1
|
Zhang H, Caobelli F, Che W, Huang Y, Zhang Y, Fan X, Hu X, Xu C, Fei M, Zhang J, Lv Z, Shi K, Yu F. The prognostic value of CZT SPECT myocardial blood flow (MBF) quantification in patients with ischemia and no obstructive coronary artery disease (INOCA): a pilot study. Eur J Nucl Med Mol Imaging 2023; 50:1940-1953. [PMID: 36786817 PMCID: PMC10199834 DOI: 10.1007/s00259-023-06125-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/22/2023] [Indexed: 02/15/2023]
Abstract
BACKGROUND Despite the demonstrated adverse outcome, it is difficult to early identify the risks for patients with ischemia and no obstructive coronary artery disease (INOCA). We aimed to explore the prognostic potential of CZT SPECT in INOCA patients. METHODS The study population consisted of a retrospective cohort of 118 INOCA patients, all of whom underwent CZT SPECT imaging and invasive coronary angiography (ICA). Dynamic data were reconstructed, and MBF was quantified using net retention model. Major adverse cardiovascular events (MACEs) were defined as cardiovascular death, nonfatal myocardial infarction, nonfatal stroke, heart failure, late coronary revascularization, or hospitalization for unstable angina. RESULTS During a median follow-up of 15 months (interquartile range (IQR) 11-20), 19 (16.1%) MACEs occurred; both stress myocardial blood flow (sMBF) ([Formula: see text]) and coronary flow reserve (CFR) ([Formula: see text]) were significantly lower in the MACE group. Optimal thresholds of sMBF<3.16 and CFR<2.52 were extracted from the ROC curves, and both impaired sMBF (HR: 15.08; 95% CI 2.95-77.07; [Formula: see text]) and CFR (HR: 6.51; 95% CI 1.43-29.65; [Formula: see text]) were identified as prognostic factors for MACEs. Only sMBF<3.16 (HR: 11.20; 95% CI 2.04-61.41; [Formula: see text]) remained a robust predictor when sMBF and CFR were integrated considered. Compared with CFR, sMBF provides better prognostic model discrimination and reclassification ability (C-index improvement = 0.06, [Formula: see text]; net reclassification improvement (NRI) = 0.19; integrated discrimination improvement (IDI) = 0.10). CONCLUSION The preliminary results demonstrated that quantitative analysis on CZT SPECT provides prognostic value for INOCA patients, which may allow the stratification for early prevention and intervention.
Collapse
Affiliation(s)
- Han Zhang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, 200072, China
| | - Federico Caobelli
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Wenliang Che
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Yan Huang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, 200072, China
| | - Yu Zhang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, 200072, China
| | - Xin Fan
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, 200072, China
| | - Xueping Hu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, 200072, China
| | - Chong Xu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Mengyu Fei
- Department of Radiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Jiajia Zhang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, 200072, China
| | - Zhongwei Lv
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, 200072, China
| | - Kuangyu Shi
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
- Computer Aided Medical Procedures and Augmented Reality, Institute of Informatics I16, Technical University of Munich, Munich, Germany.
| | - Fei Yu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, 200072, China.
| |
Collapse
|
2
|
Zhu H, Wang H, Zhu X, Chen Q, Fang X, Xu X, Ping Y, Gao B, Tong G, Ding Y, Chen T, Huang J. The Importance of Integrated Regulation Mechanism of Coronary Microvascular Function for Maintaining the Stability of Coronary Microcirculation: An Easily Overlooked Perspective. Adv Ther 2023; 40:76-101. [PMID: 36279093 DOI: 10.1007/s12325-022-02343-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/28/2022] [Indexed: 01/25/2023]
Abstract
Coronary microvascular dysfunction (CMD) refers to a group of disorders affecting the structure and function of coronary microcirculation and is associated with an increased risk of major adverse cardiovascular events. At present, great progress has been made in the diagnosis of CMD, but there is no specific treatment for it because of the complexity of CMD pathogenesis. Vascular dysfunction is one of the important causes of CMD, but previous reviews mostly considered microvascular dysfunction as a whole abnormality so the obtained conclusions are skewed. The coronary microvascular function is co-regulated by multiple mechanisms, and the mechanisms by which microvessels of different luminal diameters are regulated vary. The main purpose of this review is to revisit the mechanisms by which coronary microvessels at different diameters regulate coronary microcirculation through integrated sequential activation and briefly discuss the pathogenesis, diagnosis, and treatment progress of CMD from this perspective.
Collapse
Affiliation(s)
- Houyong Zhu
- Department of Cardiology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, No. 453 Stadium Road, Hangzhou, 310007, Zhejiang, China.
| | - Hanxin Wang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xinyu Zhu
- Department of Cardiology, The Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261 Huansha Road, Hangzhou, 310006, Zhejiang, China
| | - Qilan Chen
- Department of Cardiology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, No. 453 Stadium Road, Hangzhou, 310007, Zhejiang, China
| | - Xiaojiang Fang
- Department of Cardiology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, No. 453 Stadium Road, Hangzhou, 310007, Zhejiang, China
| | - Xiaoqun Xu
- Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Yan Ping
- Department of Cardiology, The Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261 Huansha Road, Hangzhou, 310006, Zhejiang, China
| | - Beibei Gao
- Department of Cardiology, The Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261 Huansha Road, Hangzhou, 310006, Zhejiang, China
| | - Guoxin Tong
- Department of Cardiology, The Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261 Huansha Road, Hangzhou, 310006, Zhejiang, China
| | - Yu Ding
- Department of Cardiology, The Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261 Huansha Road, Hangzhou, 310006, Zhejiang, China
| | - Tielong Chen
- Department of Cardiology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, No. 453 Stadium Road, Hangzhou, 310007, Zhejiang, China.
| | - Jinyu Huang
- Department of Cardiology, The Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261 Huansha Road, Hangzhou, 310006, Zhejiang, China.
| |
Collapse
|
3
|
Thakkar AN, Alnabelsi TS, Al-Mallah MH. Go with the flow: Abnormal extra-cardiac Rb-82 flow as a diagnostic clue for subclavian vein stenosis. J Nucl Cardiol 2022; 29:2042-2044. [PMID: 33258077 DOI: 10.1007/s12350-020-02442-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 10/22/2022]
Affiliation(s)
- Akanksha N Thakkar
- Department of Cardiology, Houston Methodist DeBakey Heart & Vascular Center, 6550 Fannin St, Sm 1801, Houston, TX, 77030, USA
| | - Talal S Alnabelsi
- Department of Cardiology, Houston Methodist DeBakey Heart & Vascular Center, 6550 Fannin St, Sm 1801, Houston, TX, 77030, USA
| | - Mouaz H Al-Mallah
- Department of Cardiology, Houston Methodist DeBakey Heart & Vascular Center, 6550 Fannin St, Sm 1801, Houston, TX, 77030, USA.
| |
Collapse
|
4
|
Wang J, Li JM, Li S, Hsu B. Absolute Resting 13N-Ammonia PET Myocardial Blood Flow for Predicting Myocardial Viability and Recovery of Ventricular Function after Coronary Artery Bypass Grafting. J Nucl Cardiol 2022; 29:987-999. [PMID: 33089879 DOI: 10.1007/s12350-020-02388-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/14/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVE We aimed to evaluate the feasibility of resting myocardial blood flow (rMBF), quantified with dynamic 13 N-Ammonia (NH3) PET, for identifying myocardial viability and predicting improvement of left ventricular ejection fraction (LVEF) after coronary artery bypass grafting (CABG). METHODS Ninety-three patients with coronary artery disease (CAD) and chronic LVEF < 45%, scheduled for CABG, had dynamic 13NH3 PET and 18F-FDG PET imaging. The perfusion/metabolism polar maps were categorized in four patterns: normal (N), mismatch (M1), match (M2) and reverse mismatch (RM). The value of rMBF for identifying viable myocardium (M1, RM) and post CABG improvement of LVEF≥8% was analyzed by receiver operating characteristic (ROC) curves. Correlations of rMBF in segments to ΔLVEF post CABG were verified. RESULTS Mean rMBFs were significantly different (N=0.60±0.14; M1=0.44±0.07, M2=0.34±0.08, RM=0.53±0.09 ml/min/g, P<0.001). The optimal rMBF cutoff to identify viable myocardium was 0.42 ml/min/g (sensitivity=88.3%, specificity=82.0%) and 0.43 ml/min/g for predicting improvement of LVEF ≥8% (74.6%, 80.0%). The extent and rMBF of combined M1/RM demonstrated a moderate to high correlation to improved LVEF (r=0.78, 0.71, P<0.001). CONCLUSION Resting MBF, derived by dynamic 13NH3 PET, may be positioned as a supplement to 18F-FDG PET imaging for assessing the presence of viable myocardium and predicting potential improvement of LVEF after CABG.
Collapse
Affiliation(s)
- Jiao Wang
- Teda International Cardiovascular Hospital Nuclear Medicine Department, Tianjin Medical University Clinical Cardiovascular Institute, Tianjin, 300457, China
| | - Jian-Ming Li
- Teda International Cardiovascular Hospital Nuclear Medicine Department, Tianjin Medical University Clinical Cardiovascular Institute, Tianjin, 300457, China.
| | - Shuai Li
- Teda International Cardiovascular Hospital Nuclear Medicine Department, Tianjin Medical University Clinical Cardiovascular Institute, Tianjin, 300457, China
| | - Bailing Hsu
- Nuclear Science and Engineering Institute, University of Missouri-Columbia, Columbia, MO, USA.
| |
Collapse
|
5
|
Minhas AS, Goerlich E, Corretti MC, Arbab-Zadeh A, Kelle S, Leucker T, Lerman A, Hays AG. Imaging Assessment of Endothelial Function: An Index of Cardiovascular Health. Front Cardiovasc Med 2022; 9:778762. [PMID: 35498006 PMCID: PMC9051238 DOI: 10.3389/fcvm.2022.778762] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 02/28/2022] [Indexed: 11/18/2022] Open
Abstract
Endothelial dysfunction is a key early mechanism in a variety of cardiovascular diseases and can be observed in larger conduit arteries as well as smaller resistance vessels (microvascular dysfunction). The presence of endothelial dysfunction is a strong prognosticator for cardiovascular events and mortality, and assessment of endothelial function can aid in selecting therapies and testing their response. While the gold standard method of measuring coronary endothelial function remains invasive angiography, several non-invasive imaging techniques have emerged for investigating both coronary and peripheral endothelial function. In this review, we will explore and summarize the current invasive and non-invasive modalities available for endothelial function assessment for clinical and research use, and discuss the strengths, limitations and future applications of each technique.
Collapse
Affiliation(s)
- Anum S. Minhas
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Erin Goerlich
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Mary C. Corretti
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Armin Arbab-Zadeh
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Sebastian Kelle
- Department of Internal Medicine and Cardiology, German Heart Center Berlin, Berlin, Germany
| | - Thorsten Leucker
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Amir Lerman
- Division of Ischemic Heart Disease and Critical Care, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Allison G. Hays
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
6
|
Aljizeeri A, Badarin FA, Al-Mallah MH. Automation in Nuclear Cardiology: Time for Flurpiridaz to Join the Club. J Nucl Cardiol 2022; 29:709-711. [PMID: 33205327 DOI: 10.1007/s12350-020-02421-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 11/24/2022]
Affiliation(s)
- Ahmed Aljizeeri
- King Abdulaziz Cardiac Center, Riyadh, Kingdom of Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Kingdom of Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Kingdom of Saudi Arabia
| | | | - Mouaz H Al-Mallah
- Houston Methodist DeBakey Heart & Vascular Center, Houston Methodist Hospital, 6550 Fannin Street, Smith Tower - Suite 1801, Houston, TX, 77030, USA.
| |
Collapse
|
7
|
Development and preclinical evaluation of novel fluorinated ammonium salts for PET myocardial perfusion imaging. Sci Rep 2021; 11:19693. [PMID: 34608204 PMCID: PMC8490395 DOI: 10.1038/s41598-021-99212-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 09/14/2021] [Indexed: 12/22/2022] Open
Abstract
We previously presented the radiolabeled ammonium salt [11C]-dimethyl diphenylammonium trifluoromethanesulfonate ([11C]DMDPA) as a potential novel PET-MPI agent. The current study aimed to increase the clinical applicability of PET-MPI by designing and synthesizing fluorinated ammonium salt derivatives. Four fluorinated DMDPA derivatives and two quinolinium salt analogs were radiolabeled. The dynamic distribution in vivo, following injection of each derivative into male SD rats, was evaluated using small-animal dedicated PET/CT. Organ uptake after injection of [18F]fluoroethylquinolinium acetate ([18F]FEtQ) was examined ex vivo. Four fluorinated DMDPA derivatives were synthesized, two were labeled with fluorine-18: [18F]fluoroethyl-methyldiphenylammonium trifluoromethanesulfonate ([18F]FEMDPA) and [18F]fluorobuthyl-methyldiphenylammonium trifluoromethanesulfonate ([18F]FBMDPA). The other two were labeled using carbon-11: [11C]methyl-(3-fluorophenyl)-methylphenylammonium trifluoromethanesulfonate ([11C]3-F-DMDPA) and [11C]methyl-(4-fluorophenyl)-methylphenylammonium trifluoromethanesulfonate ([11C]4-F-DMDPA). All four DMDPA derivatives exhibited significantly lower heart/liver radioactivity uptake ratios (0.6, 0.4, 0.7 and 0.6, respectively) compared to that of [11C]DMDPA (1.2). Conversely, the two radiolabeled quinolinium salt derivatives, [11C]methylquinolinium iodide ([11C]MeQ) and [18F]FEtQ demonstrated improved heart/liver ratios (2.0 and 1.3, respectively) with clear visualization of the left ventricle myocardium. Renal clearance was the major route of elimination. Among the fluorinated quaternary ammonium salts tested, [18F]FEtQ yielded the best images. Further studies are in progress to elucidate the underlying mechanism of its cardiac uptake.
Collapse
|
8
|
Aljizeeri A, Ahmed AI, Alfaris MA, Ahmed D, Farea J, Elneama A, Suliman I, Alharthi M, Ahmed A, Alsaileek A, Al-Mallah MH. Myocardial Flow Reserve and Coronary Calcification in Prognosis of Patients With Suspected Coronary Artery Disease. JACC Cardiovasc Imaging 2021; 14:2443-2452. [PMID: 33744156 DOI: 10.1016/j.jcmg.2021.01.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/21/2022]
Abstract
OBJECTIVES The aim of this analysis is to examine the incremental prognostic value of coronary artery calcium (CAC) score and myocardial flow reserve (MFR) in patients with suspected coronary artery disease (CAD) undergoing positron emission tomography (PET) myocardial perfusion imaging (MPI). BACKGROUND Advances in cardiac PET and computed tomography imaging enabled the simultaneous acquisition of anatomic and physiological data for patients suspected of CAD. METHODS Consecutive patients who underwent PET MPI and CAC score calculation at King Abdulaziz Cardiac Center, Riyadh, Saudi Arabia, between May 2011 and May 2018 were included in the study. MPI and CAC images were obtained in the same setting. The primary endpoint of the study was a composite of cardiac death and nonfatal myocardial infarction. Cox proportional hazard regression was used to assess the incremental prognostic value of CAC and MFR by sequentially adding the variables to a model that included clinical and PET variables. RESULTS A total of 4,008 patients (mean age 59.7 ± 11.6 years, 55% women) were included in the analysis. Risk factors were prevalent (77.6% hypertension, 58.1% diabetes). In total, 35.9% of the cohort had CAC of 0, 16.5% had CAC ≥400, and 43.9% had MFR <2. Over a median follow up of 1.9 years, 130 (3.2%) patients had cardiac death/nonfatal myocardial infarction. CAC and MFR score added incremental prognostic value over clinical and perfusion variables (base model: c-index 0.8137; Akaike information criterion [AIC]: 1,865.877; p = 0.0011; CAC model: c-index = 0.8330; AIC: 1,850.810; p = 0.045 vs. base model; MFR model: c-index = 0.8279; AIC: 1,859.235; p = 0.024). Combining CAC and MFR did not enhance risk prediction (c-index = 0.8435; AIC: 1,846.334; p = 0.074 vs. MFR model; p = 0.21 vs. CAC model.) CONCLUSIONS: In this large cohort of patients referred for PET MPI, both CAC and MFR independently added incremental prognostic value over clinical and MPI variables. Although combining both may have synergetic prognostic effect, this relation was not shown in multivariable model of this analysis.
Collapse
Affiliation(s)
- Ahmed Aljizeeri
- King Abdulaziz Cardiac Center, Ministry of National Guard, Health Affairs, King Abdullah International Medical Research Center, and King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Ahmed Ibrahim Ahmed
- Houston Methodist DeBakey Heart & Vascular Center, Houston Methodist Hospital, Houston, Texas, USA
| | - Mousa Alali Alfaris
- King Abdulaziz Cardiac Center, Ministry of National Guard, Health Affairs, King Abdullah International Medical Research Center, and King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Dalia Ahmed
- King Abdulaziz Cardiac Center, Ministry of National Guard, Health Affairs, King Abdullah International Medical Research Center, and King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Jabir Farea
- King Abdulaziz Cardiac Center, Ministry of National Guard, Health Affairs, King Abdullah International Medical Research Center, and King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Awadelkarim Elneama
- King Abdulaziz Cardiac Center, Ministry of National Guard, Health Affairs, King Abdullah International Medical Research Center, and King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Ihab Suliman
- King Abdulaziz Cardiac Center, Ministry of National Guard, Health Affairs, King Abdullah International Medical Research Center, and King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Mohsen Alharthi
- King Abdulaziz Cardiac Center, Ministry of National Guard, Health Affairs, King Abdullah International Medical Research Center, and King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Amjad Ahmed
- King Abdulaziz Cardiac Center, Ministry of National Guard, Health Affairs, King Abdullah International Medical Research Center, and King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Ahmed Alsaileek
- King Abdulaziz Cardiac Center, Ministry of National Guard, Health Affairs, King Abdullah International Medical Research Center, and King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Mouaz H Al-Mallah
- Houston Methodist DeBakey Heart & Vascular Center, Houston Methodist Hospital, Houston, Texas, USA.
| |
Collapse
|
9
|
Nudi F, Biondi-Zoccai G, Di Belardino N, Nudi A, Schillaci O. Myocardial-coronary fusion imaging with positron emission tomography and computed tomography: Benchmarking and slingshotting. J Nucl Cardiol 2020; 27:1770-1773. [PMID: 30478665 DOI: 10.1007/s12350-018-01538-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 11/12/2018] [Indexed: 02/05/2023]
Affiliation(s)
- Francesco Nudi
- Service of Hybrid Cardiac Imaging, Madonna della Fiducia Clinic, Via Giuseppe Mantellini 3, 00179, Rome, Italy.
- Ostia Radiologica, Rome, Italy.
- Replycare, Rome, Italy.
| | - Giuseppe Biondi-Zoccai
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | | | - Alessandro Nudi
- Service of Hybrid Cardiac Imaging, Madonna della Fiducia Clinic, Via Giuseppe Mantellini 3, 00179, Rome, Italy
| | - Orazio Schillaci
- IRCCS Neuromed, Pozzilli, Italy
- Department of Nuclear Medicine, Tor Vergata University of Rome, Rome, Italy
| |
Collapse
|
10
|
Al-Mallah MH. Should patients hold proton pump inhibitors prior to 82Rubidium positron emission tomography myocardial perfusion imaging? J Nucl Cardiol 2020; 27:1452-1455. [PMID: 32095936 DOI: 10.1007/s12350-020-02072-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 10/07/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Mouaz H Al-Mallah
- Houston Methodist Hospital, Houston Methodist DeBakey Heart & Vascular Center, 6500 Fannin Street, Smith-18, Houston, TX, 77030, USA.
| |
Collapse
|
11
|
Aljizeeri A, Small G, Malhotra S, Buechel R, Jain D, Dwivedi G, Al-Mallah MH. The role of cardiac imaging in the management of non-ischemic cardiovascular diseases in human immunodeficiency virus infection. J Nucl Cardiol 2020; 27:801-818. [PMID: 30864047 DOI: 10.1007/s12350-019-01676-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 02/07/2019] [Indexed: 10/27/2022]
Abstract
Infection with human immunodeficiency virus (HIV) has become the pandemic of the new century. About 36.9 million people are living with HIV worldwide. The introduction of antiretroviral therapy in 1996 has dramatically changed the global landscape of HIV care, resulting in significantly improved survival and changing HIV to a chronic disease. With near-normal life expectancy, contemporary cardiac care faces multiple challenges of cardiovascular diseases, disorders specific to HIV/AIDS, and those related to aging and higher prevalence of traditional risk factors. Non-ischemic cardiovascular diseases are major components of cardiovascular morbidity and mortality in HIV/AIDS. Non-invasive cardiac imaging plays a pivotal role in the management of these diseases. This review summarizes the non-ischemic presentation of the HIV cardiovascular spectrum focusing on the role of cardiac imaging in the management of these disorders.
Collapse
Affiliation(s)
- Ahmed Aljizeeri
- King Abdulaziz Cardiac Center, Ministry of National Guard-Health Affaire, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Gary Small
- Division of Cardiology, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Saurabh Malhotra
- Division of Cardiology, Cook County Health, Chicago, IL, USA
- Division of Cardiology, Rush Medical College, Chicago, IL, USA
| | - Ronny Buechel
- Department of Nuclear Medicine, Cardiac Imaging, University Hospital Zurich, Zurich, Switzerland
| | - Diwakar Jain
- Division of Cardiology and Nuclear Medicine, New York Medical College/Westchester Medical Center, Hawthorne, NY, USA
| | - Girish Dwivedi
- Fiona Stanley Hospital, Murdoch, WA, Australia
- Harry Perkins Institute of Medical Research, Murdoch, WA, Australia
- The University of Western Australia, Crawley, WA, Australia
| | - Mouaz H Al-Mallah
- Houston Methodist DeBakey Heart & Vascular Center, Houston Methodist Hospital, 6565 Fannin Street, Smith-19, Houston, TX, 77030, USA.
| |
Collapse
|
12
|
El-Tallawi KC, Aljizeeri A, Nabi F, Al-Mallah MH. Myocardial Perfusion Imaging Using Positron Emission Tomography. Methodist Debakey Cardiovasc J 2020; 16:114-121. [PMID: 32670471 PMCID: PMC7350808 DOI: 10.14797/mdcj-16-2-114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Coronary artery disease (CAD), also known as ischemic heart disease, is a major cause of morbidity and mortality worldwide, and timely noninvasive diagnosis of clinical and subclinical CAD is imperative to mitigate its burden on individual patients and populations. Positron emission tomography (PET) is a versatile tool that can perform relative myocardial perfusion imaging (MPI) with high accuracy; furthermore, it provides valuable information about the coronary microvasculature using rest and stress myocardial blood flow (MBF) and coronary flow reserve (CFR) measurements. Several radiotracers are approved by the US Food and Drug Administration to help with MPI, MBF, and CFR evaluation. A large body of evidence indicates that evaluation of the coronary microcirculation using MBF and CFR provides strong diagnostic and prognostic data in a multitude of patient populations. This review describes the technical aspects of PET compared to other modalities and discusses its clinical uses for diagnosis and prognosis of coronary arterial epicardial and microcirculatory disease.
Collapse
Affiliation(s)
- K Carlos El-Tallawi
- HOUSTON METHODIST DEBAKEY HEART & VASCULAR CENTER, HOUSTON METHODIST HOSPITAL, HOUSTON, TEXAS
| | | | - Faisal Nabi
- HOUSTON METHODIST DEBAKEY HEART & VASCULAR CENTER, HOUSTON METHODIST HOSPITAL, HOUSTON, TEXAS
| | - Mouaz H Al-Mallah
- HOUSTON METHODIST DEBAKEY HEART & VASCULAR CENTER, HOUSTON METHODIST HOSPITAL, HOUSTON, TEXAS
| |
Collapse
|
13
|
Are Patients With End-Stage Liver Disease Maximally Vasodilated? JACC Cardiovasc Imaging 2019; 12:2583-2584. [DOI: 10.1016/j.jcmg.2019.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/08/2019] [Accepted: 07/10/2019] [Indexed: 10/26/2022]
|
14
|
|
15
|
Marie PY, Visvikis-Siest S. Do we need diagnostic strategies enhanced with genetic information for ischemic heart disease? J Nucl Cardiol 2019; 26:1309-1312. [PMID: 29511928 DOI: 10.1007/s12350-018-1240-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 02/12/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Pierre-Yves Marie
- Nuclear Medicine & Nancyclotep Experimental Platform, CHRU-Nancy, Université de Lorraine, 54000, Nancy, France.
- INSERM, UMR-1116, Université de Lorraine, 54000, Nancy, France.
| | - Sophie Visvikis-Siest
- INSERM, UMR-1122, Université de Lorraine, 54000, Nancy, France
- Department of Internal Medicine and Geriatrics, CHRU-Nancy, Université de Lorraine, 54511, Nancy, France
| |
Collapse
|
16
|
Nikolova AP, Kobashigawa JA. Cardiac Allograft Vasculopathy: The Enduring Enemy of Cardiac Transplantation. Transplantation 2019; 103:1338-1348. [PMID: 31241553 DOI: 10.1097/tp.0000000000002704] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cardiac allograft vasculopathy remains a major limiting factor in the long-term survival of the heart transplant recipient. Our understanding of its pathogenesis is continuously evolving as advances in imaging modalities have allowed a direct window into the natural history of the disease. Innovation in diagnostic modalities has spurred the proliferation of prognostic tools and biomarkers. And in parallel, pharmacological advances have emerged that have helped ameliorate the disease's progressive course.
Collapse
Affiliation(s)
- Andriana P Nikolova
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Jon A Kobashigawa
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW Radionuclide myocardial perfusion imaging (MPI) continues to be the most reliable modality for diagnosis of hemodynamically significant coronary artery disease (CAD). The application of radionuclide MPI using single photon emission computed tomography (SEPCT) and positron emission tomography (PET) for CAD is reviewed, with emphasis on diagnosis and risk stratification. RECENT FINDINGS Contemporary studies have reported the diagnostic and prognostic value of novel imaging protocols, employing stress-first or stress-only approach. In addition, the superior diagnostic value of PET has been established with a role of assessment of myocardial blood flow to improve risk stratification. The utility of MPI in special populations, such as the elderly, women, and diabetic patients has also been recently evaluated. Furthermore, multicenter studies have reported a similar diagnostic and prognostic value of radionuclide MPI compared with other functional and anatomical techniques for CAD. Radionuclide MPI with SPECT and PET are efficacious for diagnosis and prognosis of CAD. Its universal application in varied patient populations highlights its excellent clinical effectiveness.
Collapse
|
18
|
Myocardial Perfusion Imaging for the Evaluation of Ischemic Heart Disease in Women. CURRENT CARDIOVASCULAR IMAGING REPORTS 2019. [DOI: 10.1007/s12410-019-9479-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
19
|
|
20
|
Affiliation(s)
- Mouaz H Al-Mallah
- Advanced Cardiac Imaging, King Abdulaziz Cardiac Center, Ministry of National Guard - Health Affairs, Riyadh, Saudi Arabia; King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia; King Abdullah International Medical Research Center, Riyadh, Saudi Arabia.
| |
Collapse
|
21
|
Li B, Hu J, Chen X. MicroRNA-30b protects myocardial cell function in patients with acute myocardial ischemia by targeting plasminogen activator inhibitor-1. Exp Ther Med 2018; 15:5125-5132. [PMID: 29805539 DOI: 10.3892/etm.2018.6039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 01/18/2018] [Indexed: 12/26/2022] Open
Abstract
The aim of the present study was to determine the expression of plasminogen activator inhibitor-1 (PAI-1) and microRNA (miR)-30b in the blood of patients with acute myocardial ischemia (AMI) and in the blood and myocardial tissue of mice with AMI. In addition, the present study aimed to identify the mechanism of action of miR-30b in AMI. A total of 36 patients with AMI were included in the present study and 28 healthy subjects were included as a control. Peripheral blood was collected from all subjects. For animal experiments, mice in the AMI group received an intraperitoneal injection of pituitrin (20 U/kg), whereas mice in the negative control group received an intraperitoneal injection of the same volume of saline. Blood and myocardial tissue was collected from all mice for analysis. Reverse transcription-quantitative polymerase chain reaction was performed to determine the expression of PAI-1 mRNA and miR-30b in the serum and myocardial tissue. An enzyme-linked immunosorbent assay was performed to measure the expression of PAI-1 protein in the serum of humans and mice, whereas western blotting was performed to determine the expression of PAI-1 protein in mouse myocardial tissue. Catalase, glutathione peroxidase and superoxide dismutase activity was measured using an automatic biochemical analyzer. A dual luciferase assay was performed to identify the interactions between PAI-1 mRNA and miR-30b. The results indicated that patients with AMI have higher PAI-1 levels and lower miR-30b expression in the peripheral blood compared with healthy subjects. AMI damaged the myocardium tissue of mice and reduced catalase, glutathione peroxidase and superoxide dismutase activity. Mice that have undergone AMI exhibit increased PAI-1 levels but decreased miR-30b expression in the peripheral blood and myocardial tissues. It was also demonstrated that miR-30b is able to bind to the 3'-untranslated region of PAI-1 mRNA to regulate its expression. The present study demonstrates that patients with AMI exhibit decreased miR-30b expression and elevated PAI-1 expression in the peripheral blood. miR-30b may therefore inhibit the damage to myocardial cells that occurs following AMI and protect myocardial cell function by targeting PAI-1 expression.
Collapse
Affiliation(s)
- Bin Li
- Department of Cardiac Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan 471009, P.R. China
| | - Jie Hu
- Department of Cardiac Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan 471009, P.R. China
| | - Xingpeng Chen
- Department of Cardiac Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan 471009, P.R. China
| |
Collapse
|
22
|
Al-Mallah MH, Sakr S, Al-Qunaibet A. Cardiorespiratory Fitness and Cardiovascular Disease Prevention: an Update. Curr Atheroscler Rep 2018; 20:1. [PMID: 29340805 DOI: 10.1007/s11883-018-0711-4] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
PURPOSE OF REVIEW Cardiovascular diseases account for nearly one third of all deaths globally. Improving exercise capacity and cardiorespiratory fitness (CRF) has been an important target to reduce cardiovascular events. In addition, the American Heart Association defined decreased physical activity as the fourth risk factor for coronary artery disease. Multiple large cohort studies have evaluated the impact of CRF on outcomes. In this review, we will discuss the role of CRF in reducing cardiovascular morbidity and mortality. RECENT FINDINGS Recent data suggest that CRF has an important role in reducing not only cardiovascular and all-cause mortality, but also incident myocardial infarction, hypertension, diabetes, atrial fibrillation, heart failure, and stroke. Most recently, its role in cancer prevention started to emerge. CRF protective effects have also been seen in patients with prior comorbidities like prior coronary artery disease, heart failure, depression, end-stage renal disease, and stroke. The prognostic value of CRF has been demonstrated in various patient populations and cardiovascular conditions. Higher CRF is associated with improved survival and decreased incidence of cardiovascular diseases (CVD) and other comorbidities including hypertension, diabetes, heart failure, and atrial fibrillation.
Collapse
Affiliation(s)
- Mouaz H Al-Mallah
- King Abdulaziz Cardiac Center, Ministry of National Guard-Health Affairs, King Abdulaziz Medical City, P.O. Box 22490, Riyadh, 11426, Kingdom of Saudi Arabia. .,King Saud bin Abdulaziz University for Health Sciences, Riyadh, Kingdom of Saudi Arabia. .,King Abdullah International Medical Research Center, Riyadh, Kingdom of Saudi Arabia.
| | - Sherif Sakr
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Kingdom of Saudi Arabia
| | - Ada Al-Qunaibet
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Kingdom of Saudi Arabia.,King Abdullah International Medical Research Center, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|