1
|
Qiao M, Xue T, Zhu Y, Yang J, Hu J. Polysaccharides from Cistanche deserticola mitigate inflammatory bowel disease via modulating intestinal microbiota and SRC/EGFR/PI3K/AKT signaling pathways. Int J Biol Macromol 2025; 308:142452. [PMID: 40139591 DOI: 10.1016/j.ijbiomac.2025.142452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 03/10/2025] [Accepted: 03/21/2025] [Indexed: 03/29/2025]
Abstract
Polysaccharides of Cistanche deserticola Ma (CDPS), with high safety and low toxicity have been reported to possess anti-inflammatory, immunomodulatory, antioxidant, anti-aging, anti-osteoporosis, antidepressant, intestinal flora regulatory and hepatoprotective properties. Nevertheless, the effects of CDPS on inflammatory bowel disease (IBD) and its underlying mechanisms have never been reported. To estimate its therapeutic potential on IBD, the extracted CDPS were characterized via utilizing a series of chemical, spectroscopic, and instrumental analyses, and the protective effects and mechanisms of CDPS in colitis mice was investigated. Our results indicated that CDPS were identified as acidic heteropolysaccharides. CDPS alleviated dextran sodium sulfate-induced IBD mice characterized by decreasing disease activity index, improving colon length and body weight, restoring histopathological lesions, inhibiting the expression of pro-inflammatory cytokine (IL-6, IL-1β, TNF-α) and MPO activity, elevating the expression of anti-inflammatory cytokine (IL-10) in colon tissue. The findings manifested CDPS could mitigate the inflammation of colon. Simultaneously, CDPS inhibited the expression of genes and proteins associated with SRC/EGFR/PI3K/AKT signaling pathways, and reduced the diversity and abundance of harmful gut microbiota, including Helicobacter, Bacteroides and Colidextribacter, while descending the relative abundance of Lachnospiraceae_NK4A136_group at genus level. In summary, this work elucidated that CDPS alleviates IBD symptoms via mitigating the inflammation of colon, and modulating intestinal microbiota and SRC/EGFR/PI3K/AKT signaling pathways. It underscores the promise of CDPS as a functional food ingredient or preventive drugs for IBD.
Collapse
Affiliation(s)
- Ming Qiao
- Department of Pharmacy, The First Affiliated Hospital, Xinjiang Medical University, Urumqi 830011, China; Xinjiang Key Laboratory of Clinical Drug Research, Urumqi 830011, China
| | - Taotao Xue
- College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China
| | - Yi Zhu
- Department of Pharmacy, The First Affiliated Hospital, Xinjiang Medical University, Urumqi 830011, China; Xinjiang Key Laboratory of Clinical Drug Research, Urumqi 830011, China
| | - Jianhua Yang
- Department of Pharmacy, The First Affiliated Hospital, Xinjiang Medical University, Urumqi 830011, China; Xinjiang Key Laboratory of Clinical Drug Research, Urumqi 830011, China
| | - Junping Hu
- College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China.
| |
Collapse
|
2
|
Mohanad M, El-Awdan SA, Aboulhoda BE, Nossier AI, Elesawy WH, Ahmed MAE. Unraveling the Protective Effect of Hesperetin In Experimentally Induced Colitis: Inhibition of NF-κB and NLRP3 Inflammasome Activation. J Biochem Mol Toxicol 2025; 39:e70229. [PMID: 40096268 DOI: 10.1002/jbt.70229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 01/04/2025] [Accepted: 03/07/2025] [Indexed: 03/19/2025]
Abstract
This study aimed to investigate the protective effects of hesperetin (HES) against acetic acid (AA)-induced colitis (AAC) in rats through suppression of nuclear factor kappa B (NF-κB) and modulation of the NOD-like receptor pyrin-containing protein 3 (NLRP3) inflammasome. Forty-eight rats were allocated into four groups: control, AAC, HES-treated, and HES pre-treatment followed by AAC. Disease activity index (DAI), macroscopic and histological colonic changes were assessed. Moreover, inflammatory markers, and signaling pathways were evaluated through qRT-PCR, Western blot analysis, ELISA, and immunohistochemistry. HES pre-treatment significantly decreased the DAI by 61.31%, macroscopic colonic damage by 61.25% and the histological score by 41.86% compared to the AAC group. HES also reduced the expression of miR-155 by 73.79%, NLRP3 by 66.07%, Apoptosis-associated speck-like protein containing CARD (ASC) by 66.09%, cleaved caspase-1 by 63.86%, and the pyroptosis marker gasdermin-N (GSDMD-N) by 61.29%. Concurrently, HES attenuated the NF-κB pathway, reducing NF-κB-positive cells by 74.47% and p-inhibitory κB kinaseα (IκBα)/IκBα and p-Inhibitor of nuclear factor kappa-B kinase subunit alpha (IKKα/β)/IKKα/β levels by 43.77% and 38.68%, respectively. Inflammatory cytokines IL-1β and IL-18 were diminished by 73.41% and 71.88%, respectively. HES pre-treatment increased peroxisome proliferator-activated receptors-γ (PPAR-γ) expression by 259.97%, while reducing CD68+ macrophage infiltration by 72.72%. In conclusion, HES alleviated AAC in rats by targeting the NF-κB and NLRP3 inflammasome signaling pathways. This protective effect was mediated through the downregulation of miR-155 expression and the concurrent enhancement of PPAR-γ expression, resulting in reduced inflammation and pyroptosis. These findings highlight HES as a potential therapeutic protective agent for colitis.
Collapse
Affiliation(s)
- Marwa Mohanad
- Department of Biochemistry, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST), Giza, Egypt
| | - Sally A El-Awdan
- Department of Pharmacology, National Research Center, Dokki, Giza, Egypt
| | - Basma E Aboulhoda
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ahmed Ibrahim Nossier
- Department of Biochemistry, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST), Giza, Egypt
| | - Wessam H Elesawy
- Department of Pharmacology and Toxicology, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST), Giza, Egypt
| | - Maha A E Ahmed
- Department of Pharmacology and Toxicology, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST), Giza, Egypt
| |
Collapse
|
3
|
Pant A, Dasgupta D, Tripathi A, Pyaram K. Beyond Antioxidation: Keap1-Nrf2 in the Development and Effector Functions of Adaptive Immune Cells. Immunohorizons 2023; 7:288-298. [PMID: 37099275 PMCID: PMC10579846 DOI: 10.4049/immunohorizons.2200061] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/05/2023] [Indexed: 04/27/2023] Open
Abstract
Ubiquitously expressed in mammalian cells, the Kelch-like ECH-associated protein 1 (Keap1)-NF erythroid 2-related factor 2 (Nrf2) complex forms the evolutionarily conserved antioxidation system to tackle oxidative stress caused by reactive oxygen species. Reactive oxygen species, generated as byproducts of cellular metabolism, were identified as essential second messengers for T cell signaling, activation, and effector responses. Apart from its traditional role as an antioxidant, a growing body of evidence indicates that Nrf2, tightly regulated by Keap1, modulates immune responses and regulates cellular metabolism. Newer functions of Keap1 and Nrf2 in immune cell activation and function, as well as their role in inflammatory diseases such as sepsis, inflammatory bowel disease, and multiple sclerosis, are emerging. In this review, we highlight recent findings about the influence of Keap1 and Nrf2 in the development and effector functions of adaptive immune cells, that is, T cells and B cells, and discuss the knowledge gaps in our understanding. We also summarize the research potential and targetability of Nrf2 for treating immune pathologies.
Collapse
Affiliation(s)
- Anil Pant
- Department of Veterinary Pathobiology, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX
| | - Debolina Dasgupta
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS
| | - Aprajita Tripathi
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS
| | - Kalyani Pyaram
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS
| |
Collapse
|
4
|
Cellat M, Tekeli İO, Türk E, Aydin T, Uyar A, İşler CT, Gökçek İ, Etyemez M, Güvenç M. Inula viscosa ameliorates acetic acid induced ulcerative colitis in rats. Biotech Histochem 2023; 98:255-266. [PMID: 37165766 DOI: 10.1080/10520295.2023.2176923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Increased pro-inflammatory cytokines and oxidative stress contribute to the pathophysiology of ulcerative colitis (UC). Inula viscosa is a plant with antioxidant and anti-inflammatory properties. We investigated the effect of an ethanolic extract of I. viscosa on an experimental UC model created using acetic acid. Rats were divided into four groups of eight: group 1, control; group 2, 3% acetic acid group; group 3, 100 mg/kg sulfasalazine + 3% acetic acid group; group 4, 400 mg/kg I. viscosa + 3% acetic acid. I. viscosa and sulfasalazine were administered by oral gavage and 3% acetic acid was administered per rectum. We found that I. viscosa treatment decreased colon malondialdehyde, tumor necrosis factor-α, interleukin-1 beta and nuclear factor kappa B levels; it increased reduced glutathione, nuclear factor erythroid 2-related factor 2, heme oxygenase-1 and kelch-like ECH-associated protein 1 levels and glutathione peroxidase enzyme activity. Group 1 colon exhibited normal histological structure. Slight inflammatory cell infiltration and edema and insignificant slight erosion in crypts were detected in colon tissues of group 4. We found that I. viscosa reduced oxidative stress and inflammation, which was protective against UC by inducing the Nrf-2/Keap-1/HO-1 pathway in the colon.
Collapse
Affiliation(s)
- Mustafa Cellat
- Department of Physiology, Faculty of Veterinary Medicine, University of Hatay Mustafa Kemal, Hatay, Turkey
| | - İbrahim Ozan Tekeli
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Hatay Mustafa Kemal, Hatay, Turkey
| | - Erdinç Türk
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Hatay Mustafa Kemal, Hatay, Turkey
| | - Tuba Aydin
- Department of Pharmacognosy, Faculty of Pharmacy, Ağrı İbrahim Çeçen University, Ağrı, Turkey
| | - Ahmet Uyar
- Department of Pathology, Faculty of Veterinary Medicine, University of Hatay Mustafa Kemal, Hatay, Turkey
| | - Cafer Tayer İşler
- Department of Surgery, Faculty of Veterinary Medicine, University of Hatay Mustafa Kemal, Hatay, Turkey
| | - İshak Gökçek
- Department of Physiology, Faculty of Veterinary Medicine, University of Hatay Mustafa Kemal, Hatay, Turkey
| | - Muhammed Etyemez
- Department of Physiology, Faculty of Veterinary Medicine, University of Hatay Mustafa Kemal, Hatay, Turkey
| | - Mehmet Güvenç
- Department of Physiology, Faculty of Veterinary Medicine, University of Hatay Mustafa Kemal, Hatay, Turkey
| |
Collapse
|
5
|
Abdelsameea AA, Alsemeh AE, Alabassery N, Samy W, Fawzy A, Abbas NAT. Icosapent ethyl alleviates acetic acid-induced ulcerative colitis via modulation of SIRT1 signaling pathway in rats. Int Immunopharmacol 2023; 115:109621. [PMID: 36574744 DOI: 10.1016/j.intimp.2022.109621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/08/2022] [Accepted: 12/17/2022] [Indexed: 12/26/2022]
Abstract
Ulcerative colitis (UC) is a global inflammatory bowel disease. This study aimed to assess the effects of icosapent ethyl on acetic acid-induced colitis in rats as well as the underlying mechanisms involved. 36 male Wister rats were equally divided into six groups: control, UC, mesalamine 100 mg/kg, icosapent 150mg/kg, icosapent 300 mg/kg, and EX527-icosapent 300 mg/kg groups. Except for control group, UC was induced by acetic acid instillation into colon. Drugs were administered once daily for one week then under thiopental anaesthesia, colons were excised. Colitis macroscopic and microscopic scores were assessed. A part of colon was homogenized for detection of malondialdehyde (MDA), inerleukin1 (IL-1β), tumor necrosis factor (TNF-α), superoxide dismutase (SOD), phosphorylated Akt (pAkt) and caspase 3 levels. Silent information regulator 1 (SIRT1), heme oxygenase 1 (HO-1), and nuclear factor erythroid 2 (Nrf2) mRNA expressions were detected. Mallory-stained colonic sections were examined for collagen fibres detection. Immunohistochemistry of NF-κB and p53 expressionsin colonic sections were assessed. Acetic acid induced colitis with increments in MDA, IL-1β, TNF-α, and caspase 3 levels while decreased SOD, pAkt, SIRT1, HO-1, and Nrf2 with increased collagen fibres as well as NF-κB and p53. Icosapent decreased macro& microscopic colitis scores, MDA, IL-1β, TNF-α, and caspase 3 levels while increased SOD, pAkt, SIRT1, HO-1, and Nrf2 with decreased collagen fibres as well as NF-κB and p53. The effects of icosapent 300 mg/kg were similar to mesalamine. Icosapent effects were antagonized by EX527. Icosapent alleviated acetic acid-induced colitis via its anti-inflammatory, antioxidant, and anti-apoptotic effects mediated in part by SIRT1 pathway activation.
Collapse
Affiliation(s)
| | - Amira Ebrahim Alsemeh
- Department of Human Anatomy and Embryology, Faculty of Medicine-Zagazig University, Zagazig, Egypt.
| | - Nadia Alabassery
- Department of Anatomy, Faculty of Medicine-Minia University, Zagazig, Egypt
| | - Walaa Samy
- Medical Biochemistry Department, Faculty of Medicine-Zagazig University, Zagazig, Egypt.
| | - Amal Fawzy
- Medical Biochemistry Department, Faculty of Medicine-Zagazig University, Zagazig, Egypt.
| | - Noha A T Abbas
- Department of Pharmacology, Faculty of Medicine-Zagazig University, Zagazig, Egypt.
| |
Collapse
|
6
|
Ibrahim Fouad G. Sulforaphane, an Nrf-2 Agonist, Modulates Oxidative Stress and Inflammation in a Rat Model of Cuprizone-Induced Cardiotoxicity and Hepatotoxicity. Cardiovasc Toxicol 2023; 23:46-60. [PMID: 36650404 PMCID: PMC9859885 DOI: 10.1007/s12012-022-09776-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 12/27/2022] [Indexed: 01/19/2023]
Abstract
Cuprizone (CPZ) is a neurotoxic agent that is used to induce demyelination and neurotoxicity in rats. This study aimed to investigate the protective potential of sulforaphane (SF), nuclear factor E2 related factor (Nrf-2) activator, against CPZ-induced cardiotoxicity and hepatotoxicity. Male adult Wistar rats (n = 18) were fed with a regular diet or a CPZ-contained diet (0.2%) for four weeks. The rats were divided into three groups (n = 6): negative control rats, CPZ-exposed rats, and CPZ + SF treated rats. SF was intraperitoneally administrated (2 mg/kg/day) for two weeks. The anti-inflammatory and anti-oxidative functions of SF were investigated biochemically, histologically, and immunohistochemically. CPZ increased serum levels of cardiac troponin 1 (CTn1), aspartate amino transaminase (AST), alanine amino transaminase (ALT), and alkaline phosphatase (ALP). In addition, serum levels of inflammatory interferon-gamma (IFN-γ), and pro-inflammatory interleukin 1β (IL-1β) were significantly elevated. Moreover, CPZ administration provoked oxidative stress as manifested by declined serum levels of total antioxidant capacity (TAC), as well as, stimulated lipid peroxidation and decreased catalase activities in both cardiac and hepatic tissues. SF treatment reversed all these biochemical alterations through exerting anti-oxidative and anti-inflammatory activities, and this was supported by histopathological investigations in both cardiac and hepatic tissues. This SF-triggered modulation of oxidative stress and inflammation is strongly associated with Nrf-2 activation, as evidenced by activated immunoexpression in both cardiac and hepatic tissues. This highlights the cardioprotective and hepatoprotective activities of SF via Nrf-2 activation and enhancing catalase function.
Collapse
Affiliation(s)
- Ghadha Ibrahim Fouad
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El-Bohouth St., Dokki, Cairo, 12622, Egypt.
| |
Collapse
|
7
|
Ismail Abo El-Fadl HM, Mohamed MFA. Targeting endoplasmic reticulum stress, Nrf-2/HO-1, and NF-κB by myristicin and its role in attenuation of ulcerative colitis in rats. Life Sci 2022; 311:121187. [PMID: 36403646 DOI: 10.1016/j.lfs.2022.121187] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/15/2022] [Accepted: 11/08/2022] [Indexed: 11/19/2022]
Abstract
AIMS Ulcerative colitis (UC) is characterized by the up-regulation of pro-inflammatory mediators, apoptotic signals, and oxidative stress that can lead to an increased risk of colorectal cancer. The present study aims to investigate the possible role of myristicin in modulating endoplasmic reticulum stress (ERS) and risk-associated conditions in acetic acid (AA)-induced UC. MATERIALS AND METHODS Adult male rats were treated with 150 mg/kg body weight of myristicin or mesalazine orally either as pre/post treatment or post-treatment only. The gene expression of glucose-related protein 78 (GRP78), CCAAT/enhancer-binding protein homologous protein (CHOP), and nuclear factor kappa B (NF-κB), percentage of DNA fragmentation, and serum levels of some oxidative and inflammatory markers were measured. KEY FINDINGS The results indicated the potential upregulation of ERS, pro-apoptotic, lipid peroxidation, and pro-inflammatory cascades by induction of UC in rats. However, myristicin could effectively reverse the deteriorated effects of ulceration in colonic mucosa. It was mediated through downregulation of the ERS markers GRP78 and CHOP genes expression, reduction of NF-κB mRNA expression, DNA fragmentation, reduced lipid peroxidation, myeloperoxidase (MPO) activity and pro-inflammatory markers (Tumor necrosis factor-α (TNF-α), Interleukin-1β (IL-1β) and cyclo‑oxygenase (COX-2) activity). Accompanied by elevated levels of IL-10, colonic Nuclear erythroid factor (Nrf-2) and Heme oxygenase (HO-1) activity as well as blood antioxidant enzymes activity. Results of docking might confirm the biological results of our study. SIGNIFICANCE Myristicin could effectively modulate important stress, and inflammatory effectors and protect mucosal DNA from oxidative damage which can serve as a promising candidate for the treatment of ulcerative colitis.
Collapse
Affiliation(s)
- Huda M Ismail Abo El-Fadl
- Biochemistry and Nutrition Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt.
| | - Mamdouh F A Mohamed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sohag University, 82524 Sohag, Egypt
| |
Collapse
|
8
|
Todosenko N, Yurova K, Khaziakhmatova O, Malashchenko V, Khlusov I, Litvinova L. Heparin and Heparin-Based Drug Delivery Systems: Pleiotropic Molecular Effects at Multiple Drug Resistance of Osteosarcoma and Immune Cells. Pharmaceutics 2022; 14:pharmaceutics14102181. [PMID: 36297616 PMCID: PMC9612132 DOI: 10.3390/pharmaceutics14102181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/29/2022] [Accepted: 10/10/2022] [Indexed: 11/23/2022] Open
Abstract
One of the main problems of modern health care is the growing number of oncological diseases both in the elderly and young population. Inadequately effective chemotherapy, which remains the main method of cancer control, is largely associated with the emergence of multidrug resistance in tumor cells. The search for new solutions to overcome the resistance of malignant cells to pharmacological agents is being actively pursued. Another serious problem is immunosuppression caused both by the tumor cells themselves and by antitumor drugs. Of great interest in this context is heparin, a biomolecule belonging to the class of glycosaminoglycans and possessing a broad spectrum of biological activity, including immunomodulatory and antitumor properties. In the context of the rapid development of the new field of “osteoimmunology,” which focuses on the collaboration of bone and immune cells, heparin and delivery systems based on it may be of intriguing importance for the oncotherapy of malignant bone tumors. Osteosarcoma is a rare but highly aggressive, chemoresistant malignant tumor that affects young adults and is characterized by constant recurrence and metastasis. This review describes the direct and immune-mediated regulatory effects of heparin and drug delivery systems based on it on the molecular mechanisms of (multiple) drug resistance in (onco) pathological conditions of bone tissue, especially osteosarcoma.
Collapse
Affiliation(s)
- Natalia Todosenko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
| | - Kristina Yurova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
| | - Olga Khaziakhmatova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
| | - Vladimir Malashchenko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
| | - Igor Khlusov
- Department of Morphology and General Pathology, Siberian State Medical University, 634050 Tomsk, Russia
| | - Larisa Litvinova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
- Correspondence:
| |
Collapse
|
9
|
Abdelhamid AM, Youssef ME, Cavalu S, Mostafa-Hedeab G, Youssef A, Elazab ST, Ibrahim S, Allam S, Elgharabawy RM, El-Ahwany E, Amin NA, Shata A, Mohammed OA, Ibrahim Abdeldaiem MS, Alhowail A, El-Saber Batiha G, El-Mahmoudy EA, Attia M, Allam A, Zaater MY, Osman MM, Nader M, Taha A, Makarem NA, Saber S. Carbocisteine as a Modulator of Nrf2/HO-1 and NFκB Interplay in Rats: New Inspiration for the Revival of an Old Drug for Treating Ulcerative Colitis. Front Pharmacol 2022; 13:887233. [PMID: 35754464 PMCID: PMC9214041 DOI: 10.3389/fphar.2022.887233] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/18/2022] [Indexed: 12/29/2022] Open
Abstract
Ulcerative colitis (UC), an inflammatory bowel disease, is a chronic condition of a multifaceted pathophysiology. The incidence of UC is increasing internationally. The current therapies for UC lack relative effectiveness and are associated with adverse effects. Therefore, novel therapeutic options should be developed. It has been well documented that modulating the Nrf2/NFκB is a promising therapeutic target in inflammation. Carbocisteine is a mucoregulatory medication and its efficacy in COPD was found to be more closely related to its antioxidant and anti-inflammatory properties. Carbocisteine has not yet been examined for the management of UC. Hence, our approach was to investigate the potential coloprotective role of carbocisteine in acetic acid-induced colitis in rats. Our results revealed that carbocisteine improved colon histology and macroscopic features and subdued the disease activity as well. Additionally, carbocisteine attenuated colon shortening and augmented colon antioxidant defense mechanisms via upregulating catalase and HO-1 enzymes. The myeloperoxidase activity was suppressed indicating inhibition of the neutrophil infiltration and activation. Consistent with these findings, carbocisteine boosted Nrf2 expression along with NFκB inactivation. Consequently, carbocisteine downregulated the proinflammatory cytokines IL-6 and TNF-α and upregulated the anti-inflammatory cytokine IL-10. Concomitant to these protective roles, carbocisteine displayed anti-apoptotic properties as revealed by the reduction in the Bax: BCL-2 ratio. In conclusion, carbocisteine inhibited oxidative stress, inflammatory response, and apoptosis in acetic acid-induced UC by modulating the Nrf2/HO-1 and NFκB interplay in rats. Therefore, the current study provides a potential basis for repurposing a safe and a commonly used mucoregulator for the treatment of UC.
Collapse
Affiliation(s)
- Amir Mohamed Abdelhamid
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Mahmoud E Youssef
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| | - Gomaa Mostafa-Hedeab
- Pharmacology Department and Health Research Unit, Medical College, Jouf University, Sakakah, Saudi Arabia.,Pharmacology Department, Faculty of Medicine, Beni-Suef University, Beni Suef, Egypt
| | - Amal Youssef
- Medical Pharmacology Department, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Sara T Elazab
- Department of Pharmacology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Samar Ibrahim
- Department of Pharmacy Practice, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Shady Allam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Menoufia University, Menoufia, Egypt
| | | | - Eman El-Ahwany
- Department of Immunology, Theodor Bilharz Research Institute, Giza, Egypt
| | - Noha A Amin
- Department of Haematology, Theodor Bilharz Research Institute, Giza, Egypt
| | - Ahmed Shata
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura, Egypt.,Department of Clinical Pharmacy, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Osama A Mohammed
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt.,Department of Clinical Pharmacology, Faculty of Medicine, Bisha University, Bisha, Saudi Arabia
| | - Mahmoud Said Ibrahim Abdeldaiem
- Clinical Pharmacy Department, School of Pharmaceutical Sciences, Universiti Sains Malaysia, George Town, Malaysia.,Pharmacy Practice Department, Faculty of Pharmacy, Sinai University, Ismailia, Egypt
| | - Ahmed Alhowail
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraidah, Saudi Arabia
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Engy A El-Mahmoudy
- Department of Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Maram Attia
- Department of Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Alaa Allam
- Department of Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Mona Y Zaater
- Department of Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Mona M Osman
- Department of Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Manar Nader
- Department of Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Aya Taha
- Department of Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Nada Abul Makarem
- Department of Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| |
Collapse
|
10
|
Wu T, He S, Jiao Z, Liang X, Chen Y, Liu H, Zhang Y, He G. Low Molecular Weight Heparin Improves the Inflammatory State of Acute Sinusitis Rats Through Inhibiting the TLR4-MyD88-NF-κB Signaling Pathway. Front Pharmacol 2021; 12:726630. [PMID: 34867331 PMCID: PMC8635784 DOI: 10.3389/fphar.2021.726630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 11/02/2021] [Indexed: 01/20/2023] Open
Abstract
Introduction: Low molecular weight heparin (LMWH), a natural sulfated glycosaminoglycan with an affinity for proangiogenic factors, is produced by chemical or enzymatic depolymerization of unfractionated heparin (UFH). Known for its anticoagulant effects, LMWH has recently been reported to have a strong anti-inflammatory effect on colitis, myocarditis, and airway inflammation. However, as a newly-developed drug, its anti-inflammatory mechanism in upper respiratory tract inflammation has not been well-studied. Methods: SD rats were randomly divided into control and experimental groups. The experimental group was established by building an acute nasal sinusitis model with expansion sponges mixed with Streptococcus pneumoniae. Then the experimental group rats were subcutaneously injected with different concentrations of LMWH. After seven consecutive days of injection, some rats were sacrificed, and blood and nasal mucosa samples were taken to determine their inflammation status. The remaining acute sinusitis rats were randomly selected for a week of nasal irrigation with normal saline or saline mixed with different concentrations of LMWH. One week later, rats were sacrificed, and samples of blood and nasal mucosa were taken to determine the inflammation status. Results: Rat nasal mucosa in the model group had obvious inflammation. The degree of nasal mucosa inflammation damage in the experimental group was lower than in the experimental control group, proving that LMWH has a protective effect on the nasal mucosa and that the effect correlates with dosage. Irrigation of the nose with saline mixed with LMWH can improve the anti-inflammatory effect. Protein related to the TLR4-MyD88-NF-κB signaling pathway was activated in the acute sinusitis rat model, and LMWH can significantly inhibit its expression. Conclusion: This is the first report of the anti-inflammatory effect of LMWH in acute upper respiratory tract inflammation, together with an explanation of its anti-inflammatory mechanism. The findings contribute a theoretical basis for its potential anti-tumor effect.
Collapse
Affiliation(s)
- Tong Wu
- Department of Otolaryngology-Head Neck Surgery, Third Xiangya Hospital, Central South University, Changsha, China.,Department of Head and Neck Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Sihan He
- Institute of Molecular Precision Medicine, Xiangya Hospital and Center for Medical Genetics, Central South University, Changsha, China
| | - Zan Jiao
- Department of Head and Neck Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiang Liang
- Department of Otolaryngology-Head Neck Surgery, Third Xiangya Hospital, Central South University, Changsha, China
| | - Yu Chen
- Department of Otolaryngology-Head Neck Surgery, Third Xiangya Hospital, Central South University, Changsha, China
| | - Huow Liu
- Department of Otolaryngology-Head Neck Surgery, Third Xiangya Hospital, Central South University, Changsha, China
| | - Yongq Zhang
- Department of Otolaryngology-Head Neck Surgery, Third Xiangya Hospital, Central South University, Changsha, China
| | - GuangX He
- Department of Otolaryngology-Head Neck Surgery, Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
11
|
Hashemzaei M, Mamoulakis C, Tsarouhas K, Georgiadis G, Lazopoulos G, Tsatsakis A, Shojaei Asrami E, Rezaee R. Crocin: A fighter against inflammation and pain. Food Chem Toxicol 2020; 143:111521. [DOI: 10.1016/j.fct.2020.111521] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/07/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023]
|
12
|
Dong S, Ding Z, Zhang H, Chen Q. Identification of Prognostic Biomarkers and Drugs Targeting Them in Colon Adenocarcinoma: A Bioinformatic Analysis. Integr Cancer Ther 2020; 18:1534735419864434. [PMID: 31370719 PMCID: PMC6681251 DOI: 10.1177/1534735419864434] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Objective: To identify prognostic biomarkers and drugs that target them in colon adenocarcinoma (COAD) based on the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus databases. Methods: The TCGA dataset was used to identify the top 50 upregulated differentially expressed genes (DEGs), and Gene Expression Omnibus profiles were used for validation. Survival analyses were conducted with the TCGA dataset using the RTCGAToolbox package in the R software environment. Drugs targeting the candidate prognostic biomarkers were searched in the DrugBank and herbal databases. Results: Among the top 50 upregulated DEGs in patients with COAD in the TCGA dataset, the Wnt signaling pathway and cytokine-cytokine receptor interactions and pathways in cancer Kyoto Encyclopedia of Genes and Genomes pathway analysis were enriched in DEGs. Tissue development and regulation of cell proliferation were the main Gene Ontology biological processes associated with upregulated DEGs. MYC and KLK6 were overexpressed in tumors validated in the TCGA, GSE41328, and GSE113513 databases (all P < .001) and were significantly associated with overall survival in patients with COAD (P = .021 and P = .047). Nadroparin and benzamidine were identified as inhibitors of MYC and KLK6 in DrugBank, and 8 herbs targeting MYC, including Da Huang (Radix Rhei Et Rhizome), Hu Zhang (Polygoni Cuspidati Rhizoma Et Radix), Huang Lian (Coptidis Rhizoma), Ban Xia (Arum Ternatum Thunb), Tu Fu Ling (Smilacis Glabrae Rhixoma), Lei Gong Teng (Tripterygii Radix), Er Cha (Catechu), and Guang Zao (Choerospondiatis Fructus), were identified. Conclusion: MYC and KLK6 may serve as candidate prognostic predictors and therapeutic targets in patients with COAD.
Collapse
Affiliation(s)
- Shu Dong
- 1 Fudan University Shanghai Cancer Center, Shanghai, China.,2 Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhimin Ding
- 3 Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Hao Zhang
- 1 Fudan University Shanghai Cancer Center, Shanghai, China.,2 Shanghai Medical College, Fudan University, Shanghai, China
| | - Qiwen Chen
- 1 Fudan University Shanghai Cancer Center, Shanghai, China.,2 Shanghai Medical College, Fudan University, Shanghai, China.,4 Fudan University, Shanghai, China
| |
Collapse
|
13
|
Shi Y, Qian J, Zhang F, Jia B, Liu X, Hu Y, Zhang Q, Yang Y, Sun D, Jiang L. Low molecular weight heparin (nadroparin) improves placental permeability in rats with gestational diabetes mellitus via reduction of tight junction factors. Mol Med Rep 2019; 21:623-630. [PMID: 31974593 PMCID: PMC6947895 DOI: 10.3892/mmr.2019.10868] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 10/15/2019] [Indexed: 12/26/2022] Open
Abstract
Placental structural abnormalities and dysfunction in those with gestational diabetes mellitus (GDM) can lead to increased placental permeability, which is in turn related to a poorer maternal and fetal prognosis. The present study sought to assess whether increased placental permeability in rats with GDM was accompanied by alterations in tight junction (TJ) factors and to evaluate the impact of low molecular weight heparin (LMWH) on these factors. The present study was conducted using pregnant female rats that were randomized into control, GDM and GDM + LMWH groups. Diabetes was induced via intraperitoneal administration of streptozotocin to rats in the GDM and GDM + LMWH groups, whereas rats in the GDM + LMWH group received daily subcutaneous LMWH starting on day 5 of pregnancy. On gestational day 16, all rats were sacrificed and Evans Blue (EB) assay was used to gauge vascular permeability based on EB dye leakage. Transmission electron microscopy was further used to assess TJ structures, and the TJ proteins zonular occludens-1 (ZO-1) and occludin (OCLN) were assessed using immunohistochemistry and western blotting. Blood samples were obtained from the abdominal aorta for ELISA measurements of advanced glycation end products (AGEs) concentrations, and placental receptor for AGEs (RAGE) and vascular endothelial growth factor (VEGF) expression was assessed using reverse transcription-quantitative PCR. In addition, western blotting was used to measure placental NF-κB. Compared with in the control group, EB leakage was markedly increased in GDM group rats; this was associated with reduced ZO-1 and OCLN expression. Conversely, LMWH attenuated this increase in placental permeability in rats with GDM and also mediated a partial recovery of ZO-1 and OCLN expression. Blood glucose and serum AGEs concentrations did not differ between the GDM and GDM + LMWH groups. Furthermore, LMWH treatment resulted in decreases in RAGE and VEGF mRNA expression levels, which were upregulated in the GDM group, whereas it had the opposite effect on the expression of NF-κB. In conclusion, GDM was associated with increased placental permeability and this may be linked with changes in TJs. LMWH intervention mediated protection against this GDM-associated shift in placental permeability via the RAGE/NF-κB pathway.
Collapse
Affiliation(s)
- Yuehua Shi
- Department of Obstetrics and Gynecology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Jie Qian
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Feng Zhang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Beibei Jia
- Department of Pediatrics, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, Jiangsu 214002, P.R. China
| | - Xiaoyan Liu
- Maternal and Child Health Care Center, Nanjing, Jiangsu 211100, P.R. China
| | - Yan Hu
- Department of Obstetrics and Gynecology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Qinfen Zhang
- Department of Obstetrics and Gynecology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Ye Yang
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumors, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Dongdong Sun
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumors, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Li Jiang
- Department of Pediatrics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
14
|
Pompili S, Sferra R, Gaudio E, Viscido A, Frieri G, Vetuschi A, Latella G. Can Nrf2 Modulate the Development of Intestinal Fibrosis and Cancer in Inflammatory Bowel Disease? Int J Mol Sci 2019; 20:E4061. [PMID: 31434263 PMCID: PMC6720292 DOI: 10.3390/ijms20164061] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/08/2019] [Accepted: 08/12/2019] [Indexed: 12/15/2022] Open
Abstract
One of the main mechanisms carried out by the cells to counteract several forms of stress is the activation of the nuclear factor erythroid 2-related factor (Nrf2) signaling. Nrf2 signaling controls the expression of many genes through the binding of a specific cis-acting element known as the antioxidant response element (ARE). Activation of Nrf2/ARE signaling can mitigate several pathologic mechanisms associated with an autoimmune response, digestive and metabolic disorders, as well as respiratory, cardiovascular, and neurodegenerative diseases. Indeed, several studies have demonstrated that Nrf2 pathway plays a key role in inflammation and in cancer development in many organs, including the intestine. Nrf2 appears to be involved in inflammatory bowel disease (IBD), an immune-mediated chronic and disabling disease, with a high risk of developing intestinal fibrotic strictures and cancer. Currently, drugs able to increase cytoprotective Nrf2 function are in clinical trials or already being used in clinical practice to reduce the progression of some degenerative conditions. The role of Nrf2 in cancer development and progression is controversial, and drugs able to inhibit abnormal levels of Nrf2 are also under investigation. The goal of this review is to analyze and discuss Nrf2-dependent signals in the initiation and progression of intestinal fibrosis and cancers occurring in IBD.
Collapse
Affiliation(s)
- Simona Pompili
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Roberta Sferra
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Angelo Viscido
- Department of Life, Health and Environmental Sciences, Gastroenterology, Hepatology and Nutrition Division, University of L'Aquila, 67100 L'Aquila, Italy
| | - Giuseppe Frieri
- Department of Life, Health and Environmental Sciences, Gastroenterology, Hepatology and Nutrition Division, University of L'Aquila, 67100 L'Aquila, Italy
| | - Antonella Vetuschi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Giovanni Latella
- Department of Life, Health and Environmental Sciences, Gastroenterology, Hepatology and Nutrition Division, University of L'Aquila, 67100 L'Aquila, Italy.
| |
Collapse
|
15
|
Zhang D, Li M. Puerarin prevents cataract development and progression in diabetic rats through Nrf2/HO‑1 signaling. Mol Med Rep 2019; 20:1017-1024. [PMID: 31173182 PMCID: PMC6625395 DOI: 10.3892/mmr.2019.10320] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 04/17/2019] [Indexed: 12/30/2022] Open
Abstract
Puerarin is the major bioactive ingredient isolated from the dry root of Pueraria lobata, a plant used in traditional Chinese medicine. Puerarin has been used to treat diabetes and cataracts in China; however, its underlying mechanism of action remains unclear. The aim of the present study was to investigate the effectiveness and mechanism of puerarin in preventing cataracts in diabetic rats. Diabetes was induced by streptozocin (STZ) administration and rats were intraperitoneally injected with puerarin (25, 50 and 100 mg/kg). Blood glucose levels and cataract development were examined in the different experimental groups. In addition, the expression levels of markers associated with oxidative stress, including nuclear factor erythroid 2 like 2 (Nrf2) and heme oxygenase‑1 (HO‑1), were analyzed. The present results suggested that treatment with puerarin at 25, 50 and 100 mg/kg significantly reduced blood glucose levels and the incidence of cataract in STZ‑induced diabetic rats. Additionally, puerarin treatment reduced oxidative stress, restoring the levels of malondialdehyde and glutathione, and the activity of glutathione peroxidase. Furthermore, puerarin administration decreased the expression levels of retinal vascular endothelial growth factor and interleukin‑1β and increased the mRNA expression levels of Nrf2 and HO‑1, thus inhibiting oxidative stress. The present findings suggested that puerarin had hypoglycemic effects and that it prevented cataract development and progression in diabetic rats by reducing oxidative stress through the Nrf2/HO‑1 signaling pathway.
Collapse
Affiliation(s)
- Duzhen Zhang
- Department of Ophthalmology, Linyi Central Hospital, Linyi, Shandong 276400, P.R. China
| | - Man Li
- Department of Ophthalmology, Linyi Central Hospital, Linyi, Shandong 276400, P.R. China
| |
Collapse
|
16
|
Khodir AE, Said E, Atif H, ElKashef HA, Salem HA. Targeting Nrf2/HO-1 signaling by crocin: Role in attenuation of AA-induced ulcerative colitis in rats. Biomed Pharmacother 2019; 110:389-399. [DOI: 10.1016/j.biopha.2018.11.133] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 11/21/2018] [Accepted: 11/27/2018] [Indexed: 02/07/2023] Open
|
17
|
Implication of Nrf2/HO-1 pathway in the coloprotective effect of coenzyme Q10 against experimentally induced ulcerative colitis. Inflammopharmacology 2017; 25:119-135. [DOI: 10.1007/s10787-016-0305-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 12/16/2016] [Indexed: 12/14/2022]
|
18
|
Yan Y, Ji Y, Su N, Mei X, Wang Y, Du S, Zhu W, Zhang C, Lu Y, Xing XH. Non-anticoagulant effects of low molecular weight heparins in inflammatory disorders: A review. Carbohydr Polym 2016; 160:71-81. [PMID: 28115102 DOI: 10.1016/j.carbpol.2016.12.037] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 11/30/2016] [Accepted: 12/18/2016] [Indexed: 01/26/2023]
Abstract
Low molecular weight heparins (LMWHs) are produced by chemical or enzymatic depolymerization of unfractionated heparin (UFH). Besides their well-known anticoagulant effects, LMWHs have also been reported to exhibit numerous anti-inflammatory properties. Previous studies have, however, shown that different production processes result in unique structural characteristics of LMWHs. The structural variations may help explain the different therapeutic spectrums in disease treatment for non-anticoagulant effects. In the present review, we summarize major advances in understanding and exploiting the anti-inflammatory disorder activities of LMWHs, based on mechanistic studies, preclinical experiments and clinical trials. We highlight differences in these activities of commercially available LMWHs produced using different manufacturing processes. We stress the importance of structure-activity relationship (SAR) studies on the non-anticoagulant effects of LMWHs and discuss strategies for exploring new clinical indications.
Collapse
Affiliation(s)
- Yishu Yan
- Key Laboratory for Industrial Biocatalysis, Ministry of Education, Institute of Biochemical Engineering, Department of Chemical Engineering, Centre for Synthetic and Systems Biology, Tsinghua University, Room 607, Yingshi Building, Beijing 100084, China.
| | - Yang Ji
- Key Laboratory for Industrial Biocatalysis, Ministry of Education, Institute of Biochemical Engineering, Department of Chemical Engineering, Centre for Synthetic and Systems Biology, Tsinghua University, Room 607, Yingshi Building, Beijing 100084, China.
| | - Nan Su
- Key Laboratory for Industrial Biocatalysis, Ministry of Education, Institute of Biochemical Engineering, Department of Chemical Engineering, Centre for Synthetic and Systems Biology, Tsinghua University, Room 607, Yingshi Building, Beijing 100084, China.
| | - Xiang Mei
- Key Laboratory for Industrial Biocatalysis, Ministry of Education, Institute of Biochemical Engineering, Department of Chemical Engineering, Centre for Synthetic and Systems Biology, Tsinghua University, Room 607, Yingshi Building, Beijing 100084, China
| | - Yi Wang
- Key Laboratory for Industrial Biocatalysis, Ministry of Education, Institute of Biochemical Engineering, Department of Chemical Engineering, Centre for Synthetic and Systems Biology, Tsinghua University, Room 607, Yingshi Building, Beijing 100084, China.
| | - Shanshan Du
- Key Laboratory for Industrial Biocatalysis, Ministry of Education, Institute of Biochemical Engineering, Department of Chemical Engineering, Centre for Synthetic and Systems Biology, Tsinghua University, Room 607, Yingshi Building, Beijing 100084, China.
| | - Wenming Zhu
- Key Laboratory for Industrial Biocatalysis, Ministry of Education, Institute of Biochemical Engineering, Department of Chemical Engineering, Centre for Synthetic and Systems Biology, Tsinghua University, Room 607, Yingshi Building, Beijing 100084, China.
| | - Chong Zhang
- Key Laboratory for Industrial Biocatalysis, Ministry of Education, Institute of Biochemical Engineering, Department of Chemical Engineering, Centre for Synthetic and Systems Biology, Tsinghua University, Room 607, Yingshi Building, Beijing 100084, China.
| | - Yuan Lu
- Key Laboratory for Industrial Biocatalysis, Ministry of Education, Institute of Biochemical Engineering, Department of Chemical Engineering, Centre for Synthetic and Systems Biology, Tsinghua University, Room 607, Yingshi Building, Beijing 100084, China.
| | - Xin-Hui Xing
- Key Laboratory for Industrial Biocatalysis, Ministry of Education, Institute of Biochemical Engineering, Department of Chemical Engineering, Centre for Synthetic and Systems Biology, Tsinghua University, Room 607, Yingshi Building, Beijing 100084, China.
| |
Collapse
|
19
|
Shang B, Shi H, Wang X, Guo X, Wang N, Wang Y, Dong L. Protective effect of melatonin on myenteric neuron damage in experimental colitis in rats. Fundam Clin Pharmacol 2016; 30:117-27. [PMID: 26787455 DOI: 10.1111/fcp.12181] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 12/28/2015] [Accepted: 01/13/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Boxin Shang
- Department of Gastroenterology; Second Affiliated Hospital of Xi'an Jiaotong University; Xi'an 710004 Shaanxi Province China
| | - Haitao Shi
- Department of Gastroenterology; Second Affiliated Hospital of Xi'an Jiaotong University; Xi'an 710004 Shaanxi Province China
| | - Xiaoyan Wang
- Department of Gastroenterology; Second Affiliated Hospital of Xi'an Jiaotong University; Xi'an 710004 Shaanxi Province China
| | - Xiaoyan Guo
- Department of Gastroenterology; Second Affiliated Hospital of Xi'an Jiaotong University; Xi'an 710004 Shaanxi Province China
| | - Nan Wang
- Department of Gastroenterology; Second Affiliated Hospital of Xi'an Jiaotong University; Xi'an 710004 Shaanxi Province China
| | - Yan Wang
- Department of Gastroenterology; Second Affiliated Hospital of Xi'an Jiaotong University; Xi'an 710004 Shaanxi Province China
| | - Lei Dong
- Department of Gastroenterology; Second Affiliated Hospital of Xi'an Jiaotong University; Xi'an 710004 Shaanxi Province China
| |
Collapse
|
20
|
Nunes C, Teixeira N, Serra D, Freitas V, Almeida L, Laranjinha J. Red wine polyphenol extract efficiently protects intestinal epithelial cells from inflammation via opposite modulation of JAK/STAT and Nrf2 pathways. Toxicol Res (Camb) 2016; 5:53-65. [PMID: 30090326 PMCID: PMC6061778 DOI: 10.1039/c5tx00214a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 10/01/2015] [Indexed: 12/17/2022] Open
Abstract
The development of therapeutic approaches combining efficacy and safety represents an important goal in intestinal inflammation research. Recently, evidence has supported dietary polyphenols as useful tools in the treatment and prevention of chronic inflammatory diseases, but the mechanisms of action are still poorly understood. We here reveal molecular mechanisms underlying the anti-inflammatory action of a non-alcoholic polyphenol red wine extract (RWE), operating at complementary levels via the Janus kinase/signal transducer and activator of transcription (JAK/STAT) and Nuclear factor-erythroid 2-related factor-2 (Nrf2) pathways. RWE significantly reduced the nuclear levels of phosphorylated STAT1 and also the cellular levels of phosphorylated JAK1 induced by cytokines, suppressing the JAK/STAT inflammatory signalling cascade. In turn, RWE increased the Nrf2 nuclear level, activating the Nrf2 pathway, leading not only to an up-regulation of the heme oxygenase-1 (HO-1) expression but also to an increase of the glutamate-cysteine ligase subunit catalytic (GCLc) gene expression, enhancing the GSH synthesis, thereby counteracting GSH depletion that occurs under inflammatory conditions. Overall, data indicate that the anti-inflammatory action of RWE is exerted at complementary levels, via suppression of the JAK/STAT inflammatory pathway and positive modulation of the activity of Nrf2. These results point to the potential use of the RWE as an efficient, readily available and inexpensive therapeutic strategy in the context of gastrointestinal inflammation.
Collapse
Affiliation(s)
- Carla Nunes
- Center for Neurosciences and Cell Biology and Faculty of Pharmacy , University of Coimbra , Health Sciences Campus , Azinhaga de Santa Comba , 3000-548 Coimbra , Portugal .
| | - Natércia Teixeira
- Department of Chemistry , Faculty of Sciences , University of Porto , Portugal
| | - Diana Serra
- Center for Neurosciences and Cell Biology and Faculty of Pharmacy , University of Coimbra , Health Sciences Campus , Azinhaga de Santa Comba , 3000-548 Coimbra , Portugal .
| | - Víctor Freitas
- Department of Chemistry , Faculty of Sciences , University of Porto , Portugal
| | - Leonor Almeida
- Center for Neurosciences and Cell Biology and Faculty of Pharmacy , University of Coimbra , Health Sciences Campus , Azinhaga de Santa Comba , 3000-548 Coimbra , Portugal .
| | - João Laranjinha
- Center for Neurosciences and Cell Biology and Faculty of Pharmacy , University of Coimbra , Health Sciences Campus , Azinhaga de Santa Comba , 3000-548 Coimbra , Portugal .
| |
Collapse
|
21
|
Randhawa PK, Singh K, Singh N, Jaggi AS. A review on chemical-induced inflammatory bowel disease models in rodents. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2014; 18:279-88. [PMID: 25177159 PMCID: PMC4146629 DOI: 10.4196/kjpp.2014.18.4.279] [Citation(s) in RCA: 319] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 06/09/2014] [Accepted: 06/14/2014] [Indexed: 12/14/2022]
Abstract
Ulcerative colitis and Crohn's disease are a set of chronic, idiopathic, immunological and relapsing inflammatory disorders of the gastrointestinal tract referred to as inflammatory bowel disorder (IBD). Although the etiological factors involved in the perpetuation of IBD remain uncertain, development of various animal models provides new insights to unveil the onset and the progression of IBD. Various chemical-induced colitis models are widely used on laboratory scale. Furthermore, these models closely mimic morphological, histopathological and symptomatical features of human IBD. Among the chemical-induced colitis models, trinitrobenzene sulfonic acid (TNBS)-induced colitis, oxazolone induced-colitis and dextran sulphate sodium (DSS)-induced colitis models are most widely used. TNBS elicits Th-1 driven immune response, whereas oxazolone predominantly exhibits immune response of Th-2 phenotype. DSS-induced colitis model also induces changes in Th-1/Th-2 cytokine profile. The present review discusses the methodology and rationale of using various chemical-induced colitis models for evaluating the pathogenesis of IBD.
Collapse
Affiliation(s)
- Puneet Kaur Randhawa
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, India
| | - Kavinder Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, India
| | - Nirmal Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, India
| | - Amteshwar Singh Jaggi
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, India
| |
Collapse
|
22
|
Chang CY, Kuan YH, Li JR, Chen WY, Ou YC, Pan HC, Liao SL, Raung SL, Chang CJ, Chen CJ. Docosahexaenoic acid reduces cellular inflammatory response following permanent focal cerebral ischemia in rats. J Nutr Biochem 2013; 24:2127-2137. [PMID: 24139673 DOI: 10.1016/j.jnutbio.2013.08.004] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 07/24/2013] [Accepted: 08/05/2013] [Indexed: 02/06/2023]
Abstract
Cellular inflammatory response plays an important role in ischemic brain injury and anti-inflammatory treatments in stroke are beneficial. Dietary supplementation with docosahexaenoic acid (DHA) shows anti-inflammatory and neuroprotective effects against ischemic stroke. However, its effectiveness and its precise modes of neuroprotective action remain incompletely understood. This study provides evidence of an alternative target for DHA and sheds light on the mechanism of its physiological benefits. We report a global inhibitory effect of 3 consecutive days of DHA preadministration on circulating and intracerebral cellular inflammatory responses in a rat model of permanent cerebral ischemia. DHA exhibited a neuroprotective effect against ischemic deficits by reduction of behavioral disturbance, brain infarction, edema and blood-brain barrier disruption. The results of enzymatic assay, Western blot, real-time reverse transcriptase polymerase chain reaction and flow cytometric analysis revealed that DHA reduced central macrophages/microglia activation, leukocyte infiltration and pro-inflammatory cytokine expression and peripheral leukocyte activation after cerebral ischemia. In parallel with these immunosuppressive phenomena, DHA attenuated post-stroke oxidative stress, c-Jun N-terminal kinase (JNK) phosphorylation, c-Jun phosphorylation and activating protein-1 (AP-1) activation but further elevated ischemia-induced NF-E2-related factor-2 (Nrf2) and heme oxygenase-1 (HO-1) expression. DHA treatment also had an immunosuppressive effect in lipopolysaccharide/interferon-γ-stimulated glial cultures by attenuating JNK phosphorylation, c-Jun phosphorylation and AP-1 activation and augmenting Nrf2 and HO-1 expression. In summary, we have shown that DHA exhibited neuroprotective and anti-inflammatory effects against ischemic brain injury and these effects were accompanied by decreased oxidative stress and JNK/AP-1 signaling as well as enhanced Nrf2/HO-1 expression.
Collapse
Affiliation(s)
- Cheng-Yi Chang
- Department of Surgery, Fong Yuan Hospital, Taichung 420, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Kao TK, Chang CY, Ou YC, Chen WY, Kuan YH, Pan HC, Liao SL, Li GZ, Chen CJ. Tetramethylpyrazine reduces cellular inflammatory response following permanent focal cerebral ischemia in rats. Exp Neurol 2013; 247:188-201. [PMID: 23644042 DOI: 10.1016/j.expneurol.2013.04.010] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Revised: 04/15/2013] [Accepted: 04/24/2013] [Indexed: 12/21/2022]
Abstract
Tetramethylpyrazine (TMP) has been used to treat ischemic stroke. However, scientific evidence related to its effectiveness or precise modes of neuroprotective action is largely unclear. This study provides evidence of an alternative target for TMP and sheds light on the mechanism of its physiological benefits. We report a global inhibitory effect of TMP on intracerebral cellular inflammatory response in a rat model of permanent cerebral ischemia. TMP exhibited a neuroprotective effect against ischemic deficits by reduction of behavioral disturbance, brain infarction, and edema. The results of immunohistochemistry, enzymatic assay, Western blot, real-time reverse transcriptase-polymerase chain reaction (RT-PCR), and flow cytometric analysis revealed that TMP reduced the percentages of activated macrophages/microglia and infiltrative lymphocytes, neutrophils, and macrophages and pro-inflammatory cytokine expression after cerebral ischemia. In parallel with these immunosuppressive phenomena, TMP also attenuated the activities of ischemia-induced inflammation-associated signaling molecules and transcription factors. Another finding in this study was that the anti-inflammatory and neuroprotective effects of TMP were accompanied by a further elevated expression of NF-E2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) in ipsilateral neurons and macrophages/microglia after cerebral ischemia. Taken together, our results suggest that both the promotion of endogenous defense capacity and the attenuation of the extent and composition percentage of the major cellular inflammatory responses via targeting of macrophages/microglia by elevating Nrf2/HO-1 expression might actively contribute to TMP-mediated neuroprotection against cerebral ischemia.
Collapse
Affiliation(s)
- Tsung-Kuei Kao
- School of Basic Medical Science, Beijing University of Chinese Medicine, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Kathiria AS, Butcher MA, Hansen JM, Theiss AL. Nrf2 is not required for epithelial prohibitin-dependent attenuation of experimental colitis. Am J Physiol Gastrointest Liver Physiol 2013; 304:G885-96. [PMID: 23494124 PMCID: PMC3652068 DOI: 10.1152/ajpgi.00327.2012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Inflammatory bowel disease is associated with increased reactive oxygen species (ROS) and decreased antioxidant response in the intestinal mucosa. Expression of the mitochondrial protein prohibitin (PHB) is also decreased during intestinal inflammation. Our previous study showed that genetic restoration of colonic epithelial PHB expression [villin-PHB transgenic (PHB Tg) mice] attenuated dextran sodium sulfate (DSS)-induced colitis/oxidative stress and sustained expression of colonic nuclear factor erythroid 2-related factor 2 (Nrf2), a cytoprotective transcription factor. This study investigated the role of Nrf2 in mediating PHB-induced protection against colitis and expression of the antioxidant response element (ARE)-regulated antioxidant genes heme oxygenase-1 (HO-1) and NAD(P)H quinone oxidoreductase-1 (NQO-1). PHB-transfected Caco-2-BBE human intestinal epithelial cells maintained increased ARE activation and decreased intracellular ROS levels compared with control vector-transfected cells during Nrf2 knockdown by small interfering RNA. Treatment with the ERK inhibitor PD-98059 decreased PHB-induced ARE activation, suggesting that ERK constitutes a significant portion of PHB-mediated ARE activation in Caco-2-BBE cells. PHB Tg, Nrf2(-/-), and PHB Tg/Nrf2(-/-) mice were treated with DSS or 2,4,6-trinitrobenzene sulfonic acid (TNBS), and inflammation and expression of HO-1 and NQO-1 were assessed. PHB Tg/Nrf2(-/-) mice mimicked PHB Tg mice, with attenuated DSS- or TNBS-induced colitis and induction of colonic HO-1 and NQO-1 expression, despite deletion of Nrf2. PHB Tg/Nrf2(-/-) mice exhibited increased activation of ERK during colitis. Our results suggest that maintaining expression of intestinal epithelial cell PHB, which is decreased during colitis, reduces the severity of inflammation and increases colonic levels of the antioxidants HO-1 and NQO-1 via a mechanism independent of Nrf2.
Collapse
Affiliation(s)
- Arwa S. Kathiria
- 1Division of Gastroenterology, Department of Internal Medicine, Baylor Research Institute, Baylor University Medical Center, Dallas, Texas;
| | - Mackenzie A. Butcher
- 1Division of Gastroenterology, Department of Internal Medicine, Baylor Research Institute, Baylor University Medical Center, Dallas, Texas;
| | - Jason M. Hansen
- 2Division of Pulmonary, Allergy/Immunology, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory School of Medicine, Emory University, Atlanta, Georgia; and ,3Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Arianne L. Theiss
- 1Division of Gastroenterology, Department of Internal Medicine, Baylor Research Institute, Baylor University Medical Center, Dallas, Texas;
| |
Collapse
|