1
|
Zheng QQ, Lin WF. Inhibition of miR-325 inhibits KIF20B expression and the colorectal cancer cells' invasion & proliferation. BMC Cancer 2025; 25:680. [PMID: 40229707 PMCID: PMC11995485 DOI: 10.1186/s12885-025-13759-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 02/18/2025] [Indexed: 04/16/2025] Open
Abstract
OBJECTIVE This study aimed to investigate the effect of miR-325 on KIF20B expression and its role in the invasion and proliferation of colorectal cancer cells. METHODS Colorectal cancer HCT116 cells were cultured and transfected with a miR-325 inhibitor. KIF20B expression was assessed using quantitative polymerase chain reaction (qPCR) and western blotting. Cell proliferation was assessed with the Cell Counting Kit-8 (CCK8) assay, while invasion was evaluated using Transwell and scratch wound healing assays. The expression levels of the invasion-related proteins Matrix Metalloproteinase-2 (MMP-2) and MMP-9 were also analyzed. RESULTS The q-PCR and western blot results demonstrated that KIF20B expression was significantly reduced by miR-325 inhibition. The CCK8 assay revealed that miR-325 inhibition decreased cell proliferation. Furthermore, Transwell and Scratch Wound Healing assays showed that miR-325 inhibition suppressed the invasive capacity of colorectal cancer cells. The inhibition of miR-325 also led to decreased expression levels of MMP-2 and MMP-9. CONCLUSION miR-325 inhibition effectively suppresses KIF20B expression, reducing the invasion and proliferation of colorectal cancer cells, suggesting miR-325 as a potential therapeutic target.
Collapse
Affiliation(s)
- Qi-Qi Zheng
- Department of Infectious Diseases and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, P.R. China
| | - Wen-Feng Lin
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang, Ouhai District, Wenzhou City, Wenzhou City, 325000, Zhejiang Province, P.R. China.
| |
Collapse
|
2
|
Li J, Li C, Wu X, Yu S, Sun G, Ding P, Lu S, Zhang L, Yang P, Peng Y, Fu J, Wang L. Bioinformatics analysis of immune infiltration in human diabetic retinopathy and identification of immune-related hub genes and their ceRNA networks. Sci Rep 2024; 14:24003. [PMID: 39402134 PMCID: PMC11473686 DOI: 10.1038/s41598-024-75055-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/01/2024] [Indexed: 10/17/2024] Open
Abstract
Diabetic retinopathy (DR) is the most common microvascular complication in diabetic patients, and recent studies have shown that immune regulatory mechanisms are closely associated with retinal damage in DR. Therefore, this study focused on exploring immune cells and immune-related genes (IRGs) in DR and gaining insight into the ceRNA mechanisms by which IRGs regulate DR progression. Four datasets from human DR model retinal tissues were obtained from the Gene Expression Omnibus (GEO) database. R software was first used to identify differentially expressed mRNAs (DE-mRNAs) in the dataset GSE160306-mRNAs, then the distribution of immune cells in the gene matrix was analyzed by xCell and ImmuCellAI, ImmPort and InnateDB database were used to obtain immune-related hub genes (IRHGs) in the DR, and finally the STRING online tool and Cytoscape to construct the immune-related ceRNA network. The datasets GSE102485, GSE160308 and GSE160306-lncRNAs were used to validate the results of the ceRNA network further. The results of immune cell infiltration analysis showed that macrophages are important immune cells in DR; immune-related gene screening showed that FCGR2B is an IRHG in DR, and 2 immune-related ceRNA networks of IRHG were obtained: DDN-AS1/miR-10a-5p/FCGR2B and LINC01515/miR-10a-5p/FCGR2B. Our study suggests that infiltration of immune cells, especially the immune role of macrophages, is an important component of DR progression; the immune-related hub gene FCGR2B and its ceRNA network may be a key regulatory network for DR progression. The discovery of key immune cells, IRHG and ceRNA networks in this study may provide new prospects for early intervention and targeted treatment of DR.
Collapse
Affiliation(s)
- Jingru Li
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, Wuhua District, Kunming, 650032, Yunnan, China
| | - Chaozhong Li
- Department of Emergency Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Xinyu Wu
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, Wuhua District, Kunming, 650032, Yunnan, China
| | - Shuai Yu
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, Wuhua District, Kunming, 650032, Yunnan, China
| | - Guihu Sun
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, Wuhua District, Kunming, 650032, Yunnan, China
| | - Peng Ding
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, Wuhua District, Kunming, 650032, Yunnan, China
| | - Si Lu
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, Wuhua District, Kunming, 650032, Yunnan, China
| | - Lijiao Zhang
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, Wuhua District, Kunming, 650032, Yunnan, China
| | - Ping Yang
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, Wuhua District, Kunming, 650032, Yunnan, China
| | - Yunzhu Peng
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, Wuhua District, Kunming, 650032, Yunnan, China
| | - Jingyun Fu
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, Wuhua District, Kunming, 650032, Yunnan, China.
| | - Luqiao Wang
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, Wuhua District, Kunming, 650032, Yunnan, China.
| |
Collapse
|
3
|
Fu Z, Zhou Y, Zhang Y, Zhou Z, Yu Y, Yuan C, Dong J, Duan S. MicroRNA‑325: A comprehensive exploration of its multifaceted roles in cancer pathogenesis and therapeutic implications (Review). Oncol Lett 2024; 28:459. [PMID: 39119235 PMCID: PMC11307554 DOI: 10.3892/ol.2024.14592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/08/2024] [Indexed: 08/10/2024] Open
Abstract
MicroRNA (miRNA/miR) represents a category of endogenous, short-chain non-coding RNA molecules comprising ~22 nucleotides. Specifically, miR-325 is situated within the first sub-band of region 2 on the short arm of the X chromosome. Notably, aberrant expression of miR-325 has been observed across various tumor systems, spanning the nervous, endocrine, respiratory, reproductive and digestive systems. miR-325 exhibits the capacity to target a minimum of 20 protein-coding genes, thereby influencing diverse cellular processes, including cell proliferation, epithelial-mesenchymal transition, apoptosis, invasion and migration. Moreover, miR-325 serves a pivotal role in the formation of six competing endogenous RNA (ceRNA) regulatory axes, involving one circular RNA, four long non-coding RNA and one additional miRNA. By participating in various signaling pathways through gene targeting, the abnormal expression of miR-325 has been associated with clinicopathological conditions in diverse patients with cancer, significantly impacting both the clinicopathology and prognosis of affected individuals. Additionally, miR-325 has been associated with the development of resistance to oxaliplatin, cisplatin and doxorubicin in cancer cells. Its involvement in the anticancer molecular mechanisms of these agents underscores its potential significance in therapeutic contexts. However, it is noteworthy that the current study did not specifically address sex-based cell line selection. In conclusion, the present review provides a comprehensive summary of the relevant findings concerning miR-325, offering valuable insights for future research endeavors focused on determining the molecular mechanisms associated with this miRNA.
Collapse
Affiliation(s)
- Zheng Fu
- Department of Clinical Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, P.R. China
| | - Yang Zhou
- Department of Clinical Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, P.R. China
| | - Yile Zhang
- Department of Clinical Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, P.R. China
| | - Ziyan Zhou
- Department of Clinical Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, P.R. China
| | - Yueqi Yu
- Department of Clinical Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, P.R. China
| | - Chunhui Yuan
- Department of Clinical Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, P.R. China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, P.R. China
| | - Jingyin Dong
- Department of Clinical Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, P.R. China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, P.R. China
| | - Shiwei Duan
- Department of Clinical Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, P.R. China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, P.R. China
| |
Collapse
|
4
|
Wang X, Zhu H, Sun G, Zhou M, Zhang H, Liu H, Wang M, Zhang Z, Chu H. linc01515 regulates PM 2.5-induced oxidative stress via targeting NRF2 in airway epithelial cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 331:121798. [PMID: 37169236 DOI: 10.1016/j.envpol.2023.121798] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/13/2023]
Abstract
Dysregulation of long non-coding RNAs (lncRNAs) is involved in the adverse effects caused by fine particulate matter (PM2.5). However, the molecular mechanism is not fully clarified. In this study, we performed lncRNA sequencing on PM2.5-treated human bronchial epithelial (HBE) cells to identify vital lncRNAs, and verified the differential expression of the lncRNAs by RT-qPCR in HBE and human normal lung epithelial (BEAS-2B) cells. A total of 657 and 652 lncRNAs were dysregulated after exposure to 125 and 250 μg/mL of PM2.5, respectively. Of these, lncRNA linc01515 was upregulated in HBE and BEAS-2B cells with PM2.5 treatment. Subcellular localization experiments showed that linc01515 was mostly localized in the nucleus. Functionally, we downregulated the expression of linc01515 in HBE and BEAS-2B cells before PM2.5 treatment, which can decrease malonydialdehyde (MDA) and reactive oxygen species (ROS) levels, and improve superoxide dismutase (SOD) activity. Correspondingly, linc01515 overexpression enhanced PM2.5-induced oxidative injury in airway epithelial cells. Mechanistically, N6-methyladenosine RNA binding protein immunoprecipitation (MeRIP) assay showed that the enrichment level of m6A on linc01515 was increased after PM2.5 treatment, and the m6A modification level and expression of linc01515 was decreased in the HBE cells with 3-deazaadenosine (DAA) treatment or knockdown of METTL3 to inhibit the RNA methylation level. Western blot found that NRF2, a vital transcription factor, was enhanced remarkably in linc01515-silenced cells and decreased in linc01515-overexpressed cells. Furthermore, inhibition of NRF2 activity significantly rescued effect of downregulated linc01515 expression on PM2.5-induced cytotoxicity. In addition, we observed the similar effect when downregulating linc01515 and NRF2 expression in HBE and BEAS-2B cells before PM2.5 treatment. Taken together, our findings demonstrated that PM2.5 treatment may upregulate the expression of linc01515 by enhancing its m6A modification, and then regulate NRF2 to induce oxidative damage of airway epithelial cells.
Collapse
Affiliation(s)
- Xi Wang
- Department of Environmental Genomics, Institute of Healthy Jiangsu Development, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center of Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Huanhuan Zhu
- Department of Environmental Genomics, Institute of Healthy Jiangsu Development, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center of Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Guanting Sun
- Department of Environmental Genomics, Institute of Healthy Jiangsu Development, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center of Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Meiyu Zhou
- Department of Environmental Genomics, Institute of Healthy Jiangsu Development, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center of Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Huilin Zhang
- Department of Environmental Genomics, Institute of Healthy Jiangsu Development, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center of Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hanting Liu
- Department of Environmental Genomics, Institute of Healthy Jiangsu Development, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center of Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Meilin Wang
- Department of Environmental Genomics, Institute of Healthy Jiangsu Development, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center of Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhengdong Zhang
- Department of Environmental Genomics, Institute of Healthy Jiangsu Development, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center of Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Haiyan Chu
- Department of Environmental Genomics, Institute of Healthy Jiangsu Development, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center of Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
5
|
Morii W, Kasai K, Nakamura T, Hayashi D, Hara M, Naito T, Sonehara K, Fukuie T, Saito-Abe M, Yang L, Yamamoto-Hanada K, Narita M, Maruo K, Okada Y, Noguchi E, Ohya Y. A genome-wide association study for allergen component sensitizations identifies allergen component-specific and allergen protein group-specific associations. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2023; 2:100086. [PMID: 37780799 PMCID: PMC10509904 DOI: 10.1016/j.jacig.2023.100086] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/03/2022] [Accepted: 11/04/2022] [Indexed: 10/03/2023]
Abstract
Background Allergic diseases are some of the most common diseases worldwide. Genome-wide association studies (GWASs) have been conducted to elucidate the genetic factors of allergic diseases. However, no GWASs for allergen component sensitization have been performed. Objective We sought to detect genetic variants associated with differences in immune responsiveness against allergen components. Methods The participants of the present study were recruited from the Tokyo Children's Health, Illness, and Development study, and allergen component-specific IgE level at age 9 years was measured by means of allergen microarray immunoassays. We performed GWASs for allergen component sensitization against each allergen (single allergen component sensitization, number of allergen components analyzed, n = 31), as well as against allergen protein families (allergen protein group sensitization, number of protein groups analyzed, n = 16). Results We performed GWAS on 564 participants of the Tokyo Children's Health, Illness, and Development study and found associations between Amb a 1 sensitization and the immunoglobulin heavy-chain variable gene on chromosome 14 and between Phl p 1 sensitization and the HLA class II region on chromosome 6 (P < 5.0 × 10-8). A GWAS-significant association was also observed between the HLA class II region and profilin sensitization (P < 5.0 × 10-8). Conclusions Our data provide the first demonstration of genetic risk for allergen component sensitization and show that this genetic risk is related to immune response genes including immunoglobulin heavy-chain variable gene and HLA.
Collapse
Affiliation(s)
- Wataru Morii
- Department of Medical Genetics, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Koki Kasai
- Department of Medical Genetics, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Takako Nakamura
- Department of Medical Genetics, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Daisuke Hayashi
- Department of Medical Genetics, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Monami Hara
- Department of Medical Genetics, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Tatsuhiko Naito
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Kyuto Sonehara
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
| | - Tatsuki Fukuie
- Allergy Center, National Center for Child Health and Development, Tokyo, Japan
| | - Mayako Saito-Abe
- Allergy Center, National Center for Child Health and Development, Tokyo, Japan
| | - Limin Yang
- Allergy Center, National Center for Child Health and Development, Tokyo, Japan
| | | | - Masami Narita
- Allergy Center, National Center for Child Health and Development, Tokyo, Japan
- Department of Pediatrics, School of Medicine, Kyorin University, Tokyo, Japan
| | - Kazushi Maruo
- Department of Biostatistics, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
- Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan
- Department of Genome Informatics, Graduate School of Medicine, the University of Tokyo, Japan
| | - Emiko Noguchi
- Department of Medical Genetics, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yukihiro Ohya
- Allergy Center, National Center for Child Health and Development, Tokyo, Japan
| |
Collapse
|
6
|
He J, Zhou X, Wang X, Zhang Q, Zhang L, Wang T, Zhu W, Liu P, Zhu M. Prognostic and Immunological Roles of Cell Cycle Regulator CDCA5 in Human Solid Tumors. Int J Gen Med 2022; 15:8257-8274. [DOI: 10.2147/ijgm.s389275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/02/2022] [Indexed: 11/22/2022] Open
|
7
|
Chen S, Liu P, Zhao L, Han P, Liu J, Yang H, Li J. A novel cuproptosis-related prognostic lncRNA signature for predicting immune and drug therapy response in hepatocellular carcinoma. Front Immunol 2022; 13:954653. [PMID: 36189204 PMCID: PMC9521313 DOI: 10.3389/fimmu.2022.954653] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Intratumoral copper levels are closely associated with immune escape from diverse cancers. Cuproptosis-related lncRNAs (CRLs), however, have an unclear relationship with hepatocellular carcinoma (HCC). Gene expression data from 51 normal tissues and 373 liver cancer tissues from the Cancer Genome Atlas (TCGA) database were collected and analyzed. To identify CRLs, we employed differentially expressed protein-coding genes (DE-PCGs)/lncRNAs (DE-lncRNAs) analysis, Kaplan-Meier (K-M) analysis, and univariate regression. By univariate and Lasso Cox regression analyses, we screened 10 prognosis-related lncRNAs. Subsequently, five CRLs were identified by multivariable Cox regression analysis to construct the prognosis model. This feature is an independent prognostic indicator to forecast overall survival. According to Gene Set Variation Analysis (GSVA) and Gene Ontology (GO), both immune-related biological processes (BPS) and pathways have CRL participation. In addition, we found that the characteristics of CRLs were associated with the expression of the tumor microenvironment (TME) and crucial immune checkpoints. CRLs could predict the clinical response to immunotherapy based on the studies of tumor immune dysfunction and rejection (TIDE) analysis. Additionally, it was verified that tumor mutational burden survival and prognosis were greatly different between high-risk and low-risk groups. Finally, we screened potential sensitive drugs for HCC. In conclusion, this study provides insight into the TME status in patients with HCC and lays a basis for immunotherapy and the selection of sensitive drugs.
Collapse
Affiliation(s)
- Shujia Chen
- Clinical School of the Second People’s Hospital, Tianjin Medical University, Tianjin, China
| | - Peiyan Liu
- Clinical School of the Second People’s Hospital, Tianjin Medical University, Tianjin, China
| | - Lili Zhao
- Department of Hepatology, Tianjin Second People’s Hospital, Tianjin, China
| | - Ping Han
- Department of Hepatology, Tianjin Second People’s Hospital, Tianjin, China
| | - Jie Liu
- Department of Hepatology, Tianjin Second People’s Hospital, Tianjin, China
| | - Hang Yang
- Clinical School of the Second People’s Hospital, Tianjin Medical University, Tianjin, China
| | - Jia Li
- Department of Hepatology, Tianjin Second People’s Hospital, Tianjin, China,*Correspondence: Jia Li,
| |
Collapse
|
8
|
Shen W, Tong D, Chen J, Li H, Hu Z, Xu S, He S, Ge Z, Zhang J, Mao Q, Chen H, Xu G. Silencing oncogene cell division cycle associated 5 induces apoptosis and G1 phase arrest of non‐small cell lung cancer cells via p53‐p21 signaling pathway. J Clin Lab Anal 2022; 36:e24396. [PMID: 35373420 PMCID: PMC9102649 DOI: 10.1002/jcla.24396] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Wei Shen
- Department of Pulmonary and Critical Care Medicine The Third People’s Hospital of Cixi Ningbo Zhejiang China
| | - Dimin Tong
- Department of Pulmonary and Critical Care Medicine The Third People’s Hospital of Cixi Ningbo Zhejiang China
| | - Jie Chen
- Department of Pulmonary and Critical Care Medicine The Third People’s Hospital of Cixi Ningbo Zhejiang China
| | - Hongxiang Li
- Department of Cardiothoracic Surgery The Affiliated Lihuili Hospital Ningbo University Ningbo Zhejiang China
| | - Zeyang Hu
- Department of Cardiothoracic Surgery The Affiliated Lihuili Hospital Ningbo University Ningbo Zhejiang China
| | - Shuguang Xu
- Department of Cardiothoracic Surgery The Affiliated Lihuili Hospital Ningbo University Ningbo Zhejiang China
| | - Sufang He
- Department of Pulmonary and Critical Care Medicine Guangdong Provincial People's Hospital Ganzhou Hospital Ganzhou Jiangxi China
| | - Zhen Ge
- Department of Cardiothoracic Surgery The Affiliated Lihuili Hospital Ningbo University Ningbo Zhejiang China
| | - Jianan Zhang
- Department of Cardiothoracic Surgery The Affiliated Lihuili Hospital Ningbo University Ningbo Zhejiang China
| | - Qiqi Mao
- Department of Cardiothoracic Surgery The Affiliated Lihuili Hospital Ningbo University Ningbo Zhejiang China
| | - Hang Chen
- Department of Cardiothoracic Surgery The Affiliated Lihuili Hospital Ningbo University Ningbo Zhejiang China
| | - Guodong Xu
- Department of Cardiothoracic Surgery The Affiliated Lihuili Hospital Ningbo University Ningbo Zhejiang China
| |
Collapse
|
9
|
The Cohesin Complex and Its Interplay with Non-Coding RNAs. Noncoding RNA 2021; 7:ncrna7040067. [PMID: 34707078 PMCID: PMC8552073 DOI: 10.3390/ncrna7040067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 12/11/2022] Open
Abstract
The cohesin complex is a multi-subunit protein complex initially discovered for its role in sister chromatid cohesion. However, cohesin also has several other functions and plays important roles in transcriptional regulation, DNA double strand break repair, and chromosome architecture thereby influencing gene expression and development in organisms from yeast to man. While most of these functions rely on protein–protein interactions, post-translational protein, as well as DNA modifications, non-coding RNAs are emerging as additional players that facilitate and modulate the function or expression of cohesin and its individual components. This review provides a condensed overview about the architecture as well as the function of the cohesin complex and highlights its multifaceted interplay with both short and long non-coding RNAs.
Collapse
|