1
|
Wang J, Li H, Xia T, Feng J, Zhou R. Pulmonary arterial hypertension and flavonoids: A role in treatment. CHINESE J PHYSIOL 2021; 64:115-124. [PMID: 34169916 DOI: 10.4103/cjp.cjp_25_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a high mortality progressive pulmonary vascular disease that can lead to right heart failure. The use of clinical drugs for the treatment of PAH is limited to a great extent because of its single target and high price. Flavonoids are widely distributed in nature, and have been found in fruits, vegetables, and traditional Chinese medicine. They have diverse biological activities and various pharmacological effects such as antitumor, antioxidation, and anti-inflammatory. This review summarizes the progress in pharmacodynamics and mechanism of flavonoids in the treatment of PAH in recent years, in order to provide some theoretical references for relevant researchers.
Collapse
Affiliation(s)
- Jialing Wang
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Hailong Li
- The Third People's Hospital of Ningxia, Yinchuan, China
| | - Tian Xia
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Jun Feng
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Ru Zhou
- Department of Pharmacology, College of Pharmacy; Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education; Ningxia Characteristic Traditional Chinese Medicine Modernization Engineering Technology Research Center, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
2
|
Chang Z, Wang JL, Jing ZC, Ma P, Xu QB, Na JR, Tian J, Ma X, Zhou W, Zhou R. Protective effects of isorhamnetin on pulmonary arterial hypertension: in vivo and in vitro studies. Phytother Res 2020; 34:2730-2744. [PMID: 32452118 DOI: 10.1002/ptr.6714] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/15/2020] [Accepted: 04/18/2020] [Indexed: 12/14/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a malignant disease with high mortality and closely involves the bone morphogenetic protein (BMP) pathway. Mutations in BMPR2 caused proliferation of pulmonary artery smooth muscle cells (PASMCs) leading to PAH. Isorhamnetin, one of the main naturally occurring flavonoids extracted from Hippophae rhamnoides L, shows antiinflammatory and anti-proliferative properties. Nevertheless, the effects of isorhamnetin on PAH remain unclear. This study aimed to investigate whether isorhamnetin has protective effects against PAH and explore possible mechanisms. An in vivo model of PAH induced by monocrotaline (MCT) was employed, and sildenafil and isorhamnetin were orally administered for 21 consecutive days. An in vitro model induced by TNF-α was employed, and cell proliferation of HPASMCs was detected. Results indicated that isorhamnetin significantly improved hemodynamic, histopathological, and echocardiographic changes in MCT-induced PAH in rats. In vitro, isorhamnetin suppressed TNF-α-induced HPASMCs proliferation. Furthermore, isorhamnetin improved protein expression of BMPR2 and suppressed protein expression of TNF-α and IL-6 in rat lungs. Isorhamnetin improved protein expression of BMPR2 and p-smad1/5 and mRNA expression of Id1 and Id3 in HPASMCs. Isorhamnetin ameliorated MCT-induced PAH in rats and inhibited TNF-α-induced HPASMCs proliferation by a mechanism likely involving the regulation of the BMP signaling pathway.
Collapse
Affiliation(s)
- Zhi Chang
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Jia-Ling Wang
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Zhi-Cheng Jing
- Department of Cardiology, Peking Union Medical College Hospital, Key Lab of Pulmonary Vascular Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ping Ma
- Department of Cardiology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Qing-Bing Xu
- Department of Cardiology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Jian-Rong Na
- Respiratory and critical care medicine, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Jie Tian
- Respiratory and critical care medicine, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xuan Ma
- Respiratory and critical care medicine, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Wei Zhou
- Respiratory and critical care medicine, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Ru Zhou
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, China.,Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, China.,Ningxia Characteristic Traditional Chinese Medicine Modernization Engineering Technology Research Center, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
3
|
Protective effects of aloperine on monocrotaline-induced pulmonary hypertension in rats. Biomed Pharmacother 2017; 89:632-641. [DOI: 10.1016/j.biopha.2017.02.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 02/05/2017] [Accepted: 02/10/2017] [Indexed: 01/10/2023] Open
|