1
|
Park SJ, An SY, An YJ, Kim KS, Kim H, Cho JH, Lee YC. Promotion of neurite outgrowth by 3,5,7,3',4'-pentamethoxyflavone is mediated through ERK signaling pathway in Neuro2a cells. J Nat Med 2024; 78:599-607. [PMID: 38662302 DOI: 10.1007/s11418-024-01809-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/26/2024] [Indexed: 04/26/2024]
Abstract
In this study, the effects of 3,5,7,3',4'-pentamethoxyflavone (KP1), a major bioactive ingredient isolated from the Kaempferia parviflora rhizomes, on a neurite outgrowth in Neuro2a cells and its mechanism have been investigated. KP1 increased concentration-dependently the percentage of neurite-bearing cells. KP1 showed a remarkable capability to elicit neurite outgrowth in Neuro2a cells, as evidenced by morphological alterations and immunostaining using anti-class III β-tubulin and anti-NeuN antibodies. KP1 also displayed a higher neurogenic activity than retinoic acid (RA), a promoter of neurite outgrowth in Neuro2a cells. KP1 treatment caused significant elevation in phosphorylation of extracellular signal-regulated kinase (ERK), p38 mitogen-activated protein kinase (p38 MAPK) and glycogen synthase kinase-3β (GSK-3β). However, KP1-triggered neurite outgrowth was markedly inhibited by treatment with the ERK inhibitor U0126, whereas p38 MAPK inhibitor SB203580 and GSK-3β inhibitor SB216763 did not influence KP1-induced neurite outgrowth. These results demonstrate that KP1 elicits neurite outgrowth and triggers cell differentiation of Neuro2a cells through ERK signal pathway.
Collapse
Affiliation(s)
- Shin-Ji Park
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, 604-714, South Korea
| | - So-Young An
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, 604-714, South Korea
| | - Yeon Jin An
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, 604-714, South Korea
| | - Kyoung-Sook Kim
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, 604-714, South Korea
| | - Hyunju Kim
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, 604-714, South Korea
| | - Jong Hyun Cho
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, 604-714, South Korea.
| | - Young-Choon Lee
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, 604-714, South Korea.
| |
Collapse
|
2
|
Li Z, Zhang W, Xu J, Mo X. Cdk1 protects against oxygen-glucose deprivation and reperfusion-induced Golgi fragmentation and apoptosis through mediating GM130 phosphorylation. J Mol Histol 2023; 54:609-619. [PMID: 37831422 DOI: 10.1007/s10735-023-10164-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 09/30/2023] [Indexed: 10/14/2023]
Abstract
Increasing evidence has indicated that the Golgi apparatus (GA) is involved in the development of cerebral ischemia-reperfusion (IR) injury. Finding effective neuroprotective agents targeting GA has become a priority in the treatment of ischemic stroke. GM130, a key structural protein present on the cis-face of the GA, maintains its structure through its phosphorylation and dephosphorylation. However, the molecular mechanisms by which GM130 regulates IR-induced neuronal apoptosis are not well elucidated. Mouse neuroblastoma Neuro2a (N2A) cells were subjected to oxygen-glucose deprivation and reperfusion (OGDR) insult. Cell proliferation and apoptosis were determined using MTT assay, TUNEL staining, and flow cytometry. GA morphology was detected by immunocytochemical staining and immunofluorescence microscopy. GA-related protein and mRNA levels were detected by WB and qPCR, respectively. Treatment with Purvalanol A, an effective Cdk1 inhibitor, and transfection of Cdk1-shRNA were carried out to inhibit OGDR-induced Cdk1 elevation. The results demonstrated that OGDR induced Golgi fragmentation, neuronal apoptosis, GM130 phosphorylation, and p115 cleavage in N2A cells. Cdk1 elevation after OGDR was closely correlated with GM130 phosphorylation, not p115. Inhibition of Cdk1 significantly attenuated OGDR-induced Golgi fragmentation and cell apoptosis. Cdk1 interacted with GM130 and decreased its phosphorylation on the serine 25 site in N2A cells exposed to OGDR. The present findings reveal that Cdk1 protects against IR-induced GA fragmentation and apoptosis, likely through the mediation of GM130 phosphorylation. This neuroprotective potential of Cdk1 against IR insult and the underlying mechanism will pave the way for potential clinical applications targeting the GA organelle for cerebral IR-related disorders.
Collapse
Affiliation(s)
- Zheng Li
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Weiwei Zhang
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Ji Xu
- Department of Emergency, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Xiaoye Mo
- Department of Emergency, Xiangya Hospital, Central South University, Changsha, Hunan, PR China.
| |
Collapse
|
3
|
Zhuge XZ, Hu WX, Liu YM, Jiang CY, Zhang XH, Chen MH, Xie L. PD98059 protects SH-SY5Y cells against oxidative stress in oxygen-glucose deprivation/reperfusion. Transl Neurosci 2023; 14:20220300. [PMID: 37719747 PMCID: PMC10500637 DOI: 10.1515/tnsci-2022-0300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 09/19/2023] Open
Abstract
Mitochondria play a key role in the cerebral ischemia-reperfusion injury. Although the extracellular signal-regulated kinase 1/2 inhibitor PD98059 (PD) is a selective and reversible flavonoid that can protect the mitochondria in a rat model of cardiac arrest/cardiopulmonary resuscitation, its role requires further confirmation. In this study, we investigated whether PD could maintain mitochondrial homeostasis and decrease reactive oxygen species (ROS) production in neuroblastoma (SH-SY5Y) cells exposed to oxygen-glucose deprivation/reperfusion (OGD/R). PD improved the mitochondrial morphology and function, reversed the increase in ROS production and cell apoptosis, and reduced total-superoxide dismutase and Mn-superoxide dismutase activities induced by OGD/R. PD decreases ROS production and improves mitochondrial morphology and function, protecting SH-SY5Y cells against OGD/R-induced injury.
Collapse
Affiliation(s)
- Xiang-Zhen Zhuge
- Department of Physiology, Pre-Clinical Science, Guangxi Medical University, 22 Shuangyong Road, Nanning, 350001, Guangxi, China
| | - Wan-Xiang Hu
- Department of Physiology, Pre-Clinical Science, Guangxi Medical University, 22 Shuangyong Road, Nanning, 350001, Guangxi, China
| | - Yu-Mei Liu
- Shenzhen Bay Laboratory Neuropathy Institute of China, Shenzhen, 518107, Guangdong, China
| | - Chang-Yue Jiang
- Department of Pharmacy, HIV/AIDS Clinical Treatment Center of Guangxi (Nanning) and The Fourth People’s Hospital of Nanning, Nanning, 530000, China
| | - Xiao-Hua Zhang
- Department of Physiology, Pre-Clinical Science, Guangxi Medical University, 22 Shuangyong Road, Nanning, 350001, Guangxi, China
| | - Meng-Hua Chen
- Institute of Cardiovascular Diseases, The Second Hospital Affiliated to Guangxi Medical University, Nanning, 530000, Guangxi, China
| | - Lu Xie
- Department of Physiology, Pre-Clinical Science, Guangxi Medical University, 22 Shuangyong Road, Nanning, 350001, Guangxi, China
| |
Collapse
|
4
|
Exosomes Released from Bone-Marrow Stem Cells Ameliorate Hippocampal Neuronal Injury Through transferring miR-455-3p. J Stroke Cerebrovasc Dis 2022; 31:106142. [DOI: 10.1016/j.jstrokecerebrovasdis.2021.106142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 09/13/2021] [Accepted: 09/26/2021] [Indexed: 12/25/2022] Open
|
5
|
Li JM, Mu ZN, Zhang TT, Li X, Shang Y, Hu GH. Exploring the Potential Mechanism of Shennao Fuyuan Tang for Ischemic Stroke Based on Network Pharmacology and Molecular Docking. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:6015702. [PMID: 34603472 PMCID: PMC8486536 DOI: 10.1155/2021/6015702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/02/2021] [Indexed: 11/18/2022]
Abstract
METHODS Screen the biologically active components and potential targets of SNFYT through Traditional Chinese Medicine Systems Pharmacology (TCMSP), Traditional Chinese Medicines Integrated Database (TCMID), and related literature. In addition, DrugBank, OMIM, DisGeNET, and the Therapeutic Target Database were searched to explore the therapeutic targets of IS. The cross-targets of SNFYT potential targets and IS treatment targets were taken as candidate gene targets, and GO and KEGG enrichment analyses were performed on the candidate targets. On this basis, the SNFYT-component-target network and protein-protein interaction (PPI) network were constructed using Cytoscape 3.7.2. Finally, AutoDock was used to verify the molecular docking of core components and core targets. RESULTS We screened out 95 potentially active components and 143 candidate targets. SNFYT-component-target network, PPI network, and Cytoscape analysis identified four core active ingredients and 14 core targets. GO enrichment analyzed 2333 biological processes, 79 cell components, and 149 molecular functions. There are 170 KEGG-related signal pathways (P < 0.05), including the IL-17 signal pathway, TNF signal pathway, and HIF-1 signal pathway. The molecular docking results of the core components and the core targets showed good binding power. CONCLUSIONS SNFYT may achieve the effect of treating ischemic stroke through its anti-inflammatory effect through a signal pathway with core targets as the core.
Collapse
Affiliation(s)
- Jia Min Li
- Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Zhen Ni Mu
- Graduate School of Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Tian Tian Zhang
- Graduate School of Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Xin Li
- Graduate School of Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Yan Shang
- Graduate School of Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Guo Heng Hu
- Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
6
|
Qiao S, Yang D, Li X, Li W, Zhang Y, Liu W. Silencing PAQR3 protects against oxygen-glucose deprivation/reperfusion-induced neuronal apoptosis via activation of PI3K/AKT signaling in PC12 cells. Life Sci 2020; 265:118806. [PMID: 33249098 DOI: 10.1016/j.lfs.2020.118806] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/10/2020] [Accepted: 11/18/2020] [Indexed: 01/08/2023]
Abstract
AIMS Neuronal apoptosis acts as the pivotal pathogenesis of cerebral ischemia/reperfusion (I/R) injury after ischemic stroke. PAQR3 (progestin and adipoQ receptor family member 3) is a crucial player who participates in the regulation of cell death. We aim to explore the specific function and the underlying mechanism of PAQR3 in cerebral I/R induced neuronal injury. MAIN METHODS We established a mouse middle cerebral artery occlusion/reperfusion (MCAO/R) model and rat adrenal pheochromocytoma (PC12) cell oxygen-glucose deprivation/reperfusion (OGD/R) model to detect the expression and of PAQR3 after I/R treatment in vivo and in vitro. We used lentivirus to knockdown PAQR3 and investigated the function of PAQR3 in I/R induced neuronal apoptosis. KEY FINDINGS PAQR3 expression is markedly increased in the ischemic hemisphere of C57BL/6 mice and PC12 cells after I/R stimulation. Knockdown PAQR3 can attenuate neuronal apoptosis induced by I/R in PC12 cells and exerts neuroprotective effects. PAQR3 deficiency can significantly raise cell viability and suppress LDH leakage under I/R treatment. Silencing PAQR3 attenuates neuronal apoptosis remarkably with fewer TUNEL-positive cells and lower apoptosis rate under I/R treatment. Mechanistically, knockdown of PAQR3 can inhibit the apoptosis pathway through inducing anti-apoptotic proteins and inhibiting pro-apoptotic proteins. Besides, PI3K/AKT signaling suppression with LY294002 abolished the neuroprotective functions induced by silencing PAQR3. SIGNIFICANCE Our results elucidate that silencing PAQR3 can protect PC12 from OGD/R injury via activating PI3K/AKT pathway. And therefore, provide a novel therapeutic target for the prevention of cerebral I/R injury.
Collapse
Affiliation(s)
- Shanshan Qiao
- Department of Neurosurgery, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Graduate School of Guangzhou Medical University, Shenzhen 518035, China
| | - Dexin Yang
- Department of Neurosurgery, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Graduate School of Guangzhou Medical University, Shenzhen 518035, China
| | - Xiaofeng Li
- The Central Laboratory, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518035, China
| | - Weiping Li
- Department of Neurosurgery, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Graduate School of Guangzhou Medical University, Shenzhen 518035, China
| | - Yuan Zhang
- Department of Neurosurgery, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Graduate School of Guangzhou Medical University, Shenzhen 518035, China; The Central Laboratory, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518035, China.
| | - Wenlan Liu
- Department of Neurosurgery, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Graduate School of Guangzhou Medical University, Shenzhen 518035, China; The Central Laboratory, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518035, China.
| |
Collapse
|