1
|
Redondo N, Valverde-Manso A, Ruiz-Merlo T, Rodríguez-Goncer I, Parra P, López-Medrano F, González E, Polanco N, San Juan R, Andrés A, Aguado JM, Fernández-Ruiz M. Human Cytomegalovirus Infection Induces Long-Term Changes in the Cytokine Milieu of Kidney Transplant Recipients. J Med Virol 2025; 97:e70178. [PMID: 39831372 DOI: 10.1002/jmv.70178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/28/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025]
Abstract
The impact of human cytomegalovirus (HCMV) infection on the mid- and long-term balance between pro-inflammatory and anti-inflammatory cytokines among kidney transplant recipients (KTRs) remains unclear. We measured plasma levels of 12 Th1/Th2-type cytokines (granulocyte-macrophage colony-stimulating factor, interferon-γ, interleukin [IL]-1β, IL-2, IL-4, IL-5, IL-6, IL-10, IL-12p70, IL-13, IL-18 and tumor necrosis factor-α) in a cohort of 290 KTRs at four time points through month 12 after transplantation. Cytokine levels at each point were compared according to the previous documentation of HCMV replication by two approaches: "cumulative exposure" from the time of transplantation and "recent exposure" within the 2-3 months preceding cytokine assessment. Significance levels were Bonferroni-corrected for multiple pairwise comparisons. Plasma levels of IL-6, IL-10, and IL-12p70 at month 1 were significantly increased in KTRs that had experienced HCMV infection during the first 30 days. By month 3, IL-6 and IL-10 remained increased in KTRs with cumulative exposure through day 90. Cumulative exposure to HCMV replication through day 180 was also associated to increased IL-10 levels at month 6. In addition, KTRs with recent HCMV exposure had increased IL-10 levels at months 3 and 6. After multivariable adjustment, cumulative exposure to HCMV infection and/or the area under curve of HCMV DNAemia during the corresponding period were associated to IL-10 levels within the highest quartile at months 1, 3, and 6. Preceding HCMV infection induces sustained changes in the plasma cytokine milieu of KTRs, with elevated IL-6 and IL-10 levels throughout the first 6 months after transplantation.
Collapse
Affiliation(s)
- Natalia Redondo
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Andrea Valverde-Manso
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
| | - Tamara Ruiz-Merlo
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Isabel Rodríguez-Goncer
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
- Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Patricia Parra
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
| | - Francisco López-Medrano
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
- Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Esther González
- Department of Nephrology, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
| | - Natalia Polanco
- Department of Nephrology, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
| | - Rafael San Juan
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
- Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Amado Andrés
- Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain
- Department of Nephrology, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
| | - José María Aguado
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
- Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Mario Fernández-Ruiz
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
- Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain
| |
Collapse
|
2
|
Mihalić A, Železnjak J, Lisnić B, Jonjić S, Juranić Lisnić V, Brizić I. Immune surveillance of cytomegalovirus in tissues. Cell Mol Immunol 2024; 21:959-981. [PMID: 39134803 PMCID: PMC11364667 DOI: 10.1038/s41423-024-01186-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/14/2024] [Indexed: 09/01/2024] Open
Abstract
Cytomegalovirus (CMV), a representative member of the Betaherpesvirinae subfamily of herpesviruses, is common in the human population, but immunocompetent individuals are generally asymptomatic when infected with this virus. However, in immunocompromised individuals and immunologically immature fetuses and newborns, CMV can cause a wide range of often long-lasting morbidities and even death. CMV is not only widespread throughout the population but it is also widespread in its hosts, infecting and establishing latency in nearly all tissues and organs. Thus, understanding the pathogenesis of and immune responses to this virus is a prerequisite for developing effective prevention and treatment strategies. Multiple arms of the immune system are engaged to contain the infection, and general concepts of immune control of CMV are now reasonably well understood. Nonetheless, in recent years, tissue-specific immune responses have emerged as an essential factor for resolving CMV infection. As tissues differ in biology and function, so do immune responses to CMV and pathological processes during infection. This review discusses state-of-the-art knowledge of the immune response to CMV infection in tissues, with particular emphasis on several well-studied and most commonly affected organs.
Collapse
Affiliation(s)
- Andrea Mihalić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Jelena Železnjak
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Berislav Lisnić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Stipan Jonjić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- Department of Biomedical Sciences, Croatian Academy of Sciences and Arts, Rijeka, Croatia
| | - Vanda Juranić Lisnić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia.
| | - Ilija Brizić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia.
| |
Collapse
|
3
|
Han P, Tang J, Xu X, Meng P, Wu K, Sun B, Song X. Identification of the grass carp interleukin-23 receptor and its proinflammatory role in intestinal inflammation. Int J Biol Macromol 2024; 265:130946. [PMID: 38521334 DOI: 10.1016/j.ijbiomac.2024.130946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 03/25/2024]
Abstract
The interleukin 23 receptor (IL-23R) is associated with a variety of inflammatory diseases in humans and other mammals. However, whether IL-23R is involved in inflammatory diseases in teleost fish is less understood. Thus, to investigate the potential involvement of IL-23R in fish inflammatory diseases, the full-length cDNA of IL-23R from grass carp Ctenopharyngodon idella was cloned and used to generate a recombinant protein (rgcIL-23R) containing the extracellular domain of IL-23R, against which a polyclonal antibody (rgcIL-23R pAb) was then developed. qPCR analysis revealed that IL-23R mRNA was significantly upregulated in most grass carp tissues in response to infection with Gram-negative Aeromonas hydrophila. Treatment with rgcIL-23R significantly induced IL-17A/F1 expression in C. idella kidney (CIK) cells. By contrast, knockdown of IL-23R caused significant decreases in IL-23R, STAT3, and IL-17N expression in CIK cells after lipopolysaccharide (LPS) stimulation. Similarly, rgcIL-23R pAb treatment effectively inhibited the LPS-induced increase in the expression of IL-23 subunit genes and those of the IL-23/IL-17 pathway in CIK cells. Furthermore, intestinal symptoms identical to those caused by A. hydrophila were induced by anal intubation with rgcIL-23R, but suppressed by rgcIL-23R pAb. Therefore, these results suggest that IL-23R has a crucial role in the regulation of intestinal inflammation and, thus, is a promising target for controlling inflammatory diseases in farmed fish.
Collapse
Affiliation(s)
- Panpan Han
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China
| | - Jian Tang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China
| | - Xufang Xu
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China
| | - Pengkun Meng
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China
| | - Kang Wu
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China
| | - Bingyao Sun
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China.
| | - Xuehong Song
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province, China.
| |
Collapse
|
4
|
Mukherjee PK, Nguyen QT, Li J, Zhao S, Christensen SM, West GA, Chandra J, Gordon IO, Lin S, Wang J, Mao R, Czarnecki D, Rayan C, Goren I, Banerjee S, Kotak P, Plesec T, Lal S, Fabre T, Asano S, Bound K, Hart K, Park C, Martinez R, Dower K, Wynn TA, Hu S, Naydenov N, Decaris M, Turner S, Holubar SD, Steele SR, Fiocchi C, Ivanov AI, Kravarik KM, Rieder F. Stricturing Crohn's Disease Single-Cell RNA Sequencing Reveals Fibroblast Heterogeneity and Intercellular Interactions. Gastroenterology 2023; 165:1180-1196. [PMID: 37507073 DOI: 10.1053/j.gastro.2023.07.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/22/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023]
Abstract
BACKGROUND & AIMS Fibroblasts play a key role in stricture formation in Crohn's disease (CD) but understanding its pathogenesis requires a systems-level investigation to uncover new treatment targets. We studied full-thickness CD tissues to characterize fibroblast heterogeneity and function by generating the first single-cell RNA sequencing (scRNAseq) atlas of strictured bowel and providing proof of principle for therapeutic target validation. METHODS We performed scRNAseq of 13 fresh full-thickness CD resections containing noninvolved, inflamed nonstrictured, and strictured segments as well as 7 normal non-CD bowel segments. Each segment was separated into mucosa/submucosa or muscularis propria and analyzed separately for a total of 99 tissue samples and 409,001 cells. We validated cadherin-11 (CDH11) as a potential therapeutic target by using whole tissues, isolated intestinal cells, NanoString nCounter, next-generation sequencing, proteomics, and animal models. RESULTS Our integrated dataset revealed fibroblast heterogeneity in strictured CD with the majority of stricture-selective changes detected in the mucosa/submucosa, but not the muscle layer. Cell-cell interaction modeling revealed CXCL14+ as well as MMP/WNT5A+ fibroblasts displaying a central signaling role in CD strictures. CDH11, a fibroblast cell-cell adhesion molecule, was broadly expressed and up-regulated, and its profibrotic function was validated using NanoString nCounter, RNA sequencing, tissue target expression, in vitro gain- and loss-of-function experiments, proteomics, and knock-out and antibody-mediated CDH11 blockade in experimental colitis. CONCLUSIONS A full-thickness bowel scRNAseq atlas revealed previously unrecognized fibroblast heterogeneity and interactions in CD strictures and CDH11 was validated as a potential therapeutic target. These results provide a new resource for a better understanding of CD stricture formation and open potential therapeutic developments. This work has been posted as a preprint on Biorxiv under doi: 10.1101/2023.04.03.534781.
Collapse
Affiliation(s)
- Pranab K Mukherjee
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio; Center for Global Translational Inflammatory Bowel Disease Research, Cleveland Clinic, Cleveland, Ohio
| | - Quang Tam Nguyen
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio; Center for Global Translational Inflammatory Bowel Disease Research, Cleveland Clinic, Cleveland, Ohio
| | - Jiannan Li
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Shuai Zhao
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | | | - Gail A West
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Jyotsna Chandra
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio; Center for Global Translational Inflammatory Bowel Disease Research, Cleveland Clinic, Cleveland, Ohio
| | - Ilyssa O Gordon
- Department of Pathology, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Center for Global Translational Inflammatory Bowel Disease Research, Cleveland Clinic, Cleveland, Ohio
| | - Sinan Lin
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio; Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jie Wang
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio; Henan Key Laboratory of Immunology and Targeted Drug, Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Ren Mao
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio; Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Douglas Czarnecki
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Carla Rayan
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Idan Goren
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Suhanti Banerjee
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Prerna Kotak
- Pliant Therapeutics, South San Francisco, California
| | - Thomas Plesec
- Department of Pathology, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Center for Global Translational Inflammatory Bowel Disease Research, Cleveland Clinic, Cleveland, Ohio
| | - Samir Lal
- Worldwide Research, Development and Medicine, Pfizer Inc, Cambridge, Massachusetts
| | - Thomas Fabre
- Worldwide Research, Development and Medicine, Pfizer Inc, Cambridge, Massachusetts
| | - Shoh Asano
- Worldwide Research, Development and Medicine, Pfizer Inc, Cambridge, Massachusetts
| | - Kathryn Bound
- Worldwide Research, Development and Medicine, Pfizer Inc, Cambridge, Massachusetts
| | - Kevin Hart
- Worldwide Research, Development and Medicine, Pfizer Inc, Cambridge, Massachusetts
| | - Chanyoung Park
- Worldwide Research, Development and Medicine, Pfizer Inc, Cambridge, Massachusetts; Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Robert Martinez
- Worldwide Research, Development and Medicine, Pfizer Inc, Cambridge, Massachusetts
| | - Ken Dower
- Worldwide Research, Development and Medicine, Pfizer Inc, Cambridge, Massachusetts
| | - Thomas A Wynn
- Worldwide Research, Development and Medicine, Pfizer Inc, Cambridge, Massachusetts
| | - Shaomin Hu
- Department of Pathology, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Center for Global Translational Inflammatory Bowel Disease Research, Cleveland Clinic, Cleveland, Ohio
| | - Nayden Naydenov
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | | | - Scott Turner
- Pliant Therapeutics, South San Francisco, California
| | - Stefan D Holubar
- Department of Colorectal Surgery, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, Ohio; Center for Global Translational Inflammatory Bowel Disease Research, Cleveland Clinic, Cleveland, Ohio
| | - Scott R Steele
- Department of Colorectal Surgery, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, Ohio
| | - Claudio Fiocchi
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio; Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease Institute, Cleveland Clinic, Cleveland, Ohio
| | - Andrei I Ivanov
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio; Center for Global Translational Inflammatory Bowel Disease Research, Cleveland Clinic, Cleveland, Ohio
| | - Kellie M Kravarik
- Worldwide Research, Development and Medicine, Pfizer Inc, Cambridge, Massachusetts
| | - Florian Rieder
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio; Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease Institute, Cleveland Clinic, Cleveland, Ohio; Center for Global Translational Inflammatory Bowel Disease Research, Cleveland Clinic, Cleveland, Ohio.
| |
Collapse
|
5
|
Mukherjee PK, Nguyen QT, Li J, Zhao S, Christensen SM, West GA, Chandra J, Gordon IO, Lin S, Wang J, Mao R, Czarnecki D, Rayan C, Kotak P, Plesec T, Lal S, Fabre T, Asano S, Bound K, Hart K, Park C, Martinez R, Dower K, Wynn TA, Hu S, Naydenov N, Decaris M, Turner S, Holubar SD, Steele SR, Fiocchi C, Ivanov AI, Kravarik KM, Rieder F. Stricturing Crohn's disease single-cell RNA sequencing reveals fibroblast heterogeneity and intercellular interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.03.534781. [PMID: 37066202 PMCID: PMC10103967 DOI: 10.1101/2023.04.03.534781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Background Fibroblasts play a key role in stricture formation in Crohn's disease (CD) but understanding it's pathogenesis requires a systems-level investigation to uncover new treatment targets. We studied full thickness CD tissues to characterize fibroblast heterogeneity and function by generating the first single cell RNA sequencing (scRNAseq) atlas of strictured bowel and providing proof of principle for therapeutic target validation. Methods We performed scRNAseq of 13 fresh full thickness CD resections containing non-involved, inflamed non-strictured, and strictured segments as well as 7 normal non-CD bowel segments. Each segment was separated into mucosa/submucosa or muscularis propria and analyzed separately for a total of 99 tissue samples and 409,001 cells. We validated cadherin-11 (CDH11) as a potential therapeutic target by using whole tissues, isolated intestinal cells, NanoString nCounter, next generation sequencing, proteomics and animal models. Results Our integrated dataset revealed fibroblast heterogeneity in strictured CD with the majority of stricture-selective changes detected in the mucosa/submucosa, but not the muscle layer. Cell-cell interaction modeling revealed CXCL14+ as well as MMP/WNT5A+ fibroblasts displaying a central signaling role in CD strictures. CDH11, a fibroblast cell-cell adhesion molecule, was broadly expressed and upregulated, and its pro-fibrotic function was validated by NanoString nCounter, RNA sequencing, tissue target expression, in vitro gain- and loss-of-function experiments, proteomics, and two animal models of experimental colitis. Conclusion A full-thickness bowel scRNAseq atlas revealed previously unrecognized fibroblast heterogeneity and interactions in CD strictures and CDH11 was validated as a potential therapeutic target. These results provide a new resource for a better understanding of CD stricture formation and opens potential therapeutic developments.
Collapse
|
6
|
Le-Trilling VTK, Ebel JF, Baier F, Wohlgemuth K, Pfeifer KR, Mookhoek A, Krebs P, Determann M, Katschinski B, Adamczyk A, Lange E, Klopfleisch R, Lange CM, Sokolova V, Trilling M, Westendorf AM. Acute cytomegalovirus infection modulates the intestinal microbiota and targets intestinal epithelial cells. Eur J Immunol 2023; 53:e2249940. [PMID: 36250419 DOI: 10.1002/eji.202249940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/29/2022] [Accepted: 10/14/2022] [Indexed: 02/04/2023]
Abstract
Primary and recurrent cytomegalovirus (CMV) infections frequently cause CMV colitis in immunocompromised as well as inflammatory bowel disease (IBD) patients. Additionally, colitis occasionally occurs upon primary CMV infection in patients who are apparently immunocompetent. In both cases, the underlying pathophysiologic mechanisms are largely elusive - in part due to the lack of adequate access to specimens. We employed the mouse cytomegalovirus (MCMV) model to assess the association between CMV and colitis. During acute primary MCMV infection of immunocompetent mice, the gut microbial composition was affected as manifested by an altered ratio of the Firmicutes to Bacteroidetes phyla. Interestingly, these microbial changes coincided with high-titer MCMV replication in the colon, crypt hyperplasia, increased colonic pro-inflammatory cytokine levels, and a transient increase in the expression of the antimicrobial protein Regenerating islet-derived protein 3 gamma (Reg3γ). Further analyses revealed that murine and human intestinal epithelial cell lines, as well as primary intestinal crypt cells and organoids represent direct targets of CMV infection causing increased cell death. Accordingly, in vivo MCMV infection disrupted the intestinal epithelial barrier and increased apoptosis of intestinal epithelial cells. In summary, our data show that CMV transiently induces colitis in immunocompetent hosts by altering the intestinal homeostasis.
Collapse
Affiliation(s)
| | - Jana-Fabienne Ebel
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Franziska Baier
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Kerstin Wohlgemuth
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Kai Robin Pfeifer
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Aart Mookhoek
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Philippe Krebs
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Madita Determann
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Benjamin Katschinski
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Alexandra Adamczyk
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Erik Lange
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Robert Klopfleisch
- Institute of Veterinary Pathology, Free University of Berlin, Berlin, Germany
| | - Christian M Lange
- Department of Gastroenterology and Hepatology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Viktoriya Sokolova
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Essen, Germany
| | - Mirko Trilling
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Astrid M Westendorf
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
7
|
Le‐Trilling VTK, Ebel J, Baier F, Wohlgemuth K, Pfeifer KR, Mookhoek A, Krebs P, Determann M, Katschinski B, Adamczyk A, Lange E, Klopfleisch R, Lange CM, Sokolova V, Trilling M, Westendorf AM. Acute cytomegalovirus infection modulates the intestinal microbiota and targets intestinal epithelial cells. Eur J Immunol 2022. [DOI: 10.1002/eji.202249940 10.1002/eji.202249940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
| | - Jana‐Fabienne Ebel
- Institute of Medical Microbiology University Hospital Essen University of Duisburg‐Essen Essen Germany
| | - Franziska Baier
- Institute of Medical Microbiology University Hospital Essen University of Duisburg‐Essen Essen Germany
| | - Kerstin Wohlgemuth
- Institute for Virology University Hospital Essen University of Duisburg‐Essen Essen Germany
| | - Kai Robin Pfeifer
- Institute of Medical Microbiology University Hospital Essen University of Duisburg‐Essen Essen Germany
| | - Aart Mookhoek
- Institute of Pathology University of Bern Bern Switzerland
| | - Philippe Krebs
- Institute of Pathology University of Bern Bern Switzerland
| | - Madita Determann
- Institute for Virology University Hospital Essen University of Duisburg‐Essen Essen Germany
| | - Benjamin Katschinski
- Institute for Virology University Hospital Essen University of Duisburg‐Essen Essen Germany
| | - Alexandra Adamczyk
- Institute of Medical Microbiology University Hospital Essen University of Duisburg‐Essen Essen Germany
| | - Erik Lange
- Institute of Medical Microbiology University Hospital Essen University of Duisburg‐Essen Essen Germany
| | - Robert Klopfleisch
- Institute of Veterinary Pathology Free University of Berlin Berlin Germany
| | - Christian M. Lange
- Department of Gastroenterology and Hepatology University Hospital Essen University of Duisburg‐Essen Essen Germany
| | - Viktoriya Sokolova
- Institute of Medical Microbiology University Hospital Essen University of Duisburg‐Essen Essen Germany
- Inorganic Chemistry and Centre for Nanointegration Duisburg‐Essen (CeNIDE) University of Duisburg‐Essen Essen Germany
| | - Mirko Trilling
- Institute for Virology University Hospital Essen University of Duisburg‐Essen Essen Germany
| | - Astrid M. Westendorf
- Institute of Medical Microbiology University Hospital Essen University of Duisburg‐Essen Essen Germany
| |
Collapse
|
8
|
P-Cadherin Regulates Intestinal Epithelial Cell Migration and Mucosal Repair, but Is Dispensable for Colitis Associated Colon Cancer. Cells 2022; 11:cells11091467. [PMID: 35563773 PMCID: PMC9100778 DOI: 10.3390/cells11091467] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/20/2022] [Accepted: 04/23/2022] [Indexed: 12/16/2022] Open
Abstract
Recurrent chronic mucosal inflammation, a characteristic of inflammatory bowel diseases (IBD), perturbs the intestinal epithelial homeostasis resulting in formation of mucosal wounds and, in most severe cases, leads to colitis-associated colon cancer (CAC). The altered structure of epithelial cell-cell adhesions is a hallmark of intestinal inflammation contributing to epithelial injury, repair, and tumorigenesis. P-cadherin is an important adhesion protein, poorly expressed in normal intestinal epithelial cells (IEC) but upregulated in inflamed and injured mucosa. The goal of this study was to investigate the roles of P-cadherin in regulating intestinal inflammation and CAC. P-cadherin expression was markedly induced in the colonic epithelium of human IBD patients and CAC tissues. The roles of P-cadherin were investigated in P-cadherin null mice using dextran sulfate sodium (DSS)-induced colitis and an azoxymethane (AOM)/DSS induced CAC. Although P-cadherin knockout did not affect the severity of acute DSS colitis, P-cadherin null mice exhibited faster recovery after colitis. No significant differences in the number of colonic tumors were observed in P-cadherin null and control mice. Consistently, the CRISPR/Cas9-mediated knockout of P-cadherin in human IEC accelerated epithelial wound healing without affecting cell proliferation. The accelerated migration of P-cadherin depleted IEC was driven by activation of Src kinases, Rac1 GTPase and myosin II motors and was accompanied by transcriptional reprogramming of the cells. Our findings highlight P-cadherin as a negative regulator of IEC motility in vitro and mucosal repair in vivo. In contrast, this protein is dispensable for IEC proliferation and CAC development.
Collapse
|