1
|
Geng Q, Yan L, Shi C, Zhang L, Li L, Lu P, Cao Z, Li L, He X, Tan Y, Zhao N, Liu B, Lu C. Therapeutic effects of flavonoids on pulmonary fibrosis: A preclinical meta-analysis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155807. [PMID: 38876010 DOI: 10.1016/j.phymed.2024.155807] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/26/2024] [Accepted: 06/04/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND The efficacy of flavonoid supplementation in animal models of pulmonary fibrosis has been demonstrated. PURPOSE We conducted a systematic review and meta-analysis to evaluate the efficacy and underlying mechanisms of flavonoids in animal models of bleomycin-induced pulmonary fibrosis. STUDY DESIGN Relevant studies (n = 45) were identified from English- and Chinese-language databases from the inception of the database until October 2023. METHODS Methodological quality was evaluated using the SYRCLE risk of bias tool. Statistical analyses were conducted using RevMan 5.3 and Stata 17.0. Lung inflammation and fibrosis score were the primary outcome indicators. RESULTS Flavonoids can alleviate pathological changes in the lungs. The beneficial effects of flavonoids on pulmonary fibrosis likely relate to their inhibition of inflammatory responses, restoration of oxidative and antioxidant homeostasis, and regulation of fibroblast proliferation, migration, and activation by transforming growth factor β1/mothers against the decapentaplegic homologue/AMP-activated protein kinase (TGF-β1/Smad3/AMPK), inhibitor kappa B alpha/nuclear factor-kappa B (IκBα/NF-κB), phosphatidylinositol 3-kinase (PI3K)/AKT, interleukin 6/signal transducer/activator of transcription 3 (IL6/STAT3), and nuclear factor erythroid 2-related factor 2/Kelch-like ECH-associated protein 1 (Nrf2-Keap1) pathways. CONCLUSION Flavonoids are potential candidate compounds for the prevention and treatment of pulmonary fibrosis. However, extensive preclinical research is necessary to confirm the antifibrotic properties of natural flavonoids.
Collapse
Affiliation(s)
- Qi Geng
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Lan Yan
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Changqi Shi
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Lulu Zhang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Li Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Peipei Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Zhiwen Cao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Li Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Xiaojuan He
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Yong Tan
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Ning Zhao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Bin Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, PR China.
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, PR China.
| |
Collapse
|
2
|
Li Z, Yang Y, Gao F. Monomeric compounds from natural products for the treatment of pulmonary fibrosis: a review. Inflammopharmacology 2024; 32:2203-2217. [PMID: 38724690 DOI: 10.1007/s10787-024-01485-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/23/2024] [Indexed: 08/06/2024]
Abstract
Pulmonary fibrosis (PF) is the end stage of lung injury and chronic lung diseases that results in diminished lung function, respiratory failure, and ultimately mortality. Despite extensive research, the pathogenesis of this disease remains elusive, and effective therapeutic options are currently limited, posing a significant clinical challenge. In addition, research on traditional Chinese medicine and naturopathic medicine is hampered by several complications due to complex composition and lack of reference compounds. Natural product monomers, possessing diverse biological activities and excellent safety profiles, have emerged as potential candidates for preventing and treating PF. The effective anti-PF ingredients identified can be generally divided into flavonoids, saponins, polysaccharides, and alkaloids. Specifically, these monomeric compounds can attenuate inflammatory response, oxidative stress, and other physiopathological processes of the lung through many signaling pathways. They also improve pulmonary factors. Additionally, they ameliorate epithelial-mesenchymal transition (EMT) and fibroblast-myofibroblast transdifferentiation (FMT) by regulating multiple signal amplifiers in the lungs, thereby mitigating PF. This review highlights the significant role of monomer compounds derived from natural products in reducing inflammation, oxidative stress, and inhibiting EMT process. The article provides comprehensive information and serves as a solid foundation for further exploration of new strategies to harness the potential of botanicals in the treatment of PF.
Collapse
Affiliation(s)
- Zhuqing Li
- University of Shanghai for Science and Technology, 516, Jungong Road, Shanghai, 200093, China
| | - Yanyong Yang
- Basic Medical Center for Pulmonary Disease, Naval Medical University, 800, Xiangyin Road, Shanghai, 200433, China.
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800, Xiangyin Road, Shanghai, 200433, People's Republic of China.
| | - Fu Gao
- University of Shanghai for Science and Technology, 516, Jungong Road, Shanghai, 200093, China.
- Basic Medical Center for Pulmonary Disease, Naval Medical University, 800, Xiangyin Road, Shanghai, 200433, China.
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800, Xiangyin Road, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
3
|
Bleomycin-Induced Damage in Rat Lung: Protective Effect of Grape Seed and Skin Extract. Dose Response 2022; 20:15593258221131648. [PMID: 36246170 PMCID: PMC9558885 DOI: 10.1177/15593258221131648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Introduction Bleomycin is an effective chemotherapeutic agent with main side effects
including lung fibrosis which limited its clinical use. The aim of this
study is to evaluate the protective effect of grape seed and skin extract
(GSSE) against bleomycin-induced oxidative damage and inflammation in rat
lung, by assessing respiratory index (RI), oxidative and nitrosative stress
(SOD and XO activity, NO), fibrotic mediators (hydroxyproline and collagen),
apoptosis (cytochrome C and LDH), inflammation (IL-6, TNF-α and TGF-β1), and
histological disturbances. Methods Rats were pre-treated during three weeks with vehicle [ethanol 10% control]
or GSSE (4 g/kg) and then administered with a single dose of bleo (15 mg/kg
bw) at the 7th day. Results: Bleo disturbed lung function through the accumulation
of hydroxyproline and collagen, decreased SOD activity but increased XO
activity as well as GSH and NO levels. Bleo also increased the
pro-inflammatory cytokines IL-6, TNF-α, and TGF-β1, and pro-apoptotic
cytochrome C factor and induced severe histological alterations of lung
parenchyma. Interestingly GSSE pre-treatment efficiently counteracted most
of the bleo-induced lung tissue damages. Conclusion Data suggest that GSSE exerts anti-oxidant, ant-inflammatory, and
anti-fibrosis properties that could find potential application in the
protection against bleo-induced lung fibrosis.
Collapse
|
4
|
Protective effect of dapsone against bleomycin-induced lung fibrosis in rat. Exp Mol Pathol 2021; 124:104737. [DOI: 10.1016/j.yexmp.2021.104737] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/25/2021] [Accepted: 12/11/2021] [Indexed: 02/07/2023]
|
5
|
Wang L, Li S, Yao Y, Yin W, Ye T. The role of natural products in the prevention and treatment of pulmonary fibrosis: a review. Food Funct 2021; 12:990-1007. [PMID: 33459740 DOI: 10.1039/d0fo03001e] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Pulmonary fibrosis is an incurable end-stage lung disease and remains a global public health problem. Although there have been some breakthroughs in understanding the pathogenesis of pulmonary fibrosis, effective intervention methods are still limited. Natural products have the advantages of multiple biological activities and high levels of safety, which are important factors for preventing and treating pulmonary fibrosis. In this review, we summarized the mechanisms and health benefits of natural products against pulmonary fibrosis. These natural products target oxidative stress, inflammatory injury, epithelial-mesenchymal transition (EMT), fibroblast activation, extracellular matrix accumulation and metabolic regulation, and the mechanisms involve the NF-κB, TGF-β1/Smad, PI3K/Akt, p38 MAPK, Nrf2-Nox4, and AMPK signaling pathways. We hope to provide new ideas for pulmonary fibrosis prevention and treatment strategies.
Collapse
Affiliation(s)
- Liqun Wang
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China. and West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Sha Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Yuqin Yao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Wenya Yin
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Tinghong Ye
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
6
|
Rajasekaran S, Rajasekar N, Sivanantham A. Therapeutic potential of plant-derived tannins in non-malignant respiratory diseases. J Nutr Biochem 2021; 94:108632. [PMID: 33794331 DOI: 10.1016/j.jnutbio.2021.108632] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/06/2021] [Accepted: 03/23/2021] [Indexed: 12/24/2022]
Abstract
Respiratory diseases are the major cause of human illness and death around the world. Despite advances in detection and treatment, very few classes of safe and effective therapy have been introduced to date. At present, phytochemicals are getting more attention because of their diverse beneficial activities and minimal toxicity. Tannins are polyphenolic secondary metabolites with high molecular weights, which are naturally present in a wide variety of fruits, vegetables, cereals, and leguminous seeds. Many tannins are endowed with well-recognized protective properties, such as anti-cancer, anti-microbial, anti-oxidant, anti-hyperglycemic, and many others. This review summarizes a large body of experimental evidence implicating that tannins are helpful in tackling a wide range of non-malignant respiratory diseases including acute lung injury (ALI), pulmonary fibrosis, asthma, pulmonary hypertension, and chronic obstructive pulmonary disease (COPD). Mechanistic pathways by which various classes of tannins execute their beneficial effects are discussed. In addition, clinical trials and our perspective on future research with tannins are also reviewed.
Collapse
Affiliation(s)
- Subbiah Rajasekaran
- Department of Biochemistry, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India.
| | - Nandhine Rajasekar
- Department of Biotechnology, BIT-Campus, Anna University, Tiruchirappalli, Tamil Nadu, India
| | - Ayyanar Sivanantham
- Department of Biotechnology, BIT-Campus, Anna University, Tiruchirappalli, Tamil Nadu, India
| |
Collapse
|
7
|
Mansour HH, Omran MM, Hasan HF, El Kiki SM. Modulation of bleomycin-induced oxidative stress and pulmonary fibrosis by N-acetylcysteine in rats via AMPK/SIRT1/NF-κβ. Clin Exp Pharmacol Physiol 2020; 47:1943-1952. [PMID: 32658336 DOI: 10.1111/1440-1681.13378] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/12/2022]
Abstract
The efficacy of bleomycin (BLM) as an antineoplastic drug is limited to the development of dose and time-dependent pulmonary fibrosis. This study was intended to investigate the effect of N-acetylcysteine (NAC) on BLM-induced pulmonary fibrosis in rats. Twenty rats were randomly divided to the following four groups: Group one served as control; group two received BLM (15 mg/kg, intraperitoneal (ip)) for five consecutive days; group three received NAC (200 mg/kg, ip) for five consecutive days; and group four received NAC 1 hour before BLM for 5 days. The expression of connective tissue growth factor (CTGF), platelet-derived growth factor (PDGF), silent information regulator l (SIRT1), AMP-activated protein kinase (AMPK) were determined by qRT-PCR in lung tissues. The changes in transforming growth factor-beta1 (TGF-β1), tumour necrosis factor-α (TNF-α), interleukin-β1 (IL-β1) and nuclear factor kappa-β (NF-κβ) in serum were measured by ELISA. The tissue antioxidant status was determined biochemically. BLM administration caused pulmonary fibrosis as evidenced by increased levels of inflammatory mediators (TGF-β1, TNF-α, IL-β1 and NF-κβ) in serum (P < .05), elevated lipid peroxidation and nitric oxide and depleted endogenous antioxidants in lung tissue (P < .05). The expression levels of SIRT1 and AMPK were significantly decreased (P < .05), while the expression levels of CTGF and PDGF were increased significantly in the BLM group as compared to the control group (P < .05). These alterations were normalized by NAC intervention. NAC markedly attenuated the lung histopathological changes and reduced collagen deposition. These results suggest that NAC exerted an ameliorative effect against BLM-induced oxidative damage and pulmonary fibrosis via SIRT1/ AMPK/ NF-κβ pathways.
Collapse
Affiliation(s)
- Heba H Mansour
- Health Radiation Research Department, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | - Mervat M Omran
- Pharmacology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Hesham F Hasan
- Radiation Biology Department, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | - Shereen M El Kiki
- Health Radiation Research Department, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
8
|
Insights into the Role of Bioactive Food Ingredients and the Microbiome in Idiopathic Pulmonary Fibrosis. Int J Mol Sci 2020; 21:ijms21176051. [PMID: 32842664 PMCID: PMC7503951 DOI: 10.3390/ijms21176051] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 02/08/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic disease mainly associated with aging and, to date, its causes are still largely unknown. It has been shown that dietary habits can accelerate or delay the occurrence of aging-related diseases; however, their potential role in IPF development has been underestimated so far. The present review summarizes the evidence regarding the relationship between diet and IPF in humans, and in animal models of pulmonary fibrosis, in which we discuss the bioactivity of specific dietary food ingredients, including fatty acids, peptides, amino acids, carbohydrates, vitamins, minerals and phytochemicals. Interestingly, many animal studies reveal preventive and therapeutic effects of particular compounds. Furthermore, it has been recently suggested that the lung and gut microbiota could be involved in IPF, a relationship which may be linked to changes in immunological and inflammatory factors. Thus, all the evidence so far puts forward the idea that the gut-lung axis could be modulated by dietary factors, which in turn have an influence on IPF development. Overall, the data reviewed here support the notion of identifying food ingredients with potential benefits in IPF, with the ultimate aim of designing nutritional approaches as an adjuvant therapeutic strategy.
Collapse
|
9
|
Liu Q, Jiang JX, Liu YN, Ge LT, Guan Y, Zhao W, Jia YL, Dong XW, Sun Y, Xie QM. Grape seed extract ameliorates bleomycin-induced mouse pulmonary fibrosis. Toxicol Lett 2017; 273:1-9. [DOI: 10.1016/j.toxlet.2017.03.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/03/2017] [Accepted: 03/10/2017] [Indexed: 11/26/2022]
|
10
|
Khazri O, Charradi K, Limam F, El May MV, Aouani E. Grape seed and skin extract protects against bleomycin-induced oxidative stress in rat lung. Biomed Pharmacother 2016; 81:242-249. [PMID: 27261600 DOI: 10.1016/j.biopha.2016.04.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/04/2016] [Accepted: 04/04/2016] [Indexed: 10/21/2022] Open
Abstract
INTRODUCTION Lung fibrosis is a common side effect of the chemotherapeutic agent bleomycin and current evidence suggests that reactive oxygen species play a key role in the development of lung injury. We examined whether grape seed and skin extract (GSSE), a polyphenolic mixture exhibiting antioxidant properties, is able to protect against bleomycin-induced lung oxidative stress and injury. METHODS Rats were pre-treated during three weeks either with vehicle (ethanol 10% control) or GSSE (4g/kg), then administered with a single high dose bleomycin (15mg/kg) at the 7th day. RESULTS Bleomycin increased lung lipoperoxidation, carbonylation and decreased antioxidant enzyme activities as catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx). Bleomycin also induced copper depletion from the lung and iron accumulation within the lung, but had no effect on either zinc nor manganese. Correlatively bleomycin decreased the copper associated enzyme tyrosinase, increased the zinc dependent lactate dehydrogenase (LDH) and did not affect the manganese dependent glutamine synthetase. GSSE efficiently counteracted almost all bleomycin-induced oxidative stress, biochemical and morphological changes of lung tissue. CONCLUSION Data suggest that GSSE exerts potent antioxidant properties that could find potential application in the protection against bleomycin-induced lung fibrosis.
Collapse
Affiliation(s)
- Olfa Khazri
- Laboratoire des Substances Bio-Active (LSBA), Centre de Biotechnologie de Borj Cedria, BP-901, 2050 Hammam-Lif, Tunisia; Université de Carthage, Faculté des Sciences de Bizerte, 7021 Jarzouna, Tunisia.
| | - Kamel Charradi
- Laboratoire des Substances Bio-Active (LSBA), Centre de Biotechnologie de Borj Cedria, BP-901, 2050 Hammam-Lif, Tunisia; Université de Carthage, Faculté des Sciences de Bizerte, 7021 Jarzouna, Tunisia
| | - Ferid Limam
- Laboratoire des Substances Bio-Active (LSBA), Centre de Biotechnologie de Borj Cedria, BP-901, 2050 Hammam-Lif, Tunisia
| | | | - Ezzedine Aouani
- Laboratoire des Substances Bio-Active (LSBA), Centre de Biotechnologie de Borj Cedria, BP-901, 2050 Hammam-Lif, Tunisia; Université de Carthage, Faculté des Sciences de Bizerte, 7021 Jarzouna, Tunisia
| |
Collapse
|
11
|
Günay E, Celik S, Sarinc-Ulasli S, Özyürek A, Hazman Ö, Günay S, Özdemir M, Ünlü M. Comparison of the Anti-inflammatory Effects of Proanthocyanidin, Quercetin, and Damnacanthal on Benzo(a)pyrene Exposed A549 Alveolar Cell Line. Inflammation 2016; 39:744-51. [DOI: 10.1007/s10753-015-0301-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Javadi I, Emami S. The Antioxidative Effect of Chamomile, Anthocyanoside and their Combination on Bleomycin-induced Pulmonary Fibrosis in Rat. Med Arch 2015; 69:229-31. [PMID: 26543307 PMCID: PMC4610652 DOI: 10.5455/medarh.2015.69.229-231] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 06/30/2015] [Indexed: 11/04/2022] Open
Abstract
Introduction: Bleomycin is a small peptide with 1500Daltun of molecular weight which has two junction areas in two molecule’s opposite sides, one of them to relate to the DNA and the other to relate to the iron. Iron is a crucially important factor in free radical production and cytotoxic activity of bleomycin. Material and methods: The study attempts to study, and compare, the effect of using Chamomile, Anthocyanoside and their combination, as anti-inflammatory agent to ameliorates, to prevent or control the development of fibrosis due to Bleomycin (BLM). to prepare pulmonary fibrosis model, male Wistar rats weighting 180-220g were assigned to specific groups Rats of each group received intratracheally 1U/100 g of BLM. 20 rats were divided to five comparable groups, as(1) BLM group, (2) saline group, (3) Chamomile group, (4) Anthocyanoside group, (5) combination of Anthocyanoside and Chamomile group. Antioxidative combinations were given as pretreatment and treatment after the rats received Bleomycine. Results: After 3 week, Malondialdehyde (MDA)was measured for each rat’s lung. After three weeks, MDA was reduced, compared to BLM group, to 44.27%, 37.80% and 46.07% in Anthocyanoside, Chamomiland combination group, respectively. It was concluded from the present study that administration of combination of Chamomile and Anthocyanoside lead to a significant reduction in Bleomycin-induced MDA. Conclusion: The mechanism of the effect of these combinations is possibly the result of phenolic combinations as antioxidant and oxy free radical scavenger and inhibitor of lipid peroxidation.
Collapse
|
13
|
Investigating the influence of taurine on thiol antioxidant status in Wistar rats with a multi-analytical approach. J Appl Biomed 2014. [DOI: 10.1016/j.jab.2013.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
14
|
Akay C, Yaman H, Oztosun M, Cakir E, Yildirim AO, Eyi YE, Agilli M, Akgul EO, Aydin I, Kaldirim U, Tuncer SK, Eken A, Oztas E, Poyrazoglu Y, Yasar M, Ozkan Y. The protective effects of taurine on experimental acute pancreatitis in a rat model. Hum Exp Toxicol 2013; 32:522-9. [DOI: 10.1177/0960327113482692] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The aim of this study was to investigate the protective effects of taurine (Tau) on experimental acute pancreatitis (AP) in a rat model by measuring cytokines and oxidant stress markers. Forty rats were randomly divided into four groups: sham, AP, Tau and AP + Tau. AP was induced with sodium taurocholate. No treatment was given to the AP. All rats were killed 5 days later. Pancreatic tissues of rats and blood samples were obtained. Tau treatment significantly decreased serum amylase activity ( p < 0.001), total injury score ( p < 0.001), malondialdehyde levels ( p < 0.001) and myeloperoxidase (MPO) activity ( p < 0.001). There was no significant difference between the Tau and AP + Tau groups in serum and pancreatic tumor necrosis factor-α, interleukin (IL)-1β and IL-6 levels ( p = 1.000). Histopathologic scores in the AP + Tau and Tau groups were significantly lower compared with the AP group (both p < 0.001). These results showed that Tau reduces lipid peroxidation, amylase and MPO activities and the concentrations of proinflammatory cytokines secondary to AP and also increases superoxide dismutase and glutathione peroxidase activities in rats with sodium taurocholate-induced AP. It also has a marked ameliorative effect at histopathologic lesions. With these effects, Tau protects the cells from oxidative damage, reduces inflammation and promotes regression of pancreatic damage.
Collapse
Affiliation(s)
- C Akay
- Department of Pharmaceutical Toxicology, Gulhane Military Medical Academy, Etlik, Ankara, Turkey
| | - H Yaman
- Clinical Biochemistry, Gulhane Military Medical Academy, Etlik, Ankara, Turkey
| | - M Oztosun
- Turkish Armed Forces, Health Services Command, Etimesgut, Ankara, Turkey
| | - E Cakir
- Clinical Biochemistry, Gulhane Military Medical Academy, Etlik, Ankara, Turkey
| | - AO Yildirim
- Emergency Medicine, Gulhane Military Medical Academy, Etlik, Ankara, Turkey
| | - YE Eyi
- Emergency Medicine, Gulhane Military Medical Academy, Etlik, Ankara, Turkey
| | - M Agilli
- Clinical Biochemistry, Gulhane Military Medical Academy, Etlik, Ankara, Turkey
| | - EO Akgul
- Clinical Biochemistry, Gulhane Military Medical Academy, Etlik, Ankara, Turkey
| | - I Aydin
- Clinical Biochemistry, Gulhane Military Medical Academy, Etlik, Ankara, Turkey
| | - U Kaldirim
- Emergency Medicine, Gulhane Military Medical Academy, Etlik, Ankara, Turkey
| | - SK Tuncer
- Emergency Medicine, Gulhane Military Medical Academy, Etlik, Ankara, Turkey
| | - A Eken
- Department of Pharmaceutical Toxicology, Gulhane Military Medical Academy, Etlik, Ankara, Turkey
| | - E Oztas
- Histology and Embryology, Gulhane Military Medical Academy, Etlik, Ankara, Turkey
| | - Y Poyrazoglu
- Emergency Medicine, Gulhane Military Medical Academy, Etlik, Ankara, Turkey
| | - M Yasar
- Emergency Medicine, Gulhane Military Medical Academy, Etlik, Ankara, Turkey
| | - Y Ozkan
- Pharmaceutical Technology, Gulhane Military Medical Academy, Etlik, Ankara, Turkey
| |
Collapse
|