition of HA synthesis caused an elongation and reorientation of the major cell axes, indicating that disruption to cellular orientation and shape may underlie the observed phenotype. Lineage tracing demonstrated the retention of cells in the developing first molar (M1) at the expense of the generation of a second molar (M2). Our results highlight a novel role for HA in controlling proliferation, cell orientation, and migration in the developing tooth, impacting cellular decisions regarding tooth size and number.
Collapse
Affiliation(s)
- Natalia Sánchez
- Department of Anatomy, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | - Angélica Ubilla
- Department of Anatomy, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jingjing Li
- Centre for Craniofacial and Regenerative Biology, King's College London, London, United Kingdom
| | - Anyeli Valencia
- Department of Anatomy, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Andrés Wilson
- Department of Anatomy, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jeremy B A Green
- Centre for Craniofacial and Regenerative Biology, King's College London, London, United Kingdom
| | - Abigail S Tucker
- Centre for Craniofacial and Regenerative Biology, King's College London, London, United Kingdom
| | - Marcia Gaete
- Department of Anatomy, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
7
|
Javir G, Joshi K, Khedkar V, Rojatkar S. 6 α-Hydroxy-4[14], 10[15]-guainadien-8β, 12-olide induced cell cycle arrest via modulation of EMT and Wnt/β-catenin pathway in HER-2 positive breast cancer cells. J Steroid Biochem Mol Biol 2020; 197:105514. [PMID: 31678110 DOI: 10.1016/j.jsbmb.2019.105514] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/19/2019] [Accepted: 10/24/2019] [Indexed: 12/12/2022]
Abstract
Cyathocline purpurea has potential biological activities and has been widely used in traditional Chinese and Ayurvedic medicine. The aim of the present study is to elucidate the anticancer effect of its 6 α-hydroxy-4[14], 10[15]-guainadien-8β, 12-olide (SRCP1) against HER-2 positive subtype of breast carcinoma. Anticancer effect of SRCP1 was assessed by cell viability, senescence, apoptosis, cell cycle, DNA synthesis, and gene expression assays. The activity was further validated by the molecular docking study. SRCP1 inhibits human HER-2 positive breast cancer growth via inhibition of DNA synthesis in a dose-dependent manner. SRCP1 induces cell cycle arrest at G2/M phase, late apoptosis, and necrosis. Further, it induces senescence causing reduction in migration via down-regulation of EMT. A remarkable increase in the number of necrotic cells and Annexin-V staining revealed that exposure to SRCP1 triggers late apoptosis. Treatment with SRCP1 increased E-cadherin, p21, p53, ER-α expression and decreased β-catenin, MMP-9, snail1, TNF-α expression. SRCP1 showed binding affinity towards an active site of the HER-2 receptor. Our results of molecular docking and biological assays demonstrated the potent anticancer activity of SRCP1 in MDA-MB-453 cells via multiple pathways including EMT, TNF-α, and Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Gitanjali Javir
- Department of Technology, Savitribai Phule Pune University, Ganeshkhind, Pune, Maharashtra, 411 007, India; Department of Biotechnology, Sinhgad College of Engineering, Affiliated to Savitribai Phule Pune University, Vadgaon (Bk.), Pune, Maharashtra, 411 041, India.
| | - Kalpana Joshi
- Department of Biotechnology, Sinhgad College of Engineering, Affiliated to Savitribai Phule Pune University, Vadgaon (Bk.), Pune, Maharashtra, 411 041, India.
| | - Vijay Khedkar
- Department of Pharmaceutical Chemistry, SVKM's Institute of Pharmacy, Survey No. 499, Plot No-03, Mumbai-Agra National Highway, Dhule, Maharashtra, 424001, India.
| | - Supada Rojatkar
- CSIR-National Chemical Laboratory, Dr Homi Bhabha Rd, Pashan, Pune, Maharashtra, 411 008, India.
| |
Collapse
|