1
|
Yang X, Han F, Guo Y, Zhang X. ADAM10 promotes uveal melanoma development by regulating the Wnt/β-catenin pathway. Exp Cell Res 2025:114522. [PMID: 40107442 DOI: 10.1016/j.yexcr.2025.114522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 02/27/2025] [Accepted: 03/16/2025] [Indexed: 03/22/2025]
Abstract
BACKGROUND Uveal melanoma (UVM) seriously affects people's health and quality of life. Here, the mechanism of a disintegrin and metallopeptidase domain 10 (ADAM10) was elucidated in UVM. METHODS The clinical prognosis and potential biological function of ADAM10 gene in UVM patients were assessed using a series of bioinformatics methods. RT-qPCR and Western blot assay were employed to detect genes expression. Cell apoptosis and viability were examined by flow cytometry, clone formation and CCK-8 assays. The migrated and invasive abilities were analyzed by wound healing and transwell assays. Tumor growth was performed in Xenograft mouse model. RESULTS We found that ADAM10 expression was significantly associated with poor prognosis of UVM patients, and its prognostic significance for UVM patients was determined by distinct clinical characteristics. In vitro, ADAM10 expression was upregulated in MUM-2B and C918 UVM cell lines. More importantly, ADAM10 downregulation discouraged cell viability, metastasis but triggered apoptosis of UVM cells. Moreover, ADAM10 upregulation can promote the tumor growth of UVM in vivo. Mechanically, ADAM10 downregulation blocked the Wnt/β-catenin pathway in UVM. CONCLUSION Upregulation of ADAM10 stimulates the malignant behaviors of UVM through activating the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Xiaolan Yang
- Department of Ophthalmology, The Second People's Hospital of Jinan, Jinan, Shandong Province, 250000, China
| | - Fangju Han
- Department of Ophthalmology, The Second People's Hospital of Jinan, Jinan, Shandong Province, 250000, China
| | - Yuanyuan Guo
- Department of Ophthalmology, The Second People's Hospital of Jinan, Jinan, Shandong Province, 250000, China
| | - Xin Zhang
- Department of Ophthalmology, The Second People's Hospital of Jinan, Jinan, Shandong Province, 250000, China.
| |
Collapse
|
2
|
Lozano-Velasco E, Inácio JM, Sousa I, Guimarães AR, Franco D, Moura G, Belo JA. miRNAs in Heart Development and Disease. Int J Mol Sci 2024; 25:1673. [PMID: 38338950 PMCID: PMC10855082 DOI: 10.3390/ijms25031673] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
Cardiovascular diseases (CVD) are a group of disorders that affect the heart and blood vessels. They include conditions such as myocardial infarction, coronary artery disease, heart failure, arrhythmia, and congenital heart defects. CVDs are the leading cause of death worldwide. Therefore, new medical interventions that aim to prevent, treat, or manage CVDs are of prime importance. MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression at the posttranscriptional level and play important roles in various biological processes, including cardiac development, function, and disease. Moreover, miRNAs can also act as biomarkers and therapeutic targets. In order to identify and characterize miRNAs and their target genes, scientists take advantage of computational tools such as bioinformatic algorithms, which can also assist in analyzing miRNA expression profiles, functions, and interactions in different cardiac conditions. Indeed, the combination of miRNA research and bioinformatic algorithms has opened new avenues for understanding and treating CVDs. In this review, we summarize the current knowledge on the roles of miRNAs in cardiac development and CVDs, discuss the challenges and opportunities, and provide some examples of recent bioinformatics for miRNA research in cardiovascular biology and medicine.
Collapse
Affiliation(s)
- Estefania Lozano-Velasco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (D.F.)
| | - José Manuel Inácio
- Stem Cells and Development Laboratory, iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1150-082 Lisbon, Portugal;
| | - Inês Sousa
- Genome Medicine Lab, Department of Medical Sciences, Institute for Biomedicine–iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal; (I.S.); (A.R.G.); (G.M.)
| | - Ana Rita Guimarães
- Genome Medicine Lab, Department of Medical Sciences, Institute for Biomedicine–iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal; (I.S.); (A.R.G.); (G.M.)
| | - Diego Franco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (D.F.)
| | - Gabriela Moura
- Genome Medicine Lab, Department of Medical Sciences, Institute for Biomedicine–iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal; (I.S.); (A.R.G.); (G.M.)
| | - José António Belo
- Stem Cells and Development Laboratory, iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1150-082 Lisbon, Portugal;
| |
Collapse
|
3
|
Zhan C, Liu K, Zhang Y, Zhang Y, He M, Wu R, Bi C, Shen B. Myocardial infarction unveiled: Key miRNA players screened by a novel lncRNA-miRNA-mRNA network model. Comput Biol Med 2023; 160:106987. [PMID: 37141653 DOI: 10.1016/j.compbiomed.2023.106987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 05/06/2023]
Abstract
BACKGROUND Myocardial infarction (MI) is a major contributor to global mortality, and microRNAs (miRNAs) are important in its pathogenesis. Identifying blood miRNAs with clinical application potential for the early detection and treatment of MI is crucial. METHODS We obtained MI-related miRNA and miRNA microarray datasets from MI Knowledge Base (MIKB) and Gene Expression Omnibus (GEO), respectively. A new feature called target regulatory score (TRS) was proposed to characterize the RNA interaction network. MI-related miRNAs were characterized using TRS, transcription factor (TF) gene proportion (TFP), and ageing-related gene (AG) proportion (AGP) via the lncRNA-miRNA-mRNA network. A bioinformatics model was then developed to predict MI-related miRNAs, which were verified by literature and pathway enrichment analysis. RESULTS The TRS-characterized model outperformed previous methods in identifying MI-related miRNAs. MI-related miRNAs had high TRS, TFP, and AGP values, and combining the three features improved prediction accuracy to 0.743. With this method, 31 candidate MI-related miRNAs were screened from the specific-MI lncRNA-miRNA-mRNA network, associated with key MI pathways like circulatory system processes, inflammatory response, and oxygen level adaptation. Most candidate miRNAs were directly associated with MI according to literature evidence, except hsa-miR-520c-3p and hsa-miR-190b-5p. Furthermore, CAV1, PPARA and VEGFA were identified as MI key genes, and were targeted by most of the candidate miRNAs. CONCLUSIONS This study proposed a novel bioinformatics model based on multivariate biomolecular network analysis to identify putative key miRNAs of MI, which deserve further experimental and clinical validation for translational applications.
Collapse
Affiliation(s)
- Chaoying Zhan
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610212, Sichuan, China
| | - Kai Liu
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuxin Zhang
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610212, Sichuan, China
| | - Yingbo Zhang
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610212, Sichuan, China; Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
| | - Mengqiao He
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610212, Sichuan, China
| | - Rongrong Wu
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610212, Sichuan, China
| | - Cheng Bi
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610212, Sichuan, China
| | - Bairong Shen
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610212, Sichuan, China.
| |
Collapse
|
4
|
Wang Z, Tong Q, Li T, Qian Y. Nano drugs delivery system: A novel promise for the treatment of atrial fibrillation. Front Cardiovasc Med 2022; 9:906350. [PMID: 36386310 PMCID: PMC9645120 DOI: 10.3389/fcvm.2022.906350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/08/2022] [Indexed: 07/30/2023] Open
Abstract
Atrial fibrillation (AF) is one of the most common sustained tachyarrhythmias worldwide, and its prevalence is positively correlated with aging. AF not only significantly reduces the quality of life of patients but also causes a series of complications, such as thromboembolism, stroke, and heart failure, increases the average number of hospitalizations of patients, and places a huge economic burden on patients and society. Traditional drug therapy and ablation have unsatisfactory success rates, high recurrence rates, and the risk of serious complications. Surgical treatment is highly traumatic. The nano drug delivery system has unique physical and chemical properties, and in the application of AF treatment, whether it is used to assist in enhancing the ablation effect or for targeted therapy, it provides a safer, more effective and more economical treatment strategy.
Collapse
|