1
|
Hassanein EHM, Ibrahim IM, Abd-Alhameed EK, Sharawi ZW, Jaber FA, Althagafy HS. Nrf2/HO-1 as a therapeutic target in renal fibrosis. Life Sci 2023; 334:122209. [PMID: 37890696 DOI: 10.1016/j.lfs.2023.122209] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 10/29/2023]
Abstract
Chronic kidney disease (CKD) is one of the most prevalent chronic diseases and affects between 10 and 14 % of the world's population. The World Health Organization estimates that by 2040, the disease will be fifth in prevalence. End-stage CKD is characterized by renal fibrosis, which can eventually lead to kidney failure and death. Renal fibrosis develops due to multiple injuries and involves oxidative stress and inflammation. In the human body, nuclear factor erythroid 2-related factor 2 (Nrf2) plays an important role in the expression of antioxidant, anti-inflammatory, and cytoprotective genes, which prevents oxidative stress and inflammation damage. Heme oxygenase (HO-1) is an inducible homolog influenced by heme products and after exposure to cellular stress inducers such as oxidants, inflammatory chemokines/cytokines, and tissue damage as an outcome or downstream of Nrf2 activation. HO-1 is known for its antioxidative properties, which play an important role in regulating oxidative stress. In renal diseases-induced tissue fibrosis and xenobiotics-induced renal fibrosis, Nrf2/HO-1 has been targeted with promising results. This review summarizes these studies and highlights the interesting bioactive compounds that may assist in attenuating renal fibrosis mediated by HO-1 activation. In conclusion, Nrf2/HO-1 signal activation could have a renoprotective effect strategy against CKD caused by oxidative stress, inflammation, and consequent renal fibrosis.
Collapse
Affiliation(s)
- Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt.
| | - Islam M Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Esraa K Abd-Alhameed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Zeina W Sharawi
- Biological Sciences Department, Faculty of Sciences, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Fatima A Jaber
- Department of Biology, College of Science, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia
| | - Hanan S Althagafy
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| |
Collapse
|
2
|
Yamaoka K, Kataoka T. Confirmation of efficacy, elucidation of mechanism, and new search for indications of radon therapy. J Clin Biochem Nutr 2021; 70:87-92. [PMID: 35400814 PMCID: PMC8921726 DOI: 10.3164/jcbn.21-85] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 07/20/2021] [Indexed: 12/29/2022] Open
Abstract
Indications of radon therapy include various diseases related to respiratory, painful, digestive, chronic degenerative, senile, etc. derived from reactive oxygen species, but most are based on empirical prescriptions. For this reason, we have evaluated the relation between the biological response caused by radon and the tissue/organ absorbed dose more quantitatively, and have promoted the elucidation of mechanisms related to the indication and searching newly. As a result, as a mechanism, a series of moderate physiological stimulative effects accompanying a small amount of oxidative stress by radon inhalation are being elucidated. That is, hyperfunction of anti-oxidation/immune regulation/damage repair, promotion of anti-inflammation/circulating metabolism/hormone secretion, induction of apoptosis/heat shock protein, etc. Also, new indications include inflammatory/neuropathic pain, hepatic/renal injury, colitis, type 1 diabetes, complication kidney injury, hyperuricemia, transient cerebral ischemia, and inflammatory edema. Furthermore, we examined the combined antioxidant effect of radon inhalation and antioxidants or therapeutic agents. As a result, it was clear that any combination treatment could enhance the suppression effect of disease. It can be expected that radon therapy can be used effectively by applying it in addition to usual treatment, since reduction in its dosage can also be expected by concomitant use for drugs with strong side effects.
Collapse
Affiliation(s)
- Kiyonori Yamaoka
- Health Sciences, Institute of Academic and Research, Okayama University
| | - Takahiro Kataoka
- Health Sciences, Institute of Academic and Research, Okayama University
| |
Collapse
|
3
|
Maier A, Wiedemann J, Rapp F, Papenfuß F, Rödel F, Hehlgans S, Gaipl US, Kraft G, Fournier C, Frey B. Radon Exposure-Therapeutic Effect and Cancer Risk. Int J Mol Sci 2020; 22:ijms22010316. [PMID: 33396815 PMCID: PMC7796069 DOI: 10.3390/ijms22010316] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 01/18/2023] Open
Abstract
Largely unnoticed, all life on earth is constantly exposed to low levels of ionizing radiation. Radon, an imperceptible natural occurring radioactive noble gas, contributes as the largest single fraction to radiation exposure from natural sources. For that reason, radon represents a major issue for radiation protection. Nevertheless, radon is also applied for the therapy of inflammatory and degenerative diseases in galleries and spas to many thousand patients a year. In either case, chronic environmental exposure or therapy, the effect of radon on the organism exposed is still under investigation at all levels of interaction. This includes the physical stage of diffusion and energy deposition by radioactive decay of radon and its progeny and the biological stage of initiating and propagating a physiologic response or inducing cancer after chronic exposure. The purpose of this manuscript is to comprehensively review the current knowledge of radon and its progeny on physical background, associated cancer risk and potential therapeutic effects.
Collapse
Affiliation(s)
- Andreas Maier
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany; (A.M.); (J.W.); (F.R.); (F.P.); (G.K.); (C.F.)
| | - Julia Wiedemann
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany; (A.M.); (J.W.); (F.R.); (F.P.); (G.K.); (C.F.)
| | - Felicitas Rapp
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany; (A.M.); (J.W.); (F.R.); (F.P.); (G.K.); (C.F.)
| | - Franziska Papenfuß
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany; (A.M.); (J.W.); (F.R.); (F.P.); (G.K.); (C.F.)
| | - Franz Rödel
- Department of Radiotherapy and Oncology, University Hospital Frankfurt, Goethe-Universität Frankfurt am Main, 60590 Frankfurt am Main, Germany; (F.R.); (S.H.)
| | - Stephanie Hehlgans
- Department of Radiotherapy and Oncology, University Hospital Frankfurt, Goethe-Universität Frankfurt am Main, 60590 Frankfurt am Main, Germany; (F.R.); (S.H.)
| | - Udo S. Gaipl
- Translational Radiation Biology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany;
| | - Gerhard Kraft
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany; (A.M.); (J.W.); (F.R.); (F.P.); (G.K.); (C.F.)
| | - Claudia Fournier
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany; (A.M.); (J.W.); (F.R.); (F.P.); (G.K.); (C.F.)
| | - Benjamin Frey
- Translational Radiation Biology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany;
- Correspondence:
| |
Collapse
|
4
|
Alavi MS, Fanoudi S, Ghasemzadeh Rahbardar M, Mehri S, Hosseinzadeh H. An updated review of protective effects of rosemary and its active constituents against natural and chemical toxicities. Phytother Res 2020; 35:1313-1328. [PMID: 33044022 DOI: 10.1002/ptr.6894] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/19/2020] [Accepted: 09/17/2020] [Indexed: 01/17/2023]
Abstract
Natural and chemical toxic agents cause severe adverse effects on people's health in a variety of exposing ways. Herbal medications have taken into consideration as alternative safe treatments for toxicities. Rosmarinus officinalis also known as rosemary belongs to the Lamiaceae family. Rosemary and its constituents including carnosic acid, rosmarinic acid, and carnosol have a lot of benefits such as anti-inflammatory, antioxidant, anti-mutagenic, anti-bacterial, antiviral, antinociceptive, and neuroprotective activities. In this literate review, we focused on the protective effects of rosemary and its main compounds against natural and chemical toxicities in both in vitro and in vivo studies. The protective effects of rosemary and its components are mostly mediated through different mechanisms such as the inhibition of oxidative stress, reduction of inflammatory mediators including tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), interleukin-17 (IL-17), cyclooxygenase-2 (COX-2) and nuclear factor ĸB (NF-ĸB) as well as the modulation of apoptosis and mitogen-activated protein kinase (MAPK) signaling pathways.
Collapse
Affiliation(s)
- Mohaddeseh Sadat Alavi
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sahar Fanoudi
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Soghra Mehri
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Etani R, Kataoka T, Kanzaki N, Sakoda A, Tanaka H, Ishimori Y, Mitsunobu F, Taguchi T, Yamaoka K. Protective effects of hot spring water drinking and radon inhalation on ethanol-induced gastric mucosal injury in mice. JOURNAL OF RADIATION RESEARCH 2017; 58:614-625. [PMID: 28498931 PMCID: PMC5737809 DOI: 10.1093/jrr/rrx021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/26/2017] [Accepted: 03/31/2017] [Indexed: 05/30/2023]
Abstract
Radon therapy using radon (222Rn) gas is classified into two types of treatment: inhalation of radon gas and drinking water containing radon. Although short- or long-term intake of spa water is effective in increasing gastric mucosal blood flow, and spa water therapy is useful for treating chronic gastritis and gastric ulcer, the underlying mechanisms for and precise effects of radon protection against mucosal injury are unclear. In the present study, we examined the protective effects of hot spring water drinking and radon inhalation on ethanol-induced gastric mucosal injury in mice. Mice inhaled radon at a concentration of 2000 Bq/m3 for 24 h or were provided with hot spring water for 2 weeks. The activity density of 222Rn ranged from 663 Bq/l (start point of supplying) to 100 Bq/l (end point of supplying). Mice were then orally administered ethanol at three concentrations. The ulcer index (UI), an indicator of mucosal injury, increased in response to the administration of ethanol; however, treatment with either radon inhalation or hot spring water inhibited the elevation in the UI due to ethanol. Although no significant differences in antioxidative enzymes were observed between the radon-treated groups and the non-treated control groups, lipid peroxide levels were significantly lower in the stomachs of mice pre-treated with radon or hot spring water. These results suggest that hot spring water drinking and radon inhalation inhibit ethanol-induced gastric mucosal injury.
Collapse
Affiliation(s)
- Reo Etani
- Graduate School of Health Sciences, Okayama University, 5-1 Shikata-cho, 2-chome, Kita-ku, Okayama 700-8558, Japan
| | - Takahiro Kataoka
- Graduate School of Health Sciences, Okayama University, 5-1 Shikata-cho, 2-chome, Kita-ku, Okayama 700-8558, Japan
| | - Norie Kanzaki
- Graduate School of Health Sciences, Okayama University, 5-1 Shikata-cho, 2-chome, Kita-ku, Okayama 700-8558, Japan
| | - Akihiro Sakoda
- Ningyo-toge Environmental Engineering Center, Japan Atomic Energy Agency 1550 Kamisaibara, Kagamino-cho, Tomata-gun, Okayama 708-0698, Japan
| | - Hiroshi Tanaka
- Ningyo-toge Environmental Engineering Center, Japan Atomic Energy Agency 1550 Kamisaibara, Kagamino-cho, Tomata-gun, Okayama 708-0698, Japan
| | - Yuu Ishimori
- Ningyo-toge Environmental Engineering Center, Japan Atomic Energy Agency 1550 Kamisaibara, Kagamino-cho, Tomata-gun, Okayama 708-0698, Japan
| | - Fumihiro Mitsunobu
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 5-1 Shikata-cho, 2-chome, Kita-ku, Okayama 700-8558, Japan
| | - Takehito Taguchi
- Graduate School of Health Sciences, Okayama University, 5-1 Shikata-cho, 2-chome, Kita-ku, Okayama 700-8558, Japan
| | - Kiyonori Yamaoka
- Graduate School of Health Sciences, Okayama University, 5-1 Shikata-cho, 2-chome, Kita-ku, Okayama 700-8558, Japan
| |
Collapse
|
6
|
Yoshioka H, Usuda H, Fukuishi N, Nonogaki T, Onosaka S. Carbon Tetrachloride-Induced Nephrotoxicity in Mice Is Prevented by Pretreatment with Zinc Sulfate. Biol Pharm Bull 2017; 39:1042-6. [PMID: 27251508 DOI: 10.1248/bpb.b16-00078] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Carbon tetrachloride (CCl4) is commonly used as a chemical inducer of experimental liver injury. In addition, many studies showed that CCl4 can induce kidney damage. In the current study, we evaluated the protective effect of zinc (Zn) against CCl4-induced nephrotoxicity. We hypothesized that this protective effect would result from the ability of Zn to serve as an inducer of metallothionein (MT), a known endogenous scavenger of free radicals. We administered Zn (as ZnSO4) 50 mg/kg subcutaneously once daily for 3 successive days prior to a single intraperitoneal administration of CCl4 4 g/kg in male ddY mice. Our results showed that Zn pretreatment significantly decreased creatinine and blood urea nitrogen levels and reduced renal histopathological damage at 6 h post-CCl4 injection, observations consistent with enhanced antioxidative activity in the kidney. Moreover, kidney MT levels in the Zn+CCl4-treated group decreased by greater than 70% compared with levels in the Zn-alone group, implying that MT was consumed by CCl4-induced radicals. These findings suggest that prophylaxis with Zn protects mice from CCl4-induced acute nephrotoxicity, presumably by induction of MT, which in turn scavenges radicals induced by CCl4 exposure.
Collapse
|
7
|
Kataoka T, Etani R, Kanzaki N, Sasaoka K, Kobashi Y, Hanamoto K, Taguchi T, Yamaoka K. Evaluating the protective effects of radon inhalation or ascorbic acid treatment after transient global cerebral ischemic injury in gerbils. J NUCL SCI TECHNOL 2016. [DOI: 10.1080/00223131.2016.1198731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Takahiro Kataoka
- Graduate School of Health Sciences, Okayama University, Okayama, Japan
| | - Reo Etani
- Graduate School of Health Sciences, Okayama University, Okayama, Japan
| | - Norie Kanzaki
- Graduate School of Health Sciences, Okayama University, Okayama, Japan
| | - Kaori Sasaoka
- Graduate School of Health Sciences, Okayama University, Okayama, Japan
| | - Yusuke Kobashi
- Graduate School of Health Sciences, Okayama University, Okayama, Japan
| | - Katsumi Hanamoto
- Graduate School of Health Sciences, Okayama University, Okayama, Japan
| | - Takehito Taguchi
- Graduate School of Health Sciences, Okayama University, Okayama, Japan
| | - Kiyonori Yamaoka
- Graduate School of Health Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
8
|
Etani R, Kataoka T, Kanzaki N, Sakoda A, Tanaka H, Ishimori Y, Mitsunobu F, Yamaoka K. Difference in the action mechanism of radon inhalation and radon hot spring water drinking in suppression of hyperuricemia in mice. JOURNAL OF RADIATION RESEARCH 2016; 57:250-7. [PMID: 27021217 PMCID: PMC4915545 DOI: 10.1093/jrr/rrw014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 01/18/2016] [Indexed: 05/13/2023]
Abstract
Although radon therapy is indicated for hyperuricemia, the underlying mechanisms of action have not yet been elucidated in detail. Therefore, we herein examined the inhibitory effects of radon inhalation and hot spring water drinking on potassium oxonate (PO)-induced hyperuricemia in mice. Mice inhaled radon at a concentration of 2000 Bq/m(3) for 24 h or were given hot spring water for 2 weeks. Mice were then administrated PO at a dose of 500 mg/kg. The results obtained showed that serum uric acid levels were significantly increased by the administration of PO. Radon inhalation or hot spring water drinking significantly inhibited elevations in serum uric acid levels through the suppression of xanthine oxidase activity in the liver. Radon inhalation activated anti-oxidative functions in the liver and kidney. These results suggest that radon inhalation inhibits PO-induced hyperuricemia by activating anti-oxidative functions, while hot spring water drinking may suppress PO-induced elevations in serum uric acid levels through the pharmacological effects of the chemical compositions dissolved in it.
Collapse
Affiliation(s)
- Reo Etani
- Graduate School of Health Sciences, Okayama University, 5-1 Shikata-cho, 2-chome, Kita-ku, Okayama 700-8558, Japan
| | - Takahiro Kataoka
- Graduate School of Health Sciences, Okayama University, 5-1 Shikata-cho, 2-chome, Kita-ku, Okayama 700-8558, Japan
| | - Norie Kanzaki
- Graduate School of Health Sciences, Okayama University, 5-1 Shikata-cho, 2-chome, Kita-ku, Okayama 700-8558, Japan
| | - Akihiro Sakoda
- Ningyo-toge Environmental Engineering Center, Japan Atomic Energy Agency, 1550 Kamisaibara, Kagamino-cho, Tomata-gun, Okayama 708-0698, Japan
| | - Hiroshi Tanaka
- Ningyo-toge Environmental Engineering Center, Japan Atomic Energy Agency, 1550 Kamisaibara, Kagamino-cho, Tomata-gun, Okayama 708-0698, Japan
| | - Yuu Ishimori
- Ningyo-toge Environmental Engineering Center, Japan Atomic Energy Agency, 1550 Kamisaibara, Kagamino-cho, Tomata-gun, Okayama 708-0698, Japan
| | - Fumihiro Mitsunobu
- Misasa Medical Center, Okayama University Hospital, 827 Yamada, Misasa-cho, Tohaku-gun, Totori 682-0192, Japan
| | - Kiyonori Yamaoka
- Graduate School of Health Sciences, Okayama University, 5-1 Shikata-cho, 2-chome, Kita-ku, Okayama 700-8558, Japan
| |
Collapse
|
9
|
Etani R, Kataoka T, Nishiyama Y, Takata Y, Yamaoka K. Combined effects of radon inhalation and antioxidant vitamin administration on acute alcohol-induced hepatopathy in mice. J NUCL SCI TECHNOL 2015. [DOI: 10.1080/00223131.2015.1014875] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
10
|
Nishiyama Y, Kataoka T, Yamato K, Etani R, Taguchi T, Yamaoka K. Radon inhalation suppresses nephropathy in streptozotocin-induced type-1 diabetic mice. J NUCL SCI TECHNOL 2015. [DOI: 10.1080/00223131.2015.1078751] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Radon inhalation protects against transient global cerebral ischemic injury in gerbils. Inflammation 2015; 37:1675-82. [PMID: 24792782 DOI: 10.1007/s10753-014-9896-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Although brain disorders are not the main indication for radon therapy, our previous study suggested that radon inhalation therapy might mitigate brain disorders. In this study, we assessed whether radon inhalation protects against transient global cerebral ischemic injury in gerbils. Gerbils were treated with inhaled radon at a concentration of 2,000 Bq/m(3) for 24 h. After radon inhalation, transient global cerebral ischemia was induced by bilateral occlusion of the common carotid artery. Results showed that transient global cerebral ischemia induced neuronal damage in hippocampal CA1, and the number of damaged neurons was significantly increased compared with control. However, radon treatment inhibited ischemic damage. Superoxide dismutase (SOD) activity in the radon-treated gerbil brain was significantly higher than that in sham-operated gerbils. These findings suggested that radon inhalation activates antioxidative function, especially SOD, thereby inhibiting transient global cerebral ischemic injury in gerbils.
Collapse
|
12
|
Ma JQ, Ding J, Xiao ZH, Liu CM. Ursolic acid ameliorates carbon tetrachloride-induced oxidative DNA damage and inflammation in mouse kidney by inhibiting the STAT3 and NF-κB activities. Int Immunopharmacol 2014; 21:389-95. [PMID: 24880019 DOI: 10.1016/j.intimp.2014.05.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 05/02/2014] [Accepted: 05/02/2014] [Indexed: 01/01/2023]
Abstract
Ursolic acid (UA), a common pentacyclic triterpenoid compound, has been reported to have many benefits and medicinal properties. However, its protective effects against carbon tetrachloride (CCl4) induced injury in kidneys are not yet clear. In the current report, we investigated whether UA inhibited the oxidative stress and inflammation in the kidneys of CCl4 treated mice. Male ICR mice were injected with CCl4 with or without UA co-administration (25 and 50mg/kg intragastrically once daily) for six weeks. Our data showed that UA significantly prevented CCl4-induced nephrotoxicity in a dose-dependent manner, indicated by both diagnostic indicators of kidney damage and histopathological analysis. Moreover, CCl4-induced profound elevation of ROS and oxidative stress, as evidenced by the increase of lipid peroxidation level and the depletion of the total antioxidant capacity (TAC) level in the kidney, was suppressed by treatment with UA. UA also decreased 8-hydroxy-2-deoxyguanosine (one product of oxidative DNA damage) levels. Furthermore, protein expression by Western blot analysis showed that UA significantly decreased production of pro-inflammatory markers including tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6), interleukin-17 (IL-17) and cyclooxygenase-2 (COX-2) in CCl4-treated mouse kidney. In exploring the underlying mechanisms of UA action, we found that UA increased the phosphorylation of transcription 3 (STAT3), which in turn activated the nuclear factor kappa B (NF-kappaB) and the inflammatory cytokines in the kidneys. In conclusion, these results suggested that the inhibition of CCl4-induced inflammation by UA is due at least in part to its anti-oxidant activity and its ability to modulate the STAT3 and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Jie-Qiong Ma
- School of Chemistry and Pharmaceutical Engineering, Sichuan University of Science and Engineering, 643000 Zigong City, Sichuan Province, PR China.
| | - Jie Ding
- School of Chemistry and Pharmaceutical Engineering, Sichuan University of Science and Engineering, 643000 Zigong City, Sichuan Province, PR China
| | - Zheng-Hua Xiao
- School of Chemistry and Pharmaceutical Engineering, Sichuan University of Science and Engineering, 643000 Zigong City, Sichuan Province, PR China
| | - Chan-Min Liu
- School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Tangshan New Area, 221116 Xuzhou City, Jiangsu Province, PR China
| |
Collapse
|
13
|
Ma JQ, Ding J, Xiao ZH, Liu CM. Puerarin ameliorates carbon tetrachloride-induced oxidative DNA damage and inflammation in mouse kidney through ERK/Nrf2/ARE pathway. Food Chem Toxicol 2014; 71:264-71. [PMID: 24975872 DOI: 10.1016/j.fct.2014.06.017] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Revised: 06/16/2014] [Accepted: 06/18/2014] [Indexed: 12/24/2022]
Abstract
Puerarin (PU), a natural flavonoid, has been shown to possess many benefits and medicinal properties. In this study, we evaluated the effect of puerarin on oxidative stress and inflammation in kidney induced by carbon tetrachloride (CCl4) and explored the potential mechanisms underlying this effect. Our results showed that puerarin administration significantly inhibited CCl4-induced kidney injury, which indicated by both diagnostic indicators and histopathological analysis. One of the potential mechanisms of puerarin action was decreased the oxidative stress, as evidenced by decreasing of lipid peroxidation level, increasing of SOD, CAT and GPx activities and GSH level. Puerarin also decreased 8-hydroxy-2-deoxyguanosine (one product of oxidative DNA damage) level and increased the expression levels of NQO1, GST and HO-1 in kidneys of CCl4-treated mice. Moreover, western blot analysis showed that puerarin decreased production of pro-inflammatory markers including iNOS and COX-2 in CCl4-treated mouse kidney. We found that puerarin significantly inhibited the ERK phosphorylation and increased the translocation of Nrf2 from the cytosol to the nuclear fraction, which in turn inactivated NF-κB and the inflammatory cytokines in kidneys of the CCl4-treated mice. Altogether, these results suggest that puerarin could protect the CCl4-induced oxidative stress and inflammation by ERK/Nrf2/ARE pathway.
Collapse
Affiliation(s)
- Jie-Qiong Ma
- School of Chemistry and Pharmaceutical Engineering, Sichuan University of Science and Engineering, No. 180, Huixing Road, 643000 Zigong City, Sichuan Province, PR China.
| | - Jie Ding
- School of Chemistry and Pharmaceutical Engineering, Sichuan University of Science and Engineering, No. 180, Huixing Road, 643000 Zigong City, Sichuan Province, PR China
| | - Zheng-Hua Xiao
- School of Chemistry and Pharmaceutical Engineering, Sichuan University of Science and Engineering, No. 180, Huixing Road, 643000 Zigong City, Sichuan Province, PR China
| | - Chan-Min Liu
- School of Life Science, Jiangsu Normal University, No.101, Shanghai Road, Tongshan New Area, 221116 Xuzhou City, Jiangsu Province, PR China
| |
Collapse
|
14
|
Antinociceptive effects of radon inhalation on formalin-induced inflammatory pain in mice. Inflammation 2013; 36:355-63. [PMID: 23086656 DOI: 10.1007/s10753-012-9554-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Radon therapy is clinically useful for the treatment of inflammatory diseases. The mechanisms of pain relief remain to be fully elucidated. In this study, we investigated the antinociceptive effects of radon inhalation in a mouse model of formalin-induced inflammatory pain. Immediately, after radon inhalation at a concentration of background level (ca. 19 Bq/m(3)), 1,000 or 2,000 Bq/m(3) for 24 h, 1.35 % formalin (0.5 % formaldehyde in saline, 20 μl) was subcutaneously injected into the hind paw of mice, and we measured licking response time. Radon inhalation inhibited the second phase of response in formalin test. Formalin administration induced nociception and increased tumor necrosis factor alpha (TNF-α) and nitric oxide (NO) levels in serum and leukocyte migration in paws. Concurrently, formalin injection decreased antioxidative functions. Radon inhalation produced antinociceptive effects, i.e., lowered serum TNF-α and NO levels, and restored antioxidative functions. The results showed that radon inhalation inhibited formalin-induced inflammatory pain.
Collapse
|
15
|
Kataoka T. Study of antioxidative effects and anti-inflammatory effects in mice due to low-dose X-irradiation or radon inhalation. JOURNAL OF RADIATION RESEARCH 2013; 54:587-96. [PMID: 23420683 PMCID: PMC3709669 DOI: 10.1093/jrr/rrs141] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Revised: 12/20/2012] [Accepted: 12/24/2012] [Indexed: 05/30/2023]
Abstract
Low-dose irradiation induces various stimulating effects, especially activation of the biological defense system including antioxidative and immune functions. Oxidative stress induced by reactive oxygen species (ROS) can cause cell damage and death and can induce many types of diseases. This paper reviews new insights into inhibition of ROS-related diseases with low-dose irradiation or radon inhalation. X-irradiation (0.5 Gy) before or after carbon tetrachloride (CCl4) treatment inhibits hepatopathy in mice. X-irradiation (0.5 Gy) before ischemia-reperfusion injury or cold-induced brain injury also inhibits edema. These findings suggest that low-dose X-irradiation has antioxidative effects due to blocking the damage induced by free radicals or ROS. Moreover, radon inhalation increases superoxide dismutase activity in many organs and inhibits CCl4-induced hepatic and renal damage and streptozotocin-induced type I diabetes. These findings suggest that radon inhalation also has antioxidative effects. This antioxidative effect against CCl4-induced hepatopathy is comparable to treatment with ascorbic acid (vitamin C) at a dose of 500 mg/kg weight, or α-tocopherol (vitamin E) treatment at a dose of 300 mg/kg weight, and is due to activation of antioxidative functions. In addition, radon inhalation inhibits carrageenan-induced inflammatory paw edema, suggesting that radon inhalation has anti-inflammatory effects. Furthermore, radon inhalation inhibits formalin-induced inflammatory pain and chronic constriction injury-induced neuropathic pain, suggesting that radon inhalation relieves pain. Thus, low-dose irradiation very likely activates the defense systems in the body, and therefore, contributes to preventing or reducing ROS-related injuries, which are thought to involve peroxidation.
Collapse
Affiliation(s)
- Takahiro Kataoka
- Graduate School of Health Sciences, Okayama University, Okayama, Japan.
| |
Collapse
|
16
|
Kataoka T, Yamato K, Nishiyama Y, Morii Y, Etani R, Takata Y, Hanamoto K, Kawabe A, Sakoda A, Ishimori Y, Taguchi T, Yamaoka K. Comparative study on the inhibitory effects of α-tocopherol and radon on carbon tetrachloride-induced renal damage. Ren Fail 2013; 34:1181-7. [PMID: 22978362 DOI: 10.3109/0886022x.2012.717496] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Since the 2011 nuclear accident in Fukushima, the effects of low-dose irradiation, especially internal exposure, are at the forefront of everyone's attention. However, low-dose radiation induced various stimulating effects such as activation of antioxidative and immune functions. In this study, we attempted to evaluate the quantitative effects of the activation of antioxidative activities in kidney induced by radon inhalation on carbon tetrachloride (CCl4)-induced renal damage. Mice were subjected to intraperitoneal (i.p.) injection of CCl4 after inhaling approximately 1000 or 2000 Bq/m3 radon for 24 h, or immediately after i.p. injection of α-tocopherol (100, 300, or 500 mg/kg bodyweight). In case of renal function, radon inhalation at a concentration of 2000 Bq/m3 has the inhibitory effects similar to α-tocopherol treatment at a dose of 300-500 mg/kg bodyweight. The activities of superoxide dismutase and catalase in kidneys were significantly higher in mice exposed to radon as compared to mice treated with CCl4 alone. These findings suggest that radon inhalation has an antioxidative effect against CCl4-induced renal damage similar to the antioxidative effects of α-tocopherol due to induction of antioxidative functions.
Collapse
Affiliation(s)
- Takahiro Kataoka
- Graduate School of Health Sciences, Okayama University, Okayama, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Nishiyama Y, Kataoka T, Teraoka J, Sakoda A, Tanaka H, Ishimori Y, Mitsunobu F, Taguchi T, Yamaoka K. Suppression of streptozotocin-induced type-1 diabetes in mice by radon inhalation. Physiol Res 2012; 62:57-66. [PMID: 23173687 DOI: 10.33549/physiolres.932317] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We examined the protective effect of radon inhalation on streptozotocin (STZ)-induced type-1 diabetes in mice. Mice inhaled radon at concentrations of 1000, 2500, and 5500 Bq/m3 for 24 hours before STZ administration. STZ administration induced characteristics of type-1 diabetes such as hyperglycemia and hypoinsulinemia; however, radon inhalation at doses of 1000 and 5500 Bq/m3 significantly suppressed the elevation of blood glucose in diabetic mice. Serum insulin was significantly higher in mice pre-treated with radon at a dose of 1000 Bq/m3 than in mice treated with a sham. In addition, superoxide dismutase activities and total glutathione contents were significantly higher and lipid peroxide was significantly lower in mice pre-treated with radon at doses of 1000 and 5500 Bq/m3 than in mice treated with a sham. These results were consistent with the result that radon inhalation at 1000 and 5500 Bq/m3 suppressed hyperglycemia. These findings suggested that radon inhalation suppressed STZ-induced type-1 diabetes through the enhancement of antioxidative functions in the pancreas.
Collapse
Affiliation(s)
- Y Nishiyama
- Graduate School of Health Sciences, Okayama University, Okayama, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Inhibitory effects of pretreatment with radon on acute alcohol-induced hepatopathy in mice. Mediators Inflamm 2012; 2012:382801. [PMID: 23213269 PMCID: PMC3505665 DOI: 10.1155/2012/382801] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 10/13/2012] [Indexed: 01/18/2023] Open
Abstract
We previously reported that radon inhalation activates antioxidative functions in the liver and inhibits carbon tetrachloride-induced hepatopathy in mice. In addition, it has been reported that reactive oxygen species contribute to alcohol-induced hepatopathy. In this study, we examined the inhibitory effects of radon inhalation on acute alcohol-induced hepatopathy in mice. C57BL/6J mice were subjected to intraperitoneal injection of 50% alcohol (5 g/kg bodyweight) after inhaling approximately 4000 Bq/m3 radon for 24 h. Alcohol administration significantly increased the activities of glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT) in serum, and the levels of triglyceride and lipid peroxide in the liver, suggesting acute alcohol-induced hepatopathy. Radon inhalation activated antioxidative functions in the liver. Furthermore, pretreatment with radon inhibited the depression of hepatic functions and antioxidative functions. These findings suggested that radon inhalation activated antioxidative functions in the liver and inhibited acute alcohol-induced hepatopathy in mice.
Collapse
|
19
|
Kataoka T, Nishiyama Y, Yamato K, Teraoka J, Morii Y, Sakoda A, Ishimori Y, Taguchi T, Yamaoka K. Comparative study on the inhibitory effects of antioxidant vitamins and radon on carbon tetrachloride-induced hepatopathy. JOURNAL OF RADIATION RESEARCH 2012; 53:830-9. [PMID: 23111757 PMCID: PMC3483855 DOI: 10.1093/jrr/rrs057] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
We have previously reported that radon inhalation activates anti-oxidative functions and inhibits carbon tetrachloride (CCl(4))-induced hepatopathy. It has also been reported that antioxidant vitamins can inhibit CCl(4)-induced hepatopathy. In the current study, we examined the comparative efficacy of treatment with radon, ascorbic acid and α-tocopherol on CCl(4)-induced hepatopathy. Mice were subjected to intraperitoneal injection of CCl(4) after inhaling approximately 1000 or 2000 Bq/m(3) radon for 24 h, or immediately after intraperitoneal injection of ascorbic acid (100, 300, or 500 mg/kg bodyweight) or α-tocopherol (100, 300, or 500 mg/kg bodyweight). We estimated the inhibitory effects on CCl(4)-induced hepatopathy based on hepatic function-associated parameters, oxidative damage-associated parameters and histological changes. The results revealed that the therapeutic effects of radon inhalation were almost equivalent to treatment with ascorbic acid at a dose of 500 mg/kg or α-tocopherol at a dose of 300 mg/kg. The activities of superoxide dismutase, catalase, and glutathione peroxidase in the liver were significantly higher in mice exposed to radon than in mice treated with CCl(4) alone. These findings suggest that radon inhalation has an anti-oxidative effect against CCl(4)-induced hepatopathy similar to the anti-oxidative effects of ascorbic acid or α-tocopherol due to the induction of anti-oxidative functions.
Collapse
Affiliation(s)
- Takahiro Kataoka
- Graduate School of Health Sciences, Okayama University, 5-1 Shikata-cho 2-chome, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
| | - Yuichi Nishiyama
- Graduate School of Health Sciences, Okayama University, 5-1 Shikata-cho 2-chome, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
| | - Keiko Yamato
- Graduate School of Health Sciences, Okayama University, 5-1 Shikata-cho 2-chome, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
| | - Junichi Teraoka
- Graduate School of Health Sciences, Okayama University, 5-1 Shikata-cho 2-chome, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
| | - Yuji Morii
- Graduate School of Health Sciences, Okayama University, 5-1 Shikata-cho 2-chome, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
| | - Akihiro Sakoda
- Ningyo-toge Environmental Engineering Center, Japan Atomic Energy Agency, 1550 Kagamino-cho, Tomata-gun, Okayama 708-0698, Japan
| | - Yuu Ishimori
- Ningyo-toge Environmental Engineering Center, Japan Atomic Energy Agency, 1550 Kagamino-cho, Tomata-gun, Okayama 708-0698, Japan
| | - Takehito Taguchi
- Graduate School of Health Sciences, Okayama University, 5-1 Shikata-cho 2-chome, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
| | - Kiyonori Yamaoka
- Graduate School of Health Sciences, Okayama University, 5-1 Shikata-cho 2-chome, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
- Corresponding author. Graduate School of Health Sciences, Okayama University, 5-1 Shikata-cho 2-chome, Kita-ku, Okayama-shi, Okayama 700-8558, Japan. Tel/Fax: +81-86-235-6852; E-mail:
| |
Collapse
|
20
|
Protective effects of radon inhalation on carrageenan-induced inflammatory paw edema in mice. Inflammation 2012; 35:713-22. [PMID: 21800149 DOI: 10.1007/s10753-011-9364-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We assessed whether radon inhalation inhibited carrageenan-induced inflammation in mice. Carrageenan (1% v/v) was injected subcutaneously into paws of mice that had or had not inhaled approximately 2,000 Bq/m(3) of radon for 24 h. Radon inhalation significantly increased superoxide dismutase (SOD) and catalase activities and significantly decreased lipid peroxide levels in mouse paws, indicating that radon inhalation activates antioxidative functions. Carrageenan administration induced paw edema and significantly increased tumor necrosis factor-alpha (TNF-α) and nitric oxide in serum. However, radon inhalation significantly reduced carrageenan-induced paw edema. Serum TNF-α levels were lower in the radon-treated mice than in sham-treated mice. In addition, SOD and catalase activities in paws were significantly higher in the radon-treated mice than in the sham-treated mice. These findings indicated that radon inhalation had anti-inflammatory effects and inhibited carrageenan-induced inflammatory paw edema.
Collapse
|
21
|
Abstract
In 2005, two expert advisory bodies examined the evidence on the effects of low doses of ionizing radiation. The U.S. National Research Council concluded that current scientific evidence is consistent with the linear no-threshold dose-response relationship (NRCNA 2005) while the French National Academies of Science and Medicine concluded the opposite (Aurengo et al. 2005). These contradictory conclusions may stem in part from an emphasis on epidemiological data (a "top down" approach) versus an emphasis on biological mechanisms (a "bottom up" approach). In this paper, the strengths and limitations of the top down and bottom up approaches are discussed, and proposals for strengthening and reconciling them are suggested. The past seven years since these two reports were published have yielded increasing evidence of nonlinear responses of biological systems to low radiation doses delivered at low dose-rates. This growing body of evidence is casting ever more doubt on the extrapolation of risks observed at high doses and dose-rates to estimate risks associated with typical environmental and occupational exposures. This paper compares current evidence on low dose, low dose-rate effects against objective criteria of causation. Finally, some questions for a post-LNT world are posed.
Collapse
|
22
|
Kataoka T, Yamaoka K. Activation of biodefense system by low-dose irradiation or radon inhalation and its applicable possibility for treatment of diabetes and hepatopathy. ISRN ENDOCRINOLOGY 2012; 2012:292041. [PMID: 22462014 PMCID: PMC3302064 DOI: 10.5402/2012/292041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 09/28/2011] [Indexed: 11/23/2022]
Abstract
Adequate oxygen stress induced by low-dose irradiation activates biodefense system, such as induction of the synthesis of superoxide dismutase (SOD) and glutathione peroxidase. We studied the possibility for alleviation of oxidative damage, such as diabetes and nonalcoholic liver disease. Results show that low-dose γ-irradiation increases SOD activity and protects against alloxan diabetes. Prior or post-low-dose X- or γ-irradiation increases antioxidative functions in livers and inhibits ferric nitrilotriacetate and carbon tetrachloride-induced (CCl4) hepatopathy. Moreover, radon inhalation also inhibits CCl4-induced hepatopathy. It is highly possible that low-dose irradiation including radon inhalation activates the biodefence systems and, therefore, contributes to preventing or reducing reactive oxygen species-related diabetes and nonalcoholic liver disease, which are thought to involve peroxidation.
Collapse
Affiliation(s)
- Takahiro Kataoka
- Graduate School of Health Sciences, Okayama University, 5-1 Shikata-cho 2-chome, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
| | | |
Collapse
|
23
|
NISHIYAMA Y, KATAOKA T, TERAOKA J, SAKODA A, ISHIMORI Y, YAMAOKA K. Inhibitory Effects of Pre and Post Radon Inhalation on Carbon Tetrachloride-induced Oxidative Damage in Mouse Organs. ACTA ACUST UNITED AC 2012. [DOI: 10.3769/radioisotopes.61.231] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|