1
|
Li S, Hu W, Qian L, Sun D. Insights into non-coding RNAS: biogenesis, function and their potential regulatory roles in acute kidney disease and chronic kidney disease. Mol Cell Biochem 2025; 480:1287-1304. [PMID: 39110280 PMCID: PMC11842482 DOI: 10.1007/s11010-024-05083-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 07/29/2024] [Indexed: 01/03/2025]
Abstract
Noncoding RNAs (ncRNAs) have emerged as pivotal regulators of gene expression, and have attracted significant attention because of their various roles in biological processes. These molecules have transcriptional activity despite their inability to encode proteins. Moreover, research has revealed that ncRNAs, especially microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), are linked to pervasive regulators of kidney disease, including anti-inflammatory, antiapoptotic, antifibrotic, and proangiogenic actions in acute and chronic kidney disease. Although the exact therapeutic mechanism of ncRNAs remains uncertain, their value in treatment has been studied in clinical trials. The numerous renal diseases and the beneficial or harmful effects of NcRNAs on the kidney will be discussed in this article. Afterward, exploring the biological characteristics of ncRNAs, as well as their purpose and potential contributions to acute and chronic renal disease, were explored. This may offer guidance for treating both acute and long-term kidney illnesses, as well as insights into the potential use of these indicators as kidney disease biomarkers.
Collapse
Affiliation(s)
- Shulin Li
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Wanru Hu
- Central Laboratory, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Luoxiang Qian
- Central Laboratory, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Dong Sun
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
- Department of Internal Medicine and Diagnostics, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
2
|
Li F, Fu H, Zeng L, Liu P. CIRCVMA21-RELATED PATHWAY ALLEVIATES LIPOPOLYSACCHARIDE-INDUCED HK-2 CELL INJURY. Shock 2024; 62:119-126. [PMID: 38662613 DOI: 10.1097/shk.0000000000002364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
ABSTRACT Background : It is reported that circVMA21 has an inhibition effect on sepsis-induced acute kidney injury (AKI). Therefore, the underlying molecular mechanisms of circVMA21 in AKI are worthy of further investigation. Material and Methods : Lipopolysaccharide (LPS) was used to induce HK2 cell injury. CircVMA21, miR-337-3p and ZEB2 expression was tested by qRT-PCR. Cell growth was detected by CCK8 assay, EdU assay, and flow cytometry. Protein levels were examined by western blot. The levels of inflammatory factors and oxidative stress markers were measured to evaluate cell inflammatory response and oxidative stress. RNA relationship as verified by dual-luciferase reporter assay, RIP assay, and RNA pull-down assay. Results : CircVMA21 had decreased expression in AKI patients. Overexpressed circVMA21 alleviated LPS-induced HK2 cell inflammation, apoptosis, and oxidative stress. Moreover, circVMA21 sponged miR-337-3p, and miR-337-3p targeted ZEB2. The inhibitory effect of circVMA21 on LPS-induced HK2 cell injury was reversed by miR-337-3p overexpression, and ZEB2 overexpression abolished the promotion effect of miR-337-3p on LPS-induced HK2 cell injury. Conclusions : CircVMA21 could inhibit LPS-induced HK2 cell injury via miR-337-3p/ZEB2 axis.
Collapse
Affiliation(s)
- Fuzhu Li
- The First Affiliated Hospital, Department of Neurosurgical Intensive Care Unit, Hengyang Medical School, University of South China, Hengyang, China
| | - Hongyun Fu
- The First Affiliated Hospital, Department of Docimasiology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Linna Zeng
- Department of Endocrinology, The Third People's Hospital of Yongzhou City, Yongzhou City, China
| | - Pingping Liu
- The First Affiliated Hospital, Department of Emergency, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
3
|
Jin J, Yang YR, Gong Q, Wang JN, Ni WJ, Wen JG, Meng XM. Role of epigenetically regulated inflammation in renal diseases. Semin Cell Dev Biol 2024; 154:295-304. [PMID: 36328897 DOI: 10.1016/j.semcdb.2022.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/01/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022]
Abstract
In recent decades, renal disease research has witnessed remarkable advances. Experimental evidence in this field has highlighted the role of inflammation in kidney disease. Epigenetic dynamics and immunometabolic reprogramming underlie the alterations in cellular responses to intrinsic and extrinsic stimuli; these factors determine cell identity and cell fate decisions and represent current research hotspots. This review focuses on recent findings and emerging concepts in epigenetics and inflammatory regulation and their effect on renal diseases. This review aims to summarize the role and mechanisms of different epigenetic modifications in renal inflammation and injury and provide new avenues for future research on inflammation-related renal disease and drug development.
Collapse
Affiliation(s)
- Juan Jin
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Hefei 230032, China; School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Ya-Ru Yang
- Department of Clinical Pharmacology, Second Hospital of Anhui Medical University, Hefei, China
| | - Qian Gong
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Jia-Nan Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Hefei 230032, China
| | - Wei-Jian Ni
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Hefei 230032, China
| | - Jia-Gen Wen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Hefei 230032, China.
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Hefei 230032, China.
| |
Collapse
|
4
|
So BYF, Yap DYH, Chan TM. Circular RNAs in Acute Kidney Injury: Roles in Pathophysiology and Implications for Clinical Management. Int J Mol Sci 2022; 23:ijms23158509. [PMID: 35955644 PMCID: PMC9369393 DOI: 10.3390/ijms23158509] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 02/05/2023] Open
Abstract
Acute kidney injury (AKI) is a common clinical condition, results in patient morbidity and mortality, and incurs considerable health care costs. Sepsis, ischaemia-reperfusion injury (IRI) and drug nephrotoxicity are the leading causes. Mounting evidence suggests that perturbations in circular RNAs (circRNAs) are observed in AKI of various aetiologies, and have pathogenic significance. Aberrant circRNA expressions can cause altered intracellular signalling, exaggerated oxidative stress, increased cellular apoptosis, excess inflammation, and tissue injury in AKI due to sepsis or IRI. While circRNAs are dysregulated in drug-induced AKI, their roles in pathogenesis are less well-characterised. CircRNAs also show potential for clinical application in diagnosis, prognostication, monitoring, and treatment. Prospective observational studies are needed to investigate the role of circRNAs in the clinical management of AKI, with special focus on the safety of therapeutic interventions targeting circRNAs and the avoidance of untoward off-target effects.
Collapse
|
5
|
Huang Y, Zheng G. Circ_UBE2D2 Attenuates the Progression of Septic Acute Kidney Injury in Rats by Targeting miR-370-3p/NR4A3 Axis. J Microbiol Biotechnol 2022; 32:740-748. [PMID: 35722711 PMCID: PMC9628902 DOI: 10.4014/jmb.2112.12038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/27/2022] [Accepted: 05/09/2022] [Indexed: 12/15/2022]
Abstract
As circ_UBE2D2 has been confirmed to have targeted binding sites with multiple miRNAs involved in septic acute kidney injury (SAKI), efforts in this study are directed to unveiling the specific role and relevant mechanism of circ_UBE2D2 in SAKI. HK-2 cells were treated with lipopolysaccharide (LPS) to construct SAKI model in vitro. After sh-circ_UBE2D2 was transfected into cells, the transfection efficiency was detected by qRT-PCR, cell viability and apoptosis were determined by MTT assay and flow cytometry, and expressions of Bcl-2, Bax and Cleaved-caspase 3 were quantified by western blot. Target genes associated with circ_UBE2D2 were predicted using bioinformatics analysis. After the establishment of SAKI rat model, HE staining and TUNEL staining were exploited to observe the effect of circ_UBE2D2 on tissue damage and cell apoptosis. The expression of circ_UBE2D2 was overtly elevated in LPS-induced HK-2 cells. Sh-circ_UBE2D2 can offset the inhibition of cell viability and the promotion of cell apoptosis induced by LPS. Circ_UBE2D2 and miR-370-3p as well as miR-370-3p and NR4A3 have targeted binding sites. MiR-370-3p inhibitor reversed the promoting effect of circ_UB2D2 silencing on viability of LPS-treated cells, but shNR4A3 neutralized the above inhibitory effect of miR-370-3p inhibitor. MiR-370-3p inhibitor weakened the down-regulation of NR4A3, Bax and Cleaved caspase-3 and the up-regulation of Bcl-2 induced by circ_UB2D2 silencing, but these trends were reversed by shNR4A3. In addition, sh-circ_UBE2D2 could alleviate the damage of rat kidney tissue. Circ_UBE2D2 mitigates the progression of SAKI in rats by targeting miR-370-3p/NR4A3 axis.
Collapse
Affiliation(s)
- Yanghui Huang
- Emergency Medicine Department, Clinical Medical College and Affiliated Hospital of Chengdu University, Sichuan Province, 610081, P.R. China,Corresponding author E-mail:
| | - Guangyu Zheng
- Emergency Medicine Department, The First People’s Hospital of Yibin, Yibin City, Sichuan Province 644000, P.R. China
| |
Collapse
|
6
|
Gao Q, Zheng Y, Wang H, Hou L, Hu X. circSTRN3 aggravates sepsis-induced acute kidney injury by regulating miR-578/ toll like receptor 4 axis. Bioengineered 2022; 13:11388-11401. [PMID: 35510365 PMCID: PMC9275965 DOI: 10.1080/21655979.2022.2061293] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 12/02/2022] Open
Abstract
Sepsis is a systemic inflammatory response caused by infection, and severe sepsis is commonly associated with the development of acute kidney injury (AKI). Accumulating evidence has revealed the implication of circular RNAs in AKI. In this study, we explored the potential engagement and the underlying mechanism of hsa_circ_010157 (circSTRN3) in sepsis-induced AKI. CircSTRN3 levels in HK2 cells and serum samples of patients were determined by RT-PCR. The protein levels of TLR4 (Toll Like Receptor 4), bax (Bcl-2-associated X protein), cleaved caspase 3 and bcl-2 (B-cell lymphoma-2) were detected by Western blotting (WB), and the levels of proinflammatory cytokines were detected by ELISA. The molecular interactions between mir-578/TLR4 and circSTRN3/miR-578 were analyzed by dual luciferase reporter assay as well as RNA pull-down experiment. Lipopolysaccharide (LPS) treated HK2 cells were used as an in vitro model to investigate the functional interaction of circSTRN3/miR-578/TLR4 axis. We found that the expression level of circSTRN3 in patients with sepsis-induced AKI and LPS-induced HK2 cells was higher. Silencing cicrSTRN3 alleviated LPS-induced cell proliferation, and suppressed the inflammatory response and apoptosis in LPS-treated HK2 cells. In contrast, the overexpression of circSTRN3 aggravated the cellular damages induced by LPS treatment. CircSTRN3 targeted miR-578/TLR4 axis to influence the damage effect induced by LPS. miR-578 inhibitor or TLR4 overexpression impaired the rescue effect of circSTRN3 knockdown. These results indicate that circSTRN3 upregulation in sepsis-induced AKI modulates miR-578/TLR4 axis to promote the pathogenesis of AKI, which could serve as future therapeutic targets for AKI treatment.
Collapse
Affiliation(s)
- Qiuying Gao
- Department of Hematology, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, China
| | - Yan Zheng
- Department of Hematology, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, China
| | - Hui Wang
- Department of Hematology, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, China
| | - Limin Hou
- Department of Hematology, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, China
| | - Xingxing Hu
- Department of Hematology, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, China
| |
Collapse
|
7
|
Chen Y, Jing H, Tang S, Liu P, Cheng Y, Fan Y, Chen H, Zhou J. Non-Coding RNAs in Sepsis-Associated Acute Kidney Injury. Front Physiol 2022; 13:830924. [PMID: 35464083 PMCID: PMC9024145 DOI: 10.3389/fphys.2022.830924] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/08/2022] [Indexed: 11/21/2022] Open
Abstract
Sepsis is a systemic inflammatory response caused by a severe infection that leads to multiple organ damage, including acute kidney injury (AKI). In intensive care units (ICU), the morbidity and mortality associated with sepsis-associated AKI (SA-AKI) are gradually increasing due to lack of effective and early detection, as well as proper treatment. Non-coding RNAs (ncRNAs) exert a regulatory function in gene transcription, RNA processing, post-transcriptional translation, and epigenetic regulation of gene expression. Evidence indicated that miRNAs are involved in inflammation and programmed cell death during the development of sepsis-associated AKI (SA-AKI). Moreover, lncRNAs and circRNAs appear to be an essential regulatory mechanism in SA-AKI. In this review, we summarized the molecular mechanism of ncRNAs in SA-AKI and discussed their potential in clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Yanna Chen
- Department of Anesthesiology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Huan Jing
- Department of Anesthesiology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Simin Tang
- Department of Anesthesiology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Pei Liu
- Department of Anesthesiology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Ye Cheng
- Department of Anesthesiology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Youling Fan
- Department of Anesthesiology, The First People’s Hospital of Kashgar, Xinjiang, China
- Department of Anesthesiology, The Second People’s Hospital of Panyu, Guangzhou, China
| | - Hongtao Chen
- Department of Anesthesiology, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jun Zhou
- Department of Anesthesiology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Jun Zhou,
| |
Collapse
|
8
|
Li T, Liu JY, Liu JF, Duan M, Li A. The Correlation Between the Types of Initial Bacterial Infection and Clinical Prognosis in Patients With Septic AKI. Front Med (Lausanne) 2022; 8:800532. [PMID: 35155478 PMCID: PMC8828919 DOI: 10.3389/fmed.2021.800532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 12/24/2021] [Indexed: 12/29/2022] Open
Abstract
Background Acute kidney injury (AKI) is a common complication of sepsis and is an independent risk factor for mortality. It is unclear whether different bacteria play different roles in the occurrence and development of sepsis-associated AKI (S-AKI). We observed the clinical characteristics and outcomes of patients that have types of bacterial infection, and different infections sites before the occurrence of AKI, respectively. Methods Data of patients who were diagnosed with sepsis and later developed AKI from 2008 to 2019 were retrieved from the MIMIC-IV 1.0 database. Patients were first divided into the two groups according to the bacterial culture results obtained prior to AKI occurrence: bacterial cultured positive (N = 1,785) and bacterial cultured negative (N = 8,777). Patients with bacteria culture positive were divided into culture bacteria Gram-positive (CGP, N = 1248) and Gram-negative (CGN, N = 537) groups. Results Overall, 1,785 patients were included in the present analysis. The patients in CGN group were older (70 vs. 66, p < 0.001), had lower body mass index (BMI) (27.0 vs. 28.4, p < 0.001), higher acute physiology III (APS III) score (63.0 vs. 58, p = 0.001), shorter time from positive microbial culture to diagnosis of AKI (2.94 vs. 3.16 days, p = 0.013) and longer intensive care unit (ICU) stay time (5.94 vs. 4.77 days, p < 0.001) compared with those in the CGP group (n = 1,248). In the culture gram-negative bacteria in patients with positive blood cultures (CGNb) group, the rate of vasopressors using (73.1 vs. 56.4%, P = 0.007), the Sequential Organ Failure Assessment (SOFA) score (10 vs. 9, p = 0.005), and the level of lactate (3.7 vs. 2.5, p = 0.001) were higher than those in the culture gram-positive bacteria in patients with positive blood cultures (CGPb) group. The time from positive microbial culture to the diagnosis of AKI was shorter (2.23 vs. 3 days, p = 0.001) in the CGNb group. However, there was no significant difference in the continuous renal replacement treatment (CRRT) application or short-term mortality rates between CGN and CGP groups. Conclusion The Gram types of bacteria cultured prior to S-AKI occurrence was not related to AKI stage, CRRT application, and short-term mortality. Compared with the Gram-positive bacterial infections, Gram-negative bacterial infections take a shorter time to develop into AKI, and had a higher disease severity score.
Collapse
Affiliation(s)
- Tian Li
- Department of Critical Care Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Jing yuan Liu
- Department of Critical Care Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Jing feng Liu
- Department of Critical Care Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Meili Duan
- Department of Critical Care Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- *Correspondence: Meili Duan
| | - Ang Li
- Department of Critical Care Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Ang Li
| |
Collapse
|
9
|
Duan J, Cai H, Huang Y, Shi L. SNAI2-Induced CircMTO1 Promotes Cell Proliferation and Inhibits Apoptosis Through the miR-320b/MCL1 Axis in Human Granulosa-Like Tumor Cells. Front Genet 2021; 12:689916. [PMID: 34413875 PMCID: PMC8369758 DOI: 10.3389/fgene.2021.689916] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/12/2021] [Indexed: 11/29/2022] Open
Abstract
Polycystic ovary syndrome (PCOS), one of the most common types of endocrine diseases, is characterized by a high prevalence among women of reproductive-age. However, its pathogenesis and molecular mechanisms remain unclear. CircMTO1 has been reported to participate in numerous biological processes, but, its role in PCOS progression remains unknown. In the current study, we elucidated the expression and circRNA characterization of circMTO1 in human granulosa-like tumor cells. We found that circMTO1 knockdown promoted human granulosa-like tumor cell proliferation and inhibited its apoptosis rate. Next, we explored the underlying molecular mechanisms by using a series of experiments. Our results revealed the effect of the novel circMTO1/miR-320b/MCL1 axis in human granulosa-like tumor cells. Furthermore, we found that the expression of circMTO1 was induced by Snail family transcriptional repressor 2 (SNAI2) in human granulosa-like tumor cells. Our results may provide potential targets for PCOS research and a novel direction for the diagnosis and treatment of PCOS.
Collapse
Affiliation(s)
- Jie Duan
- Department of Gynecology, Maternal and Child Health Hospital of Hubei Province, Wuhan, China.,Department of Gynecology, Women and Children's Hospital of Hubei Province, Wuhan, China
| | - Hongning Cai
- Department of Gynecology II, Maternal and Child Health Hospital of Hubei Province, Wuhan, China.,Department of Gynecology II, Women and Children's Hospital of Hubei Province, Wuhan, China
| | - Yanming Huang
- Department of Gynecology, Maternal and Child Health Hospital of Hubei Province, Wuhan, China.,Department of Gynecology, Women and Children's Hospital of Hubei Province, Wuhan, China
| | - Liangyan Shi
- Department of Gynecology, Maternal and Child Health Hospital of Hubei Province, Wuhan, China.,Department of Gynecology, Women and Children's Hospital of Hubei Province, Wuhan, China
| |
Collapse
|
10
|
Liu W, Xiong Y, Wan R, Shan R, Li J, Wen W. The Roles of circMTO1 in Cancer. Front Cell Dev Biol 2021; 9:656258. [PMID: 34277605 PMCID: PMC8277961 DOI: 10.3389/fcell.2021.656258] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/07/2021] [Indexed: 01/06/2023] Open
Abstract
Circular RNAs (circRNAs) are a recently discovered type of covalently-closed circular non-coding RNAs, mainly formed by non-sequential back-splicing of precursor mRNAs (pre-mRNAs). Recent studies have demonstrated that circRNAs can have either oncogenic or tumor-suppressor roles depending on the cellular context. CircRNA mitochondrial tRNA translation optimization 1 (circMTO1), a recently reported circular RNA originating from exons of MTO1 located on chromosome 6q13, was proved to be abnormally expressed in many malignant tumors, such as hepatocellular carcinoma, gastric carcinoma and colorectal cancer, resulting in tumor initiation and progression. However, there are no reviews focusing on the roles of circMTO1 in cancer. Here, we first summarize the main biological characteristics of circMTO1, and then focus on its biological functions and the possible underlying molecular mechanisms. Finally, we summarize the roles of circMTO1 in cancer and discuss future prospects in this area of research.
Collapse
Affiliation(s)
- Wei Liu
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yuanyuan Xiong
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Renhua Wan
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Renfeng Shan
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jianfeng Li
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wu Wen
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
11
|
Wang P, Zhou C, Li D, Zhang D, Wei L, Deng Y. circMTO1 sponges microRNA-219a-5p to enhance gallbladder cancer progression via the TGF-β/Smad and EGFR pathways. Oncol Lett 2021; 22:563. [PMID: 34113391 PMCID: PMC8185704 DOI: 10.3892/ol.2021.12824] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/28/2021] [Indexed: 01/17/2023] Open
Abstract
Circular mitochondrial translation optimization 1 homologue (circMTO1) has been reported to regulate the tumorigenesis of different types of cancer; however, the role of circMTO1 in gallbladder cancer (GBC) remains unknown. The present study aimed to identify the potential miRNAs and target genes of circMTO1 during GBC progression, and clarify the regulatory mechanism between circMTO1 and miRNAs or target genes. The present study performed MTT and Transwell assays, and Annexin V staining to assess cell viability, migration and apoptosis, respectively. In addition, a lymphatic vessel formation assay was performed to assess tube formation of human dermal lymphatic endothelial cells (HDLECs), and GBC-SD and NOZ cells. The results demonstrated that circMTO1 knockdown significantly attenuated the viability and migration of GBC cells and tube formation of HDLECs, and promoted apoptosis, indicating a tumor-promoting role of circMTO1. In addition, transfection with microRNA (miRNA/miR)-219a-5p inhibitor rescued short hairpin RNA-circMTO1-inhibited tumorigenesis of GBC cells, suggesting that miR-219a-5p acts as a downstream effector for circMTO1. Mechanistically, transfection with miR-219a-5p mimic suppressed the expression levels of Smad2/4 and epidermal growth factor receptor. Analysis of The Cancer Genome Atlas datasets revealed that circMTO1 expression was associated with overall survival and the stage of patients with GBC. Taken together, the results of the present study provide novel insight for the role of circMTO1-induced GBC tumorigenesis via regulation of miR-219a-5p expression.
Collapse
Affiliation(s)
- Pingfan Wang
- Department of Pathology, Lanzhou No. 2 People's Hospital, Lanzhou, Gansu 730046, P.R. China
| | - Chenggang Zhou
- Department of Hepatobiliary and Pancreatic Surgery, Lanzhou No. 2 People's Hospital, Lanzhou, Gansu 730046, P.R. China
| | - Donghai Li
- Department of Pathology, Lanzhou No. 1 People's Hospital, Lanzhou, Gansu 730050, P.R. China
| | - Dongsheng Zhang
- Department of Pathology, Lanzhou No. 2 People's Hospital, Lanzhou, Gansu 730046, P.R. China
| | - Long Wei
- Department of Pathology, Lanzhou No. 2 People's Hospital, Lanzhou, Gansu 730046, P.R. China
| | - Ying Deng
- Department of Hepatobiliary Surgery, Lanzhou No. 2 People's Hospital, Lanzhou, Gansu 730046, P.R. China
| |
Collapse
|