1
|
Zhou Q, Chang C, Wang Y, Gai X, Chen Y, Gao X, Liang Y, Sun Y. Comparative analysis of lysophospholipid metabolism profiles and clinical characteristics in patients with high vs. low C-reactive protein levels in acute exacerbations of chronic obstructive pulmonary disease. Clin Chim Acta 2024; 561:119816. [PMID: 38885755 DOI: 10.1016/j.cca.2024.119816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/09/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND The precise role of lysophospholipids (LysoPLs) in the pathogenesis of acute exacerbations of Chronic Obstructive Pulmonary Disease (AECOPD) remains unclear. In this study, we sought to elucidate the differences in serum LysoPL metabolite profiles and their correlation with clinical features between patients with low versus high CRP levels. METHODS A total of 58 patients with AECOPD were enrolled in the study. Patients were classified into two groups: low CRP group (CRP < 20 mg/L, n = 34) and high CRP group (CRP ≥ 20 mg/L, n = 24). Clinical data were collected, and the LysoPL metabolite profiles were analyzed using Liquid Chromatography-Mass Spectrometry (LC-MS) and identified by matching with the LipidBlast library. RESULTS Nineteen differential LysoPLs were initially identified through Student's t-test (p < 0.05 and VIP > 1). Subsequently, four LysoPLs, LPC(16:0), LPE(18:2), LPC(22:0), and LPC(24:0), were identified by FDR adjustment (adjusted p < 0.05). These four lysoPLs had a significant negative correlation with CRP. Integrative analysis revealed that LPC (16:0) and LPC (22:0) correlated with less hypercapnic respiratory failure and ICU admission. CONCLUSION AECOPD patients with high CRP levels demonstrated a distinctive LysoPL metabolism profile, with LPC (16:0), LPE(18:2), LPC(22:0), and LPC(24:0) being the most significantly altered lipid molecules. These alterations were associated with poorer clinical outcomes.
Collapse
Affiliation(s)
- Qiqiang Zhou
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Chun Chang
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China; Research Center for Chronic Airway Diseases, Peking University Health Science Center, Beijing, China
| | - Yating Wang
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Xiaoyan Gai
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China; Research Center for Chronic Airway Diseases, Peking University Health Science Center, Beijing, China
| | - Yahong Chen
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China; Research Center for Chronic Airway Diseases, Peking University Health Science Center, Beijing, China
| | - Xu Gao
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Ying Liang
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China; Research Center for Chronic Airway Diseases, Peking University Health Science Center, Beijing, China.
| | - Yongchang Sun
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, China; Research Center for Chronic Airway Diseases, Peking University Health Science Center, Beijing, China
| |
Collapse
|
2
|
Wang LM, Zhang WL, Lyu N, Suo YR, Yang L, Yu B, Jiang XJ. Research Advance of Chinese Medicine in Treating Atherosclerosis: Focus on Lipoprotein-Associated Phospholipase A2. Chin J Integr Med 2024; 30:277-288. [PMID: 38057549 DOI: 10.1007/s11655-023-3611-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2023] [Indexed: 12/08/2023]
Abstract
As a serious cardiovascular disease, atherosclerosis (AS) causes chronic inflammation and oxidative stress in the body and poses a threat to human health. Lipoprotein-associated phospholipase A2 (Lp-PLA2) is a member of the phospholipase A2 (PLA2) family, and its elevated levels have been shown to contribute to AS. Lp-PLA2 is closely related to a variety of lipoproteins, and its role in promoting inflammatory responses and oxidative stress in AS is mainly achieved by hydrolyzing oxidized phosphatidylcholine (oxPC) to produce lysophosphatidylcholine (lysoPC). Moreover, macrophage apoptosis within plaque is promoted by localized Lp-PLA2 which also promotes plaque instability. This paper reviews those researches of Chinese medicine in treating AS via reducing Lp-PLA2 levels to guide future experimental studies and clinical applications related to AS.
Collapse
Affiliation(s)
- Lu-Ming Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Wen-Lan Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Nuan Lyu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yan-Rong Suo
- Department of Traditional Chinese Medicine, Ganzhou People's Hospital, Ganzhou, Jiangxi Province, 341000, China
| | - Lin Yang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Bin Yu
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Xi-Juan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| |
Collapse
|
3
|
Dannenberger D, Eggert A, Kalbe C, Woitalla A, Schwudke D. Are n-3 PUFAs from Microalgae Incorporated into Membrane and Storage Lipids in Pig Muscle Tissues?-A Lipidomic Approach. ACS OMEGA 2022; 7:24785-24794. [PMID: 35874219 PMCID: PMC9301695 DOI: 10.1021/acsomega.2c02476] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
For the study of molecular mechanisms of to lipid transport and storage in relation to dietary effects, lipidomics has been rarely used in farm animal research. A feeding study with pigs (German Landrace sows) and supplementation of microalgae (Schizochytrium sp.) was conducted. The animals were allocated to the control group (n = 15) and the microalgae group (n = 16). Shotgun lipidomics was applied. This study enabled us to identify and quantify 336 lipid species from 15 different lipid classes in pig skeletal muscle tissues. The distribution of the lipid classes was significantly altered by microalgae supplementation, and ether lipids of phosphatidylcholine (PC), phosphatidylethanolamine (PE), and phosphatidic acid (PA) were significantly decreased. The total concentration of triacylglycerides (TAGs) was not affected. TAGs with high degree of unsaturation (TAG 56:7, TAG 56:6, TAG 54:6) were increased in the microalgae group, and major abundant species like TAG 52:2 and TAG 52:1 were not affected by the diet. Our results confirmed that dietary DHA and EPA are incorporated into storage and membrane lipids of pig muscles, which further led to systemic changes in the lipidome composition.
Collapse
Affiliation(s)
- Dirk Dannenberger
- Lipid
Metabolism and Muscular Adaptation Workgroup, Research Institute for Farm Animal Biology, Institute of Muscle Biology
and Growth, 18196 Dummerstorf, Germany
| | - Anja Eggert
- Institute
of Genetics and Biometry, Research Institute
for Farm Animal Biology, 18196 Dummerstorf, Germany
| | - Claudia Kalbe
- Lipid
Metabolism and Muscular Adaptation Workgroup, Research Institute for Farm Animal Biology, Institute of Muscle Biology
and Growth, 18196 Dummerstorf, Germany
| | - Anna Woitalla
- Division
of Bioanalytical Chemistry, Research Center
Borstel—Leibniz Lung Center, 23845 Borstel, Germany
| | - Dominik Schwudke
- Division
of Bioanalytical Chemistry, Research Center
Borstel—Leibniz Lung Center, 23845 Borstel, Germany
- German
Center for Lung Research (DZL), Airway Research Center North (ARCN), Research Center Borstel—Leibniz Lung Center, 23845 Borstel, Germany
- German
Center for Infection Research, Thematic Translational Unit Tuberculosis, Research Center Borstel—Leibniz Lung Center, 23845 Borstel, Germany
| |
Collapse
|
4
|
Nishikimi M, Shoaib M, Choudhary RC, Aoki T, Miyara SJ, Yagi T, Hayashida K, Takegawa R, Yin T, Becker LB, Kim J. Preserving brain
LPC‐DHA
by plasma supplementation attenuates brain injury after cardiac arrest. Ann Neurol 2022; 91:389-403. [DOI: 10.1002/ana.26296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 12/20/2021] [Accepted: 12/31/2021] [Indexed: 11/12/2022]
Affiliation(s)
- Mitsuaki Nishikimi
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research Manhasset NY USA
- Department of Emergency Medicine Northshore University Hospital Manhasset NY USA
| | - Muhammad Shoaib
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research Manhasset NY USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Hempstead NY USA
| | - Rishabh C. Choudhary
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research Manhasset NY USA
| | - Tomoaki Aoki
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research Manhasset NY USA
| | - Santiago J. Miyara
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research Manhasset NY USA
| | - Tsukasa Yagi
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research Manhasset NY USA
| | - Kei Hayashida
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research Manhasset NY USA
| | - Ryosuke Takegawa
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research Manhasset NY USA
| | - Tai Yin
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research Manhasset NY USA
| | - Lance B. Becker
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research Manhasset NY USA
- Department of Emergency Medicine Northshore University Hospital Manhasset NY USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Hempstead NY USA
| | - Junhwan Kim
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research Manhasset NY USA
- Department of Emergency Medicine Northshore University Hospital Manhasset NY USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Hempstead NY USA
| |
Collapse
|
5
|
Serum metabolite profiles predict outcomes in critically ill patients receiving renal replacement therapy. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1187:123024. [PMID: 34815179 DOI: 10.1016/j.jchromb.2021.123024] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 08/16/2021] [Accepted: 11/01/2021] [Indexed: 11/23/2022]
Abstract
Acute kidney injury (AKI) requiring renal replacement therapy (RRT) is associated with increased incidence of dialysis dependence and portends high mortality in critically ill patients. At the early stage of RRT, serum metabolic biomarkers might differntiate patients with a high risk of mortality or permanent kidney injury from those who can recover. Serum samples from participants enrolled in the Veteran's Affairs/National Institutes of Health Acute Renal Failure Trial Network study were collected on day 1 (n = 97) and day 8 (n = 105) of randomized RRT. The samples were further evaluated using LC/MS-based metabolic profiling. A model predicting mortality by day 8 was built from samples collected on day 1 and based on four metabolites with an area under the curve (AUC) of 0.641. A model most predictive of mortality by day 28 was built from the levels of 11 serum metabolites from day 8 with an AUC of 0.789. Both day 1 and day 8 samples had lower serum levels of 1-arachidonoyl-lysoPC and 1-eicosatetraenoyl-lysoPC (involved in anti-inflammatory processes) in the critically ill patients who died by day 8 or day 28. Higher levels of amino acids and amino acid metabolites in the day 8 model predicting < day 28 mortality may be indicative of muscle wasting. A kidney recovery biomarker panel based on the serum levels of three metabolites from day 8 samples with an AUC of 0.70 was devised. Serum metabolic profiling of AKI critically ill patients requiring RRT revealed predictive models of mortality based on observed differences in four serum metabolites at day 1 and 11 metabolites at day 8 which were predictive of mortality. Significant changes in the levels of these metabolites suggest links to inflammatory processes and/or muscle wasting.
Collapse
|
6
|
Christmann U, Hancock CL, Poole CM, Emery AL, Poovey JR, Hagg C, Mattson EA, Scarborough JJ, Christopher JS, Dixon AT, Craney DJ, Wood PL. Dynamics of DHA and EPA supplementation: incorporation into equine plasma, synovial fluid, and surfactant glycerophosphocholines. Metabolomics 2021; 17:41. [PMID: 33866431 DOI: 10.1007/s11306-021-01792-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 04/05/2021] [Indexed: 01/14/2023]
Abstract
INTRODUCTION Horses with asthma or osteoarthritis frequently receive ω-3 fatty acid supplements. Docosahexaenoic (DHA; 22:6) and eicosapentaenoic (EPA; 20:5) acids are essential ω-3 fatty acid precursors of anti-inflammatory mediators and components of structural glycerophospholipids (GPL) that act as reservoirs of these fatty acids. Analysis of the incorporation of dietary DHA + EPA into GPL pools in different body compartments has not been undertaken in horses. OBJECTIVES We undertook a detailed study of dietary supplementation with DHA + EPA in horses and monitored incorporation into DHA- and EPA-containing glycerophosphocholines (GPC) 38:5, 38:6, 40:5, and 40:6 in plasma, synovial fluid (SF), and surfactant. METHODS Horses (n = 20) were randomly assigned to the supplement or control group and evaluated on days 0, 30, 60, and 90. GPC in plasma, SF, and surfactant were measured by high-resolution mass spectrometry with less than 3 ppm mass error. Validation of DHA and EPA incorporation into these GPC was conducted utilizing MS2 of the [M + Cl]- adducts of GPC. RESULTS Dietary supplementation resulted in augmented levels of GPC 38:5, 38:6, 40:5, and 40:6 in all compartments. Maximum incorporation into GPCs was delayed until 60 days. Significant increases in the levels of GPC 38:5, 40:5, and 40:6, containing docosapentaenoic acid (DPA; 22:5), also was noted. CONCLUSIONS DHA and EPA supplementation results in augmented storage pools of ω-3 essential fatty acids in SF and surfactant GPC. This has the potential to improve the ability of anti-inflammatory mechanisms to resolve inflammatory pathways in these critical compartments involved in arthritis and asthma.
Collapse
Affiliation(s)
- Undine Christmann
- Metabolomics Unit, College of Veterinary Medicine, Lincoln Memorial University, 6965 Cumberland Gap Pkwy, Harrogate, TN, 37752, USA.
| | - Courtney L Hancock
- Metabolomics Unit, College of Veterinary Medicine, Lincoln Memorial University, 6965 Cumberland Gap Pkwy, Harrogate, TN, 37752, USA
| | - Cathleen M Poole
- Metabolomics Unit, College of Veterinary Medicine, Lincoln Memorial University, 6965 Cumberland Gap Pkwy, Harrogate, TN, 37752, USA
| | - Audrey L Emery
- Metabolomics Unit, College of Veterinary Medicine, Lincoln Memorial University, 6965 Cumberland Gap Pkwy, Harrogate, TN, 37752, USA
| | - Jesse R Poovey
- Metabolomics Unit, College of Veterinary Medicine, Lincoln Memorial University, 6965 Cumberland Gap Pkwy, Harrogate, TN, 37752, USA
| | - Casey Hagg
- Metabolomics Unit, College of Veterinary Medicine, Lincoln Memorial University, 6965 Cumberland Gap Pkwy, Harrogate, TN, 37752, USA
| | - Eric A Mattson
- Metabolomics Unit, College of Veterinary Medicine, Lincoln Memorial University, 6965 Cumberland Gap Pkwy, Harrogate, TN, 37752, USA
| | - Jon J Scarborough
- DeBusk College of Osteopathic Medicine, Lincoln Memorial University, 6965 Cumberland Gap Pkwy, Harrogate, TN, 37752, USA
| | - Jordan S Christopher
- DeBusk College of Osteopathic Medicine, Lincoln Memorial University, 6965 Cumberland Gap Pkwy, Harrogate, TN, 37752, USA
| | - Alexander T Dixon
- DeBusk College of Osteopathic Medicine, Lincoln Memorial University, 6965 Cumberland Gap Pkwy, Harrogate, TN, 37752, USA
| | - Dustin J Craney
- DeBusk College of Osteopathic Medicine, Lincoln Memorial University, 6965 Cumberland Gap Pkwy, Harrogate, TN, 37752, USA
| | - Paul L Wood
- Metabolomics Unit, College of Veterinary Medicine, Lincoln Memorial University, 6965 Cumberland Gap Pkwy, Harrogate, TN, 37752, USA
| |
Collapse
|
7
|
Nguma E, Yamashita S, Kumagai K, Otoki Y, Yamamoto A, Eitsuka T, Nakagawa K, Miyazawa T, Kinoshita M. Ethanolamine Plasmalogen Suppresses Apoptosis in Human Intestinal Tract Cells in Vitro by Attenuating Induced Inflammatory Stress. ACS OMEGA 2021; 6:3140-3148. [PMID: 33553930 PMCID: PMC7860056 DOI: 10.1021/acsomega.0c05545] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/13/2021] [Indexed: 05/09/2023]
Abstract
Ethanolamine plasmalogen (PlsEtn) is a subtype of ethanolamine glycerophospholipids (EtnGpl). Recently, PlsEtn has attracted increasing research interest due to its beneficial effects in health and disease; however, its functional role in colonic health has not been well established. This study was conducted to determine the mechanism underlying the antiapoptotic effect of PlsEtn in human intestinal tract cells under induced inflammatory stress. Lipopolysaccharide induced apoptosis of differentiated Caco-2 cells, which was suppressed by EtnGpl in a dose-dependent manner. Cells treated with ascidian muscle EtnGpl containing high levels of PlsEtn demonstrated a lower degree of apoptosis, and downregulated TNF-α and apoptosis-related proteins compared to those treated with porcine liver EtnGpl containing low PlsEtn. This indicates that PlsEtn exerted the observed effects, which provided protection against induced inflammatory stress. Overall, our results suggest that PlsEtn with abundant vinyl ether linkages is potentially beneficial in preventing the initiation of inflammatory bowel disease and colon cancer.
Collapse
Affiliation(s)
- Ephantus Nguma
- Department
of Life and Food Sciences, Obihiro University
of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan
| | - Shinji Yamashita
- Department
of Life and Food Sciences, Obihiro University
of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan
- . Tel: +81-155-49-5446; Fax: +81-155-49-5593
| | - Kei Kumagai
- Food
and Biodynamic Chemistry Laboratory, Graduate School of Agricultural
Science, Tohoku University, Sendai 980-8572, Japan
| | - Yurika Otoki
- Food
and Biodynamic Chemistry Laboratory, Graduate School of Agricultural
Science, Tohoku University, Sendai 980-8572, Japan
| | - Ayaka Yamamoto
- Yaizu
Suisankagaku Industry Co., Ltd., Shizuoka 425-8570, Japan
| | - Takahiro Eitsuka
- Food
and Biodynamic Chemistry Laboratory, Graduate School of Agricultural
Science, Tohoku University, Sendai 980-8572, Japan
| | - Kiyotaka Nakagawa
- Food
and Biodynamic Chemistry Laboratory, Graduate School of Agricultural
Science, Tohoku University, Sendai 980-8572, Japan
| | - Teruo Miyazawa
- Food
and Biotechnology Platform Promoting Project, New Industry Creation
Hatchery Center (NICHe), Tohoku University, Sendai 980-8579, Japan
| | - Mikio Kinoshita
- Department
of Life and Food Sciences, Obihiro University
of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan
| |
Collapse
|
8
|
Wood PL, Muir W, Christmann U, Gibbons P, Hancock CL, Poole CM, Emery AL, Poovey JR, Hagg C, Scarborough JH, Christopher JS, Dixon AT, Craney DJ. Lipidomics of the chicken egg yolk: high-resolution mass spectrometric characterization of nutritional lipid families. Poult Sci 2021; 100:887-899. [PMID: 33518142 PMCID: PMC7858096 DOI: 10.1016/j.psj.2020.11.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 10/26/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023] Open
Abstract
While previous studies have characterized the fatty acids and global lipid families of the chicken egg yolk, there have been no publications characterizing the individual lipids in these lipid families. Such an in-depth characterization of egg yolk lipids is essential to define the potential benefits of egg yolk consumption for the supply of structural and anti-inflammatory lipids. Historically, the major focus has been on the cholesterol content of eggs and the potential negative health benefits of this lipid, while ignoring the essential roles of cholesterol in membranes and as a precursor to other essential sterols. A detailed analysis of egg yolk lipids, using high-resolution mass spectrometric analyses and tandem mass spectrometry to characterize the fatty acid substituents of complex structural lipids, was used to generate the first in-depth characterization of individual lipids within lipid families. Egg yolks were isolated from commercial eggs (Full Circle Market) and lipids extracted with methyl-t-butylether before analyses via high-resolution mass spectrometry. This analytical platform demonstrates that chicken egg yolks provide a rich nutritional source of complex structural lipids required for lipid homeostasis. These include dominant glycerophosphocholines (GPC) (34:2 and 36:2), plasmalogen GPC (34:1, 36:1), glycerophosphoethanolamines (GPE) 38:4 and 36:2), plasmalogen GPE (36:2 and 34:1), glycerophosphoserines (36:2 and 38:4), glycerophosphoinositols (38:4), glycerophosphoglycerols (36:2), N-acylphosphatidylethanolamines (NAPE) (56:6), plasmalogen NAPE (54:4 and 56:6), sphingomyelins (16:0), ceramides (22:0 and 24:0), cyclic phosphatidic acids (16:0 and 18:0), monoacylglycerols (18:1 and 18:2), diacylglycerols (36:3 and 36:2), and triacylglycerols (52:3). Our data indicate that the egg yolk is a rich source of structural and energy-rich lipids. In addition, the structural lipids possess ω-3 and ω-6 fatty acids that are essential precursors of endogenous anti-inflammatory lipid mediators. These data indicate that eggs are a valuable nutritional addition to the diets of individuals that do not have cholesterol issues.
Collapse
Affiliation(s)
- Paul L Wood
- College of Veterinary Medicine, Lincoln Memorial University, Harrogate, TN 37752, USA.
| | - William Muir
- College of Veterinary Medicine, Lincoln Memorial University, Harrogate, TN 37752, USA
| | - Undine Christmann
- College of Veterinary Medicine, Lincoln Memorial University, Harrogate, TN 37752, USA
| | - Philippa Gibbons
- College of Veterinary Medicine, Lincoln Memorial University, Harrogate, TN 37752, USA
| | - Courtney L Hancock
- College of Veterinary Medicine, Lincoln Memorial University, Harrogate, TN 37752, USA
| | - Cathleen M Poole
- College of Veterinary Medicine, Lincoln Memorial University, Harrogate, TN 37752, USA
| | - Audrey L Emery
- College of Veterinary Medicine, Lincoln Memorial University, Harrogate, TN 37752, USA
| | - Jesse R Poovey
- College of Veterinary Medicine, Lincoln Memorial University, Harrogate, TN 37752, USA
| | - Casey Hagg
- College of Veterinary Medicine, Lincoln Memorial University, Harrogate, TN 37752, USA
| | - Jon H Scarborough
- DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN 37752, USA
| | - Jordon S Christopher
- DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN 37752, USA
| | - Alexander T Dixon
- DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN 37752, USA
| | - Dustin J Craney
- DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN 37752, USA
| |
Collapse
|
9
|
Yamashita S, Fujiwara K, Tominaga Y, Nguma E, Takahashi T, Otoki Y, Yamamoto A, Higuchi O, Nakagawa K, Kinoshita M, Miyazawa T. Absorption Kinetics of Ethanolamine Plasmalogen and Its Hydrolysate in Mice. J Oleo Sci 2021; 70:263-273. [PMID: 33456005 DOI: 10.5650/jos.ess20223] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ethanolamine plasmalogen (PlsEtn), a subclass of ethanolamine glycerophospholipid (EtnGpl), has been reported to have many biological and dietary functions. In terms of PlsEtn absorption, some studies have reported that PlsEtn is re-esterized at the sn-2 position using lymph cannulation and the everted jejunal sac model. In this study, we aimed to better understand the uptake kinetics of PlsEtn and increase its absorption. We thus compared the uptake kinetics of PlsEtn with that of the lyso-form, in which the fatty acid at the sn-2 position was hydrolyzed enzymatically. Upon administration of EtnGpl (extracted from oysters or ascidians, 75.4 mol% and 88.4 mol% of PlsEtn ratio, respectively), the plasma PlsEtn species in mice showed the highest levels at 4 or 8 hours after administration. In the contrast, administration of the EtnGpl hydrolysate, which contained lysoEtnGpl and free fatty acids, markedly increased the plasma levels of PlsEtn species at 2 h after administration. The area under the plasma concentration-time curve (AUC), especially the AUC0-4 h of PlsEtn species, was higher with hydrolysate administration than that with EtnGpl administration. These results indicate that EtnGpl hydrolysis accelerated the absorption and metabolism of PlsEtn. Consequently, using a different experimental approach from that used in previous studies, we reconfirmed that PlsEtn species were absorbed via hydrolysis at the sn-2 position, suggesting that hydrolysis in advance could increase PlsEtn uptake.
Collapse
Affiliation(s)
- Shinji Yamashita
- Department of Life and Food Science, Obihiro University of Agriculture and Veterinary Medicine
| | - Kazufumi Fujiwara
- Department of Life and Food Science, Obihiro University of Agriculture and Veterinary Medicine
| | - Yuki Tominaga
- Department of Life and Food Science, Obihiro University of Agriculture and Veterinary Medicine
| | - Ephantus Nguma
- Department of Life and Food Science, Obihiro University of Agriculture and Veterinary Medicine
| | - Takumi Takahashi
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University
| | - Yurika Otoki
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University
| | | | - Ohki Higuchi
- Food and Biotechnology Platform Promoting Project, New Industry Creation Hatchery Center (NICHe), Tohoku University
| | - Kiyotaka Nakagawa
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University
| | - Mikio Kinoshita
- Department of Life and Food Science, Obihiro University of Agriculture and Veterinary Medicine
| | - Teruo Miyazawa
- Food and Biotechnology Platform Promoting Project, New Industry Creation Hatchery Center (NICHe), Tohoku University
| |
Collapse
|
10
|
Manual Kollareth DJ, Deckelbaum RJ, Liu Z, Ramakrishnan R, Jouvene C, Serhan CN, Ten VS, Zirpoli H. Acute injection of a DHA triglyceride emulsion after hypoxic-ischemic brain injury in mice increases both DHA and EPA levels in blood and brain ✰. Prostaglandins Leukot Essent Fatty Acids 2020; 162:102176. [PMID: 33038830 PMCID: PMC7685398 DOI: 10.1016/j.plefa.2020.102176] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/21/2020] [Accepted: 09/09/2020] [Indexed: 12/31/2022]
Abstract
We recently reported that acute injection of docosahexaenoic acid (DHA) triglyceride emulsions (tri-DHA) conferred neuroprotection after hypoxic-ischemic (HI) injury in a neonatal mouse stroke model. We showed that exogenous DHA increased concentrations of DHA in brain mitochondria as well as DHA-derived specialized pro-resolving mediator (SPM) levels in the brain. The objective of the present study was to investigate the distribution of emulsion particles and changes in plasma lipid profiles after tri-DHA injection in naïve mice and in animals subjected to HI injury. We also examined whether tri-DHA injection would change DHA- and eicosapentaenoic acid (EPA)-derived SPM levels in the brain. To address this, neonatal (10-day-old) naïve and HI mice were injected with radiolabeled tri-DHA emulsion (0.375 g tri-DHA/kg bw), and blood clearance and tissue distribution were analyzed. Among all the organs assayed, the lowest uptake of emulsion particles was in the brain (<0.4% recovered dose) in both naïve and HI mice, while the liver had the highest uptake. Tri-DHA administration increased DHA concentrations in plasma lysophosphatidylcholine and non-esterified fatty acids. Additionally, treatment with tri-DHA after HI injury significantly elevated the levels of DHA-derived SPMs and monohydroxy-containing DHA-derived products in the brain. Further, tri-DHA administration increased resolvin E2 (RvE2, 5S,18R-dihydroxy-eicosa-6E,8Z,11Z,14Z,16E-pentaenoic acid) and monohydroxy-containing EPA-derived products in the brain. These results suggest that the transfer of DHA through plasma lipid pools plays an important role in DHA brain transport in neonatal mice subjected to HI injury. Furthermore, increases in EPA and EPA-derived SPMs following tri-DHA injection demonstrate interlinked metabolism of these two fatty acids. Hence, changes in both EPA and DHA profile patterns need to be considered when studying the protective effects of DHA after HI brain injury. Our results highlight the need for further investigation to differentiate the effects of DHA from EPA on neuroprotective pathways following HI damage. Such information could contribute to the development of specific DHA-EPA formulations to improve clinical endpoints and modulate potential biomarkers in ischemic brain injury.
Collapse
Affiliation(s)
| | - Richard J Deckelbaum
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY; Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY
| | - Zequn Liu
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY
| | - Rajasekhar Ramakrishnan
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY; Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY
| | - Charlotte Jouvene
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Harvard Institutes of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Harvard Institutes of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Vadim S Ten
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY
| | - Hylde Zirpoli
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY.
| |
Collapse
|
11
|
Liu P, Zhu W, Chen C, Yan B, Zhu L, Chen X, Peng C. The mechanisms of lysophosphatidylcholine in the development of diseases. Life Sci 2020; 247:117443. [DOI: 10.1016/j.lfs.2020.117443] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/11/2020] [Accepted: 02/17/2020] [Indexed: 02/07/2023]
|
12
|
Sugasini D, Yalagala PCR, Goggin A, Tai LM, Subbaiah PV. Enrichment of brain docosahexaenoic acid (DHA) is highly dependent upon the molecular carrier of dietary DHA: lysophosphatidylcholine is more efficient than either phosphatidylcholine or triacylglycerol. J Nutr Biochem 2019; 74:108231. [PMID: 31665653 PMCID: PMC6885117 DOI: 10.1016/j.jnutbio.2019.108231] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/07/2019] [Accepted: 08/15/2019] [Indexed: 12/27/2022]
Abstract
Docosahexaenoic acid (DHA) is highly concentrated in the brain, and its deficiency is associated with several neurological disorders including Alzheimer's disease. However, the currently used supplements do not appreciably enrich brain DHA, although they enrich most other tissues. We tested the hypothesis that the ability of the dietary carrier to augment brain DHA depends upon the generation of DHA-lysophosphatidylcholine (LPC), the preferred carrier of DHA across the blood brain barrier. We compared the efficacy of DHA-triacylglycerol (TAG), di-DHA phosphatidylcholine (PC) and DHA-LPC to enrich brain DHA following their gavage to normal rats for 30 days, all at a dose of 10 mg DHA/day. The results show that DHA from TAG, which is released as free DHA or monoacylglycerol during digestion and is absorbed as TAG in chylomicrons, was incorporated preferentially into adipose tissue and heart but not into brain. In contrast, LPC-DHA increased brain DHA by up to 100% but had no effect on adipose tissue. Di-DHA PC, which generates both free DHA and LPC-DHA during the digestion, enriched DHA in brain, as well as in heart and liver. Brain-derived neurotrophic factor was increased by di-DHA PC and DHA-LPC, but not by TAG-DHA, showing that enrichment of brain DHA correlated with its functional effect. We conclude that dietary DHA from TAG or from natural PC (sn-2 position) is not suitable for brain enrichment, whereas DHA from LPC (at either sn-1 or sn-2 position) or from sn-1 position of PC efficiently enriches the brain and is functionally effective.
Collapse
Affiliation(s)
- Dhavamani Sugasini
- Section of Endocrinology, Department of Medicine, University of Illinois at Chicago
| | - Poorna C R Yalagala
- Section of Endocrinology, Department of Medicine, University of Illinois at Chicago
| | - Alexis Goggin
- Section of Endocrinology, Department of Medicine, University of Illinois at Chicago
| | - Leon M Tai
- Department of Anatomy and Cell Biology, University of Illinois at Chicago
| | - Papasani V Subbaiah
- Section of Endocrinology, Department of Medicine, University of Illinois at Chicago; Jesse Brown VA Medical Center, Chicago, IL 60612.
| |
Collapse
|
13
|
Liu H, Gu R, Li W, Zhou W, Cong Z, Xue J, Liu Y, Wei Q, Zhou Y. Lactobacillus rhamnosus GG attenuates tenofovir disoproxil fumarate-induced bone loss in male mice via gut-microbiota-dependent anti-inflammation. Ther Adv Chronic Dis 2019; 10:2040622319860653. [PMID: 31321013 PMCID: PMC6610433 DOI: 10.1177/2040622319860653] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 06/03/2019] [Indexed: 02/06/2023] Open
Abstract
Background: Although antiretroviral agents trigger bone loss in human immunodeficiency
virus patients, tenofovir disoproxil fumarate (TDF) induces more severe bone
damage, such as osteoporosis. While, the mechanisms are unclear, probiotic
supplements may be effective against osteoporosis. Methods: C57BL6/J mice were administered with Lactobacillus rhamnosus
GG (LGG)+TDF, TDF, and zoledronic acid+TDF, respectively. Bone morphometry
and biomechanics were evaluated using microcomputed tomography, bone
slicing, and flexural tests. The lymphocyte, proinflammatory cytokines, and
intestinal permeability levels were detected using enzyme-linked
immunosorbent assays, quantitative real-time polymerase chain reaction, and
flow cytometry. The gut microbiota composition and metabolomics were
analyzed using 16S recombinant deoxyribonucleic acid pyrosequencing and
ultra-performance liquid-chromatography–quadrupole time-of-flight mass
spectrometry. Results: LGG administered orally induced marked increases in trabecular bone
microarchitecture, cortical bone volume, and biomechanical properties in the
LGG+TDF group compared with that in the TDF-only group. Moreover, LGG
treatment increased intestinal barrier integrity, expanded regulatory T
cells, decreased Th17 cells, and downregulated osteoclastogenesis-related
cytokines in the bone marrow, spleen, and gut. Furthermore, LGG
reconstructed the gut microbiota and changed the metabolite composition,
especially lysophosphatidylcholine levels. However, the amount of
N-acetyl-leukotriene E4 was the highest in the TDF-only group. Conclusion: LGG reconstructed the community structure of the gut microbiota, promoted the
expression of lysophosphatidylcholines, and improved intestinal integrity to
suppress the TDF-induced inflammatory response, which resulted in
attenuation of TDF-induced bone loss in mice. LGG probiotics may be a safe
and effective strategy to prevent and treat TDF-induced osteoporosis.
Collapse
Affiliation(s)
- Hao Liu
- The Central Laboratory, Peking University School and Hospital of Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Laboratory for Digital and Material Technology of Stomatology and Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Ranli Gu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Laboratory for Digital and Material Technology of Stomatology and Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Wei Li
- Department of Oral Pathology, Peking University School and Hospital of Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Laboratory for Digital and Material Technology of Stomatology and Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Wen Zhou
- The Central Laboratory, Peking University School and Hospital of Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Laboratory for Digital and Material Technology of Stomatology and Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Zhe Cong
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Jing Xue
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Laboratory for Digital and Material Technology of Stomatology and Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, People's Republic of China
| | - Qiang Wei
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, No.5, Panjiayuan, Nanli, Chaoyang District, Beijing 100021, People's Republic of China
| | - Yongsheng Zhou
- Department of Prosthodontics, Peking University School and Hospital of Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Laboratory for Digital and Material Technology of Stomatology and Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, People's Republic of China
| |
Collapse
|
14
|
Sugasini D, Subbaiah PV. Rate of acyl migration in lysophosphatidylcholine (LPC) is dependent upon the nature of the acyl group. Greater stability of sn-2 docosahexaenoyl LPC compared to the more saturated LPC species. PLoS One 2017; 12:e0187826. [PMID: 29117232 PMCID: PMC5678866 DOI: 10.1371/journal.pone.0187826] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 10/26/2017] [Indexed: 11/23/2022] Open
Abstract
Several previous studies reported that sn-2 acyl lysophosphatidylcholines (LPCs) undergo rapid isomerization due to acyl migration, especially at physiological pH and temperature. However, these studies have been carried out using mostly sn-2 palmitoyl LPC, whereas the naturally occurring sn-2 LPCs are predominantly unsaturated. In this study, we investigated the acyl migration in four naturally occurring sn-2 acyl LPCs (sn-2 16:0, sn-2 18:1, sn-2 20:4, and sn-2 22:6) stored at various temperatures in aqueous or organic solvents, employing LC/MS to analyze the isomer composition. At 37°C and pH 7.4, the order of acyl migration rates (from sn-2 to sn-1) in aqueous buffer was 16:0 LPC> 18:1 LPC> 20:4 LPC> 22:6 LPC. The rate of isomerization of sn-2 16:0 LPC was 2–5 times greater than that of sn-2 22:6 under these conditions. Complexing the LPCs to serum albumin accelerated the acyl migration of all species, but sn-2 22:6 LPC was least affected by the presence of albumin. The migration rates were lower at lower temperatures (22°C, 4°C, and -20°C), but the differences between the LPC species persisted. All the sn-2 acyl LPCs were more stable in organic solvent (chloroform: methanol, 2:1 v/v), but the effect of the acyl groups on acyl migration was evident in the solvent also, at all temperatures. Storage of sn-2 22:6 LPC at -20°C for 4 weeks in the organic solvent resulted in about 10% isomerization, compared to 55% isomerization for sn-2 16:0. These results show that the sn-2 polyunsaturated LPCs can be stored at -20°C or below for several days without appreciable isomerization. Furthermore, they demonstrate that the sn-2 polyunsaturated LPCs generated in vivo are much more stable under physiological conditions than previously assumed.
Collapse
Affiliation(s)
- Dhavamani Sugasini
- Section of Endocrinology, Department of Medicine, and Department of Biochemistry & Molecular Genetics, University of Illinois at Chicago, Illinois, United States of America
| | - Papasani V. Subbaiah
- Section of Endocrinology, Department of Medicine, and Department of Biochemistry & Molecular Genetics, University of Illinois at Chicago, Illinois, United States of America
- Jesse Brown VA Medical Center, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
15
|
Tulathromycin exerts proresolving effects in bovine neutrophils by inhibiting phospholipases and altering leukotriene B4, prostaglandin E2, and lipoxin A4 production. Antimicrob Agents Chemother 2014; 58:4298-307. [PMID: 24820086 DOI: 10.1128/aac.02813-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The accumulation of neutrophils and proinflammatory mediators, such as leukotriene B4 (LTB4), is a classic marker of inflammatory disease. The clearance of apoptotic neutrophils, inhibition of proinflammatory signaling, and production of proresolving lipids (including lipoxins, such as lipoxin A4 [LXA4]) are imperative for resolving inflammation. Tulathromycin (TUL), a macrolide used to treat bovine respiratory disease, confers immunomodulatory benefits via mechanisms that remain unclear. We recently reported the anti-inflammatory properties of TUL in bovine phagocytes in vitro and in Mannheimia haemolytica-challenged calves. The findings demonstrated that this system offers a powerful model for investigating novel mechanisms of pharmacological immunomodulation. In the present study, we examined the effects of TUL in a nonbacterial model of pulmonary inflammation in vivo and characterized its effects on lipid signaling. In bronchoalveolar lavage (BAL) fluid samples from calves challenged with zymosan particles (50 mg), treatment with TUL (2.5 mg/kg of body weight) significantly reduced pulmonary levels of LTB4 and prostaglandin E2 (PGE2). In calcium ionophore (A23187)-stimulated bovine neutrophils, TUL inhibited phospholipase D (PLD), cytosolic phospholipase A2 (PLA2) activity, and the release of LTB4. In contrast, TUL promoted the secretion of LXA4 in resting and A23187-stimulated neutrophils, while levels of its precursor, 15(S)-hydroxyeicosatetraenoic acid [15(S)-HETE], were significantly lower. These findings indicate that TUL directly modulates lipid signaling by inhibiting the production of proinflammatory eicosanoids and promoting the production of proresolving lipoxins.
Collapse
|
16
|
Peng X, Zhang Z, Zhang N, Liu L, Li S, Wei H. In vitro catabolism of quercetin by human fecal bacteria and the antioxidant capacity of its catabolites. Food Nutr Res 2014; 58:23406. [PMID: 24765061 PMCID: PMC3991839 DOI: 10.3402/fnr.v58.23406] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 01/14/2014] [Accepted: 03/13/2014] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Part of quercetin flows into the colon after escaping the absorption of the small intestine and will be degraded by colonic microbiota. The catabolites in the colon partially determine the physiological activity of quercetin. METHODS Seven gut bacteria isolated from human feces were utilized to in vitro ferment quercetin. Their catabolites were analyzed with high-performance liquid chromatography and mass spectrometry, and the antioxidant activities of their fermented broths were compared with that of quercetin. RESULTS One metabolite, 3,4-dihydroxyphenylacetic acid, was produced by both C. perfringens and B. fragilis transforming quercetin. No other metabolites were detected in the other fermented broths. The antioxidant activities of all strains fermenting quercetin reached the highest values at the concentration of 1 mg/mL quercetin in broth; the fermented products of C. perfringens and B. fragilis presented stronger activities than those of other strains at most concentrations of quercetin in broth. Additionally, all of the fermented broths presented a decline of the antioxidant activities compared to quercetin. Therefore, the antioxidant activity of quercetin will be lost when it reaches the human colon because of the gut bacterial fermentation. CONCLUSIONS This is the first study to report that quercetin can be degraded by C. perfringens and B. fragilis and transformed to the same metabolite, 3,4-dihydroxyphenylacetic acid, and that antioxidant activities decline when quercetin is fermented by seven gut bacteria.
Collapse
Affiliation(s)
- Xichun Peng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Zhichao Zhang
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Ning Zhang
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Liu Liu
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Shaoting Li
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Hua Wei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
17
|
Dietary omega-3 polyunsaturated fatty acids alter the fatty acid composition of hepatic and plasma bioactive lipids in C57BL/6 mice: a lipidomic approach. PLoS One 2013; 8:e82399. [PMID: 24278481 PMCID: PMC3836780 DOI: 10.1371/journal.pone.0082399] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 11/01/2013] [Indexed: 12/22/2022] Open
Abstract
Background Omega (n)-3 polyunsaturated fatty acids (PUFA) are converted to bioactive lipid components that are important mediators in metabolic and physiological pathways; however, which bioactive compounds are metabolically active, and their mechanisms of action are still not clear. We investigated using lipidomic techniques, the effects of diets high in n-3 PUFA on the fatty acid composition of various bioactive lipids in plasma and liver. Methodology and Principal Findings Female C57BL/6 mice were fed semi-purified diets (20% w/w fat) containing varying amounts of n-3 PUFA before mating, during gestation and lactation, and until weaning. Male offspring were continued on their mothers’ diets for 16 weeks. Hepatic and plasma lipids were extracted in the presence of non-naturally occurring internal standards, and tandem electrospray ionization mass spectrometry methods were used to measure the fatty acyl compositions. There was no significant difference in total concentrations of phospholipids in both groups. However, there was a significantly higher concentration of eicosapentaenoic acid containing phosphatidylcholine (PC), lysophosphatidylcholine (LPC), and cholesteryl esters (CE) (p < 0.01) in the high n-3 PUFA group compared to the low n-3 PUFA group in both liver and plasma. Plasma and liver from the high n-3 PUFA group also had a higher concentration of free n-3 PUFA (p < 0.05). There were no significant differences in plasma concentrations of different fatty acyl species of phosphatidylethanolamine, triglycerides, sphingomyelin and ceramides. Conclusions/Significance Our findings reveal for the first time that a diet high in n-3 PUFA caused enrichment of n-3 PUFA in PC, LPC, CE and free fatty acids in the plasma and liver of C57BL/6 mice. PC, LPC, and unesterified free n-3 PUFA are important bioactive lipids, thus altering their fatty acyl composition will have important metabolic and physiological roles.
Collapse
|
18
|
Raphael W, Sordillo LM. Dietary polyunsaturated fatty acids and inflammation: the role of phospholipid biosynthesis. Int J Mol Sci 2013; 14:21167-88. [PMID: 24152446 PMCID: PMC3821664 DOI: 10.3390/ijms141021167] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 10/11/2013] [Accepted: 10/14/2013] [Indexed: 12/29/2022] Open
Abstract
The composition of fatty acids in the diets of both human and domestic animal species can regulate inflammation through the biosynthesis of potent lipid mediators. The substrates for lipid mediator biosynthesis are derived primarily from membrane phospholipids and reflect dietary fatty acid intake. Inflammation can be exacerbated with intake of certain dietary fatty acids, such as some ω-6 polyunsaturated fatty acids (PUFA), and subsequent incorporation into membrane phospholipids. Inflammation, however, can be resolved with ingestion of other fatty acids, such as ω-3 PUFA. The influence of dietary PUFA on phospholipid composition is influenced by factors that control phospholipid biosynthesis within cellular membranes, such as preferential incorporation of some fatty acids, competition between newly ingested PUFA and fatty acids released from stores such as adipose, and the impacts of carbohydrate metabolism and physiological state. The objective of this review is to explain these factors as potential obstacles to manipulating PUFA composition of tissue phospholipids by specific dietary fatty acids. A better understanding of the factors that influence how dietary fatty acids can be incorporated into phospholipids may lead to nutritional intervention strategies that optimize health.
Collapse
Affiliation(s)
- William Raphael
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, 736 Wilson Rd., Room D202, East Lansing, MI 48824, USA.
| | | |
Collapse
|
19
|
Awada M, Meynier A, Soulage CO, Hadji L, Géloën A, Viau M, Ribourg L, Benoit B, Debard C, Guichardant M, Lagarde M, Genot C, Michalski MC. n-3 PUFA added to high-fat diets affect differently adiposity and inflammation when carried by phospholipids or triacylglycerols in mice. Nutr Metab (Lond) 2013; 10:23. [PMID: 23413782 PMCID: PMC3585798 DOI: 10.1186/1743-7075-10-23] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 01/03/2013] [Indexed: 12/13/2022] Open
Abstract
Background Dietary intake of n-3 polyunsaturated fatty acids (PUFA) is primarily recognized to protect against cardiovascular diseases, cognitive dysfunctions and the onset of obesity and associated metabolic disorders. However, some of their properties such as bioavailability can depend on their chemical carriers. The objective of our study was to test the hypothesis that the nature of n-3 PUFA carrier results in different metabolic effects related to adiposity, oxidative stress and inflammation. Methods 4 groups of C57BL/6 mice were fed for 8 weeks low fat (LF) diet or high-fat (HF, 20%) diets. Two groups of high-fat diets were supplemented with long-chain n-3 PUFA either incorporated in the form of phospholipids (HF-ω3PL) or triacylglycerols (HF-ω3TG). Results Both HF-ω3PL and HF-ω3TG diets reduced the plasma concentrations of (i) inflammatory markers such as monocyte chemoattractant protein-1 (MCP-1) and interleukin 6 (IL-6), (ii) leptin and (iii) 4-hydroxy-2-nonenal (4-HNE), a marker of n-6 PUFA-derived oxidative stress compared with the control HF diet. Moreover, in both HF-ω3PL and HF-ω3TG groups, MCP-1 and IL-6 gene expressions were decreased in epididymal adipose tissue and the mRNA level of gastrointestinal glutathione peroxidase GPx2, an antioxidant enzyme, was decreased in the jejunum compared with the control HF diet. The type of n-3 PUFA carrier affected other outcomes. The phospholipid form of n-3 PUFA increased the level of tocopherols in epididymal adipose tissue compared with HF-ω3TG and resulted in smaller adipocytes than the two others HF groups. Adipocytes in the HF-ω3PL and LF groups were similar in size distribution. Conclusion Supplementation of mice diet with long-chain n-3 PUFA during long-term consumption of high-fat diets had the same lowering effects on inflammation regardless of triacyglycerol or phospholipid carrier, whereas the location of these fatty acids on a PL carrier had a major effect on decreasing the size of adipocytes that was not observed with the triacyglycerol carrier. Altogether, these results would support the development functional foods containing LC n-3 PUFA in the form of PL in order to prevent some deleterious outcomes associated with the development of obesity.
Collapse
Affiliation(s)
- Manar Awada
- INRA, U1362, CarMeN, Villeurbanne, F-69621, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Hall JA, Jewell DE. Feeding healthy beagles medium-chain triglycerides, fish oil, and carnitine offsets age-related changes in serum fatty acids and carnitine metabolites. PLoS One 2012; 7:e49510. [PMID: 23145181 PMCID: PMC3492282 DOI: 10.1371/journal.pone.0049510] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 10/11/2012] [Indexed: 12/18/2022] Open
Abstract
The purpose of this study was to determine if feeding dogs medium-chain triglycerides (MCT), fish oil, and L-carnitine enriched foods offsets age-associated changes in serum fatty acids (FA) and carnitine metabolites. Forty-one healthy Beagles, mean age 9.9 years (range 3.1 to 14.8), were fed control or one of two treatment foods for 6 months. All foods were complete and balanced and met the nutrient requirements for adult dogs, and had similar concentrations of moisture, protein, and fat (approx. 7.4%, 14.0%, and 18.1%, respectively). The treatment diets both contained added L-carnitine (300 mg/kg) and 0.6% (treatment food 1) or 1.5% (treatment food 2) added fish oil. Treatment food 2 also had increased MCT from coconut oil, added corn oil, and reduced animal fat. Composition of serum FA was determined by gas chromatography of FA methyl esters. Metabolomic profiles of serum samples were determined from extracted supernatants that were split and run on GC/MS and LC/MS/MS platforms, for identification and relative quantification of small metabolites. Body composition was determined by dual energy x-ray absorptiometry. Among dog groups, there was no change in total-lean-body weight, or in serum total protein and serum albumin concentrations, based on time or dietary treatment. Serum concentrations of carnitine metabolites were decreased in geriatric (>7 years) vs. mature adult (≤ 7 years) dogs, and supplementation with L-carnitine attenuated the effects of aging. The ratio of PUFA to SFA was significantly greater in mature dogs at baseline (P ≤ 0.05). Serum concentrations of eicosapentaenoic and docosahexaenoic FA increased in a dose-dependent manner. Dogs consuming treatment food 2 also had increased serum concentrations of lauric and myristic FA, and decreased concentrations of SFA, MUFA, and arachidonate (all P ≤ 0.05) and their PUFA to SFA ratio increased. In summary, dietary MCT, fish oil, and L-carnitine counterbalanced the effects of aging on circulating concentrations of these compounds.
Collapse
Affiliation(s)
- Jean A Hall
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, United States of America.
| | | |
Collapse
|
21
|
Oh SF, Dona M, Fredman G, Krishnamoorthy S, Irimia D, Serhan CN. Resolvin E2 formation and impact in inflammation resolution. THE JOURNAL OF IMMUNOLOGY 2012; 188:4527-34. [PMID: 22450811 DOI: 10.4049/jimmunol.1103652] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Acute inflammation and its resolution are essential processes for tissue protection and homeostasis. In this context, specialized proresolving mediators derived from polyunsaturated fatty acids are of interest. In this study, we report that resolvin E2 (RvE2) from eicosapentaenoic acid is endogenously produced during self-limited murine peritonitis in both the initiation and resolution phases. RvE2 (1-10 nM) carries potent leukocyte-directed actions that include: 1) regulating chemotaxis of human neutrophils; and 2) enhancing phagocytosis and anti-inflammatory cytokine production. These actions appear to be mediated by leukocyte G-protein-coupled receptors as preparation of labeled RvE2 gave direct evidence for specific binding of radiolabeled RvE2 to neutrophils (K(d) 24.7 ± 10.1 nM) and resolvin E1 activation of recombinant G-protein-coupled receptors was assessed. In addition to the murine inflammatory milieu, RvE2 was also identified in plasma from healthy human subjects. RvE2 rapidly downregulated surface expression of human leukocyte integrins in whole blood and dampened responses to platelet-activating factor. Together, these results indicate that RvE2 can stimulate host-protective actions throughout initiation and resolution in the innate inflammatory responses.
Collapse
Affiliation(s)
- Sungwhan F Oh
- Department of Anesthesiology, Perioperative and Pain Medicine, Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
22
|
Jim MC, Hung ND, Yoo JM, Kim MR, Sok D. Suppressive effect of docosahexaenoyl‐lysophosphatidylcholine and 17‐hydroxydocosahexaenoyl‐lysophosphatidylcholine on levels of cytokines in spleen of mice treated with lipopolysaccharide. EUR J LIPID SCI TECH 2011. [DOI: 10.1002/ejlt.201100169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mei Chen Jim
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Nguyen Dang Hung
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Jae Myung Yoo
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Mee Ree Kim
- Department of Food and Nutrition, Chungnam National University, Daejeon, Republic of Korea
| | - Dai‐Eun Sok
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
23
|
Hung ND, Kim MR, Sok DE. Mechanisms for anti-inflammatory effects of 1-[15(S)-hydroxyeicosapentaenoyl] lysophosphatidylcholine, administered intraperitoneally, in zymosan A-induced peritonitis. Br J Pharmacol 2011; 162:1119-35. [PMID: 21091644 DOI: 10.1111/j.1476-5381.2010.01117.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Lysophosphatidylcholines (lysoPCs) with polyunsaturated acyl chains are known to exert anti-inflammatory actions. 15-Lipoxygeanation is crucial for anti-inflammatory action of polyunsaturated acylated lysoPCs. Here, the anti-inflammatory actions of 1-(15-hydroxyeicosapentaenoyl)-lysoPC (15-HEPE-lysoPC) and its derivatives were examined in a mechanistic analysis. EXPERIMENTAL APPROACH Anti-inflammatory actions of 15-HEPE-lysoPC in zymosan A-induced peritonitis of mice were examined by measuring plasma leakage and leucocyte infiltration, and determining levels of lipid mediators or cytokines. KEY RESULTS When each lysoPC, administered i.v., was assessed for its ability to suppress zymosan A-induced plasma leakage, 15-HEPE-lysoPC was found to be more potent than 1-(15-hydroperoxyeicosapentaenoyl)-lysoPC or 1-eicosapentaenoyl-lysoPC. Separately, i.p. administration of 15-HEPE-lysoPC markedly inhibited plasma leakage, in contrast to 15-HEPE, which had only a small effect. 15-HEPE-lysoPC also decreased leucocyte infiltration. Moreover, it reduced the formation of LTC₄ and LTB₄, 5-lipoxygenation products, as well as the levels of pro-inflammatory cytokines. The time-course study indicated that 15-HEPE-lysoPC might participate in both the early inflammatory phase and resolution phase. Additionally, 15-HEPE-lysoPC administration caused a partial suppression of LTC₄-induced plasma leakage and LTB₄-induced leucocyte infiltration. In the metabolism study, peritoneal exudate was shown to contain lysoPC-hydrolysing activity, crucial for anti-inflammatory activity, and a system capable of generating lipoxin A from 15-hydroxy eicosanoid precursor. CONCLUSIONS AND IMPLICATIONS 15-HEPE-lysoPC, a precursor for 15-HEPE in target cells, induced anti-inflammatory actions by inhibiting the formation of pro-inflammatory leukotrienes and cytokines, and by enhancing the formation of lipoxin A. 15-HEPE-lysoPC might be one of many potent anti-inflammatory lipids in vivo.
Collapse
Affiliation(s)
- Nguyen Dang Hung
- College of Pharmacy, Chungnam National University, Yuseong-Ku, Teajon, Korea
| | | | | |
Collapse
|