1
|
Hsu CY, Bediwi AK, Zwamel AH, Uthirapathy S, Ballal S, Singh A, Sharma GC, Devi A, Almalki SG, Kadhim IM. circRNA/TLR interaction: key players in immune regulation and autoimmune diseases. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04221-9. [PMID: 40328911 DOI: 10.1007/s00210-025-04221-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 04/23/2025] [Indexed: 05/08/2025]
Abstract
Circular RNAs are a class of non-coding RNAs with covalently closed loops. They have been revealed to regulate immune responses by affecting gene expression. Although initially considered splicing byproducts, new studies have indicated their role in transcriptional and post-transcriptional control, especially with TLRs. TLRs start inflammatory signaling and let the innate immune system recognize PAMPs. circRNAs interact context-dependently with TLR pathways to influence immune homeostasis and inflammation in either pathogenic or protective roles. In autoimmune diseases, dysregulated circRNA expression can aggravate immune responses and damage tissue. CircRNAs can interact with RNA-binding proteins, function as molecular sponges for miRNAs, and change inflammatory pathways like the NF-κB signaling cascade, influencing immune responses. They control adaptive immunity, function of antigen-presenting cells, and cytokine generation. The stability and presence of circRNAs in many body fluids make them therapeutic targets and biomarkers for inflammatory and autoimmune diseases. The several immune control roles of circRNA-TLR interactions are discussed in this review, as well as their consequences for immunologically mediated disease diagnosis and treatment.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, AZ, 85004, USA
| | - Alaa Khalaf Bediwi
- Medical Laboratory Techniques Department, College of Health and Medical Technology, University of Al-Maarif, Anbar, Iraq.
| | - Ahmed Hussein Zwamel
- Department of Medical Analysis, Medical Laboratory Technique College, the Islamic University, Najaf, Iraq.
- Department of Medical Analysis, Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq.
- Department of Medical Analysis, Medical Laboratory Technique College, the Islamic University of Babylon, Babylon, Iraq.
| | - Subasini Uthirapathy
- Pharmacy Department, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Abhayveer Singh
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - Girish Chandra Sharma
- Department of Applied Sciences-Chemistry, NIMS Institute of Engineering & Technology, NIMS University Rajasthan, Jaipur, India
| | - Anita Devi
- Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali, 140307, Punjab, India
| | - Sami G Almalki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, 11952, Majmaah, Saudi Arabia
| | - Issa Mohammed Kadhim
- Department of Medical Laboratories Technology, Al-Nisour University College, Nisour Seq. Karkh, Baghdad, Iraq
| |
Collapse
|
2
|
Chwastek J, Kędziora M, Borczyk M, Korostyński M, Piscitelli F, Di Marzo V, Starowicz K. The emerging role of endocannabinoid system modulation in human fibroblast-like synoviocytes: Exploring new biomarkers and potential therapeutic targets. Biomed Pharmacother 2025; 186:118040. [PMID: 40215649 DOI: 10.1016/j.biopha.2025.118040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/28/2025] [Accepted: 04/03/2025] [Indexed: 04/25/2025] Open
Abstract
Human fibroblast-like synoviocytes (HFLS) are the predominant cellular component of the joint synovium. Their inflammation, known as synovitis, may contribute to the development of osteoarthritis (OA). HFLS secrete signaling factors that regulate joint function in response to mechanical trauma or OA progression. Among these factors, prostaglandin E2 (PGE2) is a key pro-inflammatory mediator, whereas prostamides, such as prostamide E2 (PME2), are synthesized from anandamide (AEA) by the same enzymes that produce PGE2. HFLS were isolated from both control subjects and OA patients (HFLS-OA) and stimulated with lipopolysaccharide (LPS, 10 ng/mL). Liquid chromatography-tandem mass spectrometry (LC-MS) was used to analyze PGE2 and PME2 secretion. Additionally, transcriptome and miRNA sequencing were conducted to identify changes in gene expression between HFLS and HFLS-OA cells. Five endocannabinoid-related genes were further validated by qPCR. Baseline PGE2 secretion differed between HFLS and HFLS-OA, with OA-related cells showing increased levels, while control cells primarily produced PME2. Upon pro-inflammatory stimulation, both cell types secreted PGE2. Changes in endocannabinoid levels and expression of endocannabinoid-related genes were observed in HFLS-OA following stimulation. miRNA sequencing revealed significant differences in miRNA expression between HFLS and HFLS-OA. Notably, HFLS-OA exhibited upregulation of Diacylglycerol lipase B (DAGLB) and downregulation of Fatty Acid-Binding Protein 4 and 5 (FABP4 and FABP5) gene expression compared to controls. The study suggests a reorganization of the endocannabinoid system in HFLS from OA patients, leading to altered cellular responses to pro-inflammatory stimuli. The molecular changes observed may drive or regulate the inflammatory response in OA synoviocytes, highlighting potential therapeutic targets. These findings provide insights into the potential mechanisms underlying OA pathogenesis and support the hypothesis of altered endocannabinoid system reactivity in HFLS in the context of inflammation.
Collapse
Affiliation(s)
- Jakub Chwastek
- Department of Neurochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Cracow, Poland; Neuroplasticity and Metabolism Research Group, Łukasiewicz Research Network - PORT Polish Center for Technology Development, Wrocław, Poland
| | - Marta Kędziora
- Department of Neurochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Cracow, Poland
| | - Małgorzata Borczyk
- Laboratory of Pharmacogenomics, Department of Molecular Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Cracow, Poland
| | - Michał Korostyński
- Laboratory of Pharmacogenomics, Department of Molecular Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Cracow, Poland
| | - Fabiana Piscitelli
- Institute of Biomolecular Chemistry, National Research Council of Italy, Via Campi Flegrei 34, Pozzuoli, NA 80078, Italy
| | - Vincenzo Di Marzo
- Institute of Biomolecular Chemistry, National Research Council of Italy, Via Campi Flegrei 34, Pozzuoli, NA 80078, Italy; Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, CRIUCPQ and INAF, Centre NUTRISS, Faculties of Medicine and Agriculture and Food Sciences, Université Laval, Québec City, Canada
| | - Katarzyna Starowicz
- Department of Neurochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Cracow, Poland.
| |
Collapse
|
3
|
Simonovic M, Misic D, Kozomara R, Petkovic Curcin A, Jovic S, Brkic M, Pandzic D, Stosic S, Supic G. Potential impact of micro-196a2 and Toll-like receptor 2 gene polymorphisms on oral cancer prognosis and susceptibility. Arch Oral Biol 2025; 175:106271. [PMID: 40252477 DOI: 10.1016/j.archoralbio.2025.106271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/20/2025] [Accepted: 04/12/2025] [Indexed: 04/21/2025]
Abstract
OBJECTIVE Despite advances in diagnosis and treatment in recent years, oral squamous cell carcinoma (OSCC) is still associated with a high recurrence rate and poor survival. MiR-196a2 and TLR2 have been implicated in cancer progression and prognosis, but the significance of their genetic variants in OSCC remains unelucidated. DESIGN This study investigated the miR-196a2 rs11614913 and TLR2 rs5743708 genetic variants in Caucasian HPV-negative OSCC patients (n = 95) and age- and sex-matched healthy controls (n = 108) using real-time PCR. An assessment was conducted on their association with clinicopathological features, overall survival (OS), recurrence-free survival (RFS) and OSCC risk. RESULTS OSCC patients carrying the miR-196a2 rs11614913 TT genotype had a higher risk of tumor recurrence (P = 0.045) and shorter RFS (P = 0.041). The proportional hazards assumption was violated for tumor stage. Stage-stratified Kaplan-Meier analysis showed that miR-196a2 rs11614913 genotypes and combined CC+CT vs. TT variants significantly affected RFS in stage I/II OSCC patients (P = 0.012 and P = 0.003, respectively), but not in advanced stage III/IV patients (P = 0.545 and P = 0.287, respectively). Cox regression confirmed miR-196a2 rs11614913 as an independent predictor of RFS in early stage (HR=3.407, P = 0.015), but not in advance stage patients (HR=1.090, P = 0.711). No significant associations with OS were found. Additionally, the TLR2 rs5743708 variant allele A was significantly associated with a lower risk of OSCC (Adjusted OR=0.406, P = 0.013). CONCLUSIONS These findings suggest that miR-196a2 rs11614913 could play a stage-dependent role in RFS, influencing early-stage OSCC but losing prognostic significance in advanced disease. Additionally, TLR2 rs5743708 may contribute to the decreased OSCC risk.
Collapse
Affiliation(s)
- Marko Simonovic
- Institute for Epidemiology, Military Medical Academy, Crnotravska 17, Belgrade 11000, Serbia
| | - Debora Misic
- Institute for Medical Research, Military Medical Academy, Crnotravska 17, Belgrade 11000, Serbia
| | - Ruzica Kozomara
- Clinic for Maxillofacial Surgery, Military Medical Academy, Crnotravska 17, Belgrade 11000, Serbia; Medical Faculty of Military Medical Academy, University of Defense, Belgrade 11000, Serbia
| | - Aleksandra Petkovic Curcin
- Institute for Medical Research, Military Medical Academy, Crnotravska 17, Belgrade 11000, Serbia; Medical Faculty of Military Medical Academy, University of Defense, Belgrade 11000, Serbia
| | - Sasa Jovic
- Clinic for Maxillofacial Surgery, Military Medical Academy, Crnotravska 17, Belgrade 11000, Serbia; Medical Faculty of Military Medical Academy, University of Defense, Belgrade 11000, Serbia
| | - Marko Brkic
- Clinic for Maxillofacial Surgery, Military Medical Academy, Crnotravska 17, Belgrade 11000, Serbia
| | - Dragan Pandzic
- Department for Maxillofacial Surgery, University Clinical Center of the Republika Srpska, Banja Luka, Bosnia and Herzegovina
| | - Srboljub Stosic
- Clinic for Maxillofacial Surgery, Military Medical Academy, Crnotravska 17, Belgrade 11000, Serbia; Medical Faculty of Military Medical Academy, University of Defense, Belgrade 11000, Serbia
| | - Gordana Supic
- Institute for Medical Research, Military Medical Academy, Crnotravska 17, Belgrade 11000, Serbia; Medical Faculty of Military Medical Academy, University of Defense, Belgrade 11000, Serbia.
| |
Collapse
|
4
|
Hu K, Wen H, Song T, Che Z, Song Y, Song M. Deciphering the Role of LncRNAs in Osteoarthritis: Inflammatory Pathways Unveiled. J Inflamm Res 2024; 17:6563-6581. [PMID: 39318993 PMCID: PMC11421445 DOI: 10.2147/jir.s489682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024] Open
Abstract
Long non-coding RNA (LncRNA), with transcripts over 200 nucleotides in length, play critical roles in numerous biological functions and have emerged as significant players in the pathogenesis of osteoarthritis (OA), an inflammatory condition traditionally viewed as a degenerative joint disease. This review comprehensively examines the influence of LncRNA on the inflammatory processes driving OA progression, focusing on their role in regulating gene expression, cellular activities, and inflammatory pathways. Notably, LncRNAs such as MALAT1, H19, and HOTAIR are upregulated in OA and exacerbate the inflammatory milieu by modulating key signaling pathways like NF-κB, TGF-β/SMAD, and Wnt/β-catenin. Conversely, LncRNA like MEG3 and GAS5, which are downregulated in OA, show potential in dampening inflammatory responses and protecting against cartilage degradation by influencing miRNA interactions and cytokine production. By enhancing our understanding of LncRNA' roles in OA inflammation, we can better leverage them as potential biomarkers for the disease and develop innovative therapeutic strategies for OA management. This paper aims to delineate the mechanisms by which LncRNA influence inflammatory responses in OA and propose them as novel targets for therapeutic intervention.
Collapse
Affiliation(s)
- Kangyi Hu
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| | - Haonan Wen
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| | - Ting Song
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| | - Zhixin Che
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| | - Yongjia Song
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| | - Min Song
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| |
Collapse
|
5
|
He X, Huang T, Wang Q, Bao L, Wang Z, Song H, Li Y, Zhou J, Zhao Y, Xie Y. A prominent role of LncRNA H19 in H. pylori CagA induced DNA damage response and cell malignancy. Sci Rep 2024; 14:14185. [PMID: 38902391 PMCID: PMC11190245 DOI: 10.1038/s41598-024-65221-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/18/2024] [Indexed: 06/22/2024] Open
Abstract
Helicobacter pylori (H. pylori), together with its CagA, has been implicated in causing DNA damage, cell cycle arrest, apoptosis, and the development of gastric cancer. Although lncRNA H19 is abundantly expressed in gastric cancer and functions as a pro-oncogene, it remains unclear whether lncRNA H19 contributes to the oncogenic process of H. pylori CagA. This study investigates the role of H19 in the DNA damage response and malignancy induced by H. pylori. It was observed that cells infected with CagA+ H. pylori strain (GZ7/cagA) showed significantly higher H19 expression, resulting in increased γH2A.X and p-ATM expression and decreased p53 and Rad51 expression. Faster cell migration and invasion was also observed, which was reversed by H19 knockdown in H. pylori. YWHAZ was identified as an H19 target protein, and its expression was increased in H19 knockdown cells. GZ7/cagA infection responded to the increased YWHAZ expression induced by H19 knockdown. In addition, H19 knockdown stimulated cells to enter the G2-phase and attenuated the effect of GZ7/cagA infection on the cellular S-phase barrier. The results suggest that H. pylori CagA can upregulate H19 expression, participate in the DNA damage response and promote cell migration and invasion, and possibly affect cell cycle arrest via regulation of YWHAZ.
Collapse
Affiliation(s)
- Xiaofeng He
- Key Laboratory of Endemic and Ethnic Minority Diseases, Ministry of Education and Key Laboratory of Molecular Biology, Guizhou Medical University, 4 Beijing Road, Guiyang, 550004, Guizhou, People's Republic of China
- Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, 563003, Guizhou, People's Republic of China
| | - Tingting Huang
- Key Laboratory of Endemic and Ethnic Minority Diseases, Ministry of Education and Key Laboratory of Molecular Biology, Guizhou Medical University, 4 Beijing Road, Guiyang, 550004, Guizhou, People's Republic of China
| | - Qinrong Wang
- Key Laboratory of Endemic and Ethnic Minority Diseases, Ministry of Education and Key Laboratory of Molecular Biology, Guizhou Medical University, 4 Beijing Road, Guiyang, 550004, Guizhou, People's Republic of China
| | - Liya Bao
- Hepatitis Laboratory, Department of Infectious Diseases, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, People's Republic of China
| | - Zhengrong Wang
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, Guizhou, People's Republic of China
| | - Hui Song
- Key Laboratory of Endemic and Ethnic Minority Diseases, Ministry of Education and Key Laboratory of Molecular Biology, Guizhou Medical University, 4 Beijing Road, Guiyang, 550004, Guizhou, People's Republic of China
| | - Yanhong Li
- Key Laboratory of Endemic and Ethnic Minority Diseases, Ministry of Education and Key Laboratory of Molecular Biology, Guizhou Medical University, 4 Beijing Road, Guiyang, 550004, Guizhou, People's Republic of China
| | - Jianjiang Zhou
- Key Laboratory of Endemic and Ethnic Minority Diseases, Ministry of Education and Key Laboratory of Molecular Biology, Guizhou Medical University, 4 Beijing Road, Guiyang, 550004, Guizhou, People's Republic of China.
| | - Yan Zhao
- Key Laboratory of Endemic and Ethnic Minority Diseases, Ministry of Education and Key Laboratory of Molecular Biology, Guizhou Medical University, 4 Beijing Road, Guiyang, 550004, Guizhou, People's Republic of China.
| | - Yuan Xie
- Key Laboratory of Endemic and Ethnic Minority Diseases, Ministry of Education and Key Laboratory of Molecular Biology, Guizhou Medical University, 4 Beijing Road, Guiyang, 550004, Guizhou, People's Republic of China.
| |
Collapse
|
6
|
Chen Y, Yi S, Wang Q, Xiong H, Yuan J, Zhang Y, Yang L, Zhong G, Li X, Zhu T. Lutein attenuates Propionibacterium acnes-induced inflammation by inhibiting pyroptosis of human keratinocyte cells via TLR4/NLRP3/Caspase-1 pathway. Int Immunopharmacol 2023; 117:109937. [PMID: 37012890 DOI: 10.1016/j.intimp.2023.109937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 02/22/2023] [Indexed: 03/11/2023]
Abstract
BACKGROUND Previous studies found Propionibacterium acnes (P. acnes) has a strong association with acne inflammation and cell pyroptosis. Because of the various side effects of current acne medicines, it is important to explore alternative drugs with anti-inflammatory activity against P. acnes. we explored the effect of Lutein on P. acnes-induced cell pyroptosis and accelerated the recovery of acne inflammation in vitro and vivo. METHODS Lutein was utilized to expose HaCaT keratinocytes, then we reassessed the effect of Lutein on the cell apoptosis, pyroptotic-associated inflammatory factors and catabolic enzymes in heat-killed P. acnes-treated HaCaT cells. Next, living P. acnes was intradermally injected into the right ears of ICR mice to induce mice with acne inflammation, and the effect of Lutein on living P. acnes-induced inflammation was investigated. Moreover, we explored the mechanism of Lutein on TLR4/NLRP3/Caspase-1 pathways by ELISA, immunofluorescence microscopy, and western blot assay. RESULTS Heat-killed P. acnes triggered remarkable cell pyroptosis, pyroptotic inflammatory factors and catabolic enzymes in HaCaT cells, including up-regulating interleukin (IL)-1β, IL-18, TNF-α, MMP3, MMP13, ADAMTS4, and ADAMTS5, TLR4, NLRP3, caspase-1, and the ratio of gasdermin D to cleaved gasdermin D, whereas these effects were suppressed by Lutein. In addition, Lutein effectively improved ear redness, swelling, and the expression of TLR4, IL-1β and TNF-α in vivo. Finally, NLRP3 activator (nigericin) increased caspase-1, IL-1β and IL-18 level, while TLR4 inhibitor (TAK-242) significantly blocked this effect in heat-killed P. acnes-treated cells. CONCLUSIONS Lutein attenuated P. acnes-caused pyroptosis of HaCaTs and the subsequent acne inflammation via the TLR4/NLRP3/Caspase-1 pathway.
Collapse
Affiliation(s)
- Yan Chen
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Sha Yi
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Qing Wang
- Department of Dermatology, Dazhou Central Hospital, Dazhou 635000, China
| | - Haojun Xiong
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Jingyi Yuan
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Yuting Zhang
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Lin Yang
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Guishu Zhong
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Xiang Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, China.
| | - Tingting Zhu
- Department of Dermatology, The first affiliated hospital of Soochow University, No.188, Shizi Street, Suzhou 215006, China.
| |
Collapse
|
7
|
Stefik D, Vranic V, Ivkovic N, Velikic G, Maric DM, Abazovic D, Vojvodic D, Maric DL, Supic G. Potential Impact of Polymorphisms in Toll-like Receptors 2, 3, 4, 7, 9, miR-146a, miR-155, and miR-196a Genes on Osteoarthritis Susceptibility. BIOLOGY 2023; 12:biology12030458. [PMID: 36979150 PMCID: PMC10045117 DOI: 10.3390/biology12030458] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/18/2023]
Abstract
Osteoarthritis (OA) is a progressive inflammatory disease of synovial joints and a leading cause of disability among adults. Inflammation-related genes, including genes for Toll-like receptors (TLRs), are tightly controlled by several microRNAs that, in addition to their pivotal role in the epigenetic regulation of target genes, are ligands for TLR activation and downstream signaling. Thus, we evaluated the association between OA risk and genetic variants in TLR2, TLR3, TLR4, TLR7, TLR9, and microRNAs that regulate TLRs signaling miR146a, miR155, and miR196a2. Our study group consisted of 95 surgically treated OA patients and a control group of 104 healthy individuals. Genetic polymorphisms were determined using TaqMan real-time PCR assays (Applied Biosystems). Adjusted logistic regression analysis demonstrated that polymorphisms in TLR4 rs4986790 (OR = 2.964, p = 0.006), TLR4 rs4986791 (OR = 8.766, p = 0.00001), and TLR7 rs385389 (OR = 1.579, p = 0.012) increased OA risk, while miR-196a2 rs11614913 (OR = 0.619, p = 0.034) was significantly associated with decreased OA risk. Our findings indicate that polymorphisms in the TLR4 and TLR7 genes might increase OA risk and suggest a novel association of miR-196a2 polymorphism with decreased OA susceptibility. The modulation of TLRs and miRNAs and their cross-talk might be an attractive target for a personalized approach to OA management.
Collapse
Affiliation(s)
- Debora Stefik
- Institute for Medical Research, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia
| | - Vladimir Vranic
- Clinic for Orthopedic Surgery and Traumatology, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia
- Medical Faculty of Military Medical Academy, University of Defense, Crnotravska 17, 11000 Belgrade, Serbia
| | - Nemanja Ivkovic
- Institute for Medical Research, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia
| | - Gordana Velikic
- Department for Research and Development, Clinic Orto MD-Parks Dr Dragi Hospital, 21000 Novi Sad, Serbia
| | - Dusan M. Maric
- Department for Research and Development, Clinic Orto MD-Parks Dr Dragi Hospital, 21000 Novi Sad, Serbia
| | - Dzihan Abazovic
- Biocell Hospital, Omladinskih Brigada 86a, 11000 Belgrade, Serbia
| | - Danilo Vojvodic
- Institute for Medical Research, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia
- Medical Faculty of Military Medical Academy, University of Defense, Crnotravska 17, 11000 Belgrade, Serbia
| | - Dusica L. Maric
- Department of Anatomy, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Gordana Supic
- Institute for Medical Research, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia
- Medical Faculty of Military Medical Academy, University of Defense, Crnotravska 17, 11000 Belgrade, Serbia
- Correspondence:
| |
Collapse
|
8
|
Shen P, Yu J, Yan C, Yang D, Tong C, Wang X. Analysis of differentially expressed microRNAs in bovine mammary epithelial cells treated with lipoteichoic acid. J Anim Physiol Anim Nutr (Berl) 2023; 107:463-474. [PMID: 35997417 DOI: 10.1111/jpn.13760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 07/12/2022] [Accepted: 07/18/2022] [Indexed: 11/30/2022]
Abstract
Mastitis is one of the most common diseases of dairy cattle and can be caused by physical stress, chemicals and microbial infection. Staphylococcus aureus is the most common pathogens that induce mastitis in dairy cattle. In this study, bovine mammary epithelial cells (BMECs) were treated either with lipoteichoic acid (LTA, 30 µg/ml) or 1 × phosphate-buffer saline (PBS, control) and RNA-Seq was applied to explore the effect of LTA on the expression microRNAs (miRNAs) in BMECs. Compared to the control group, 43 miRNAs were significantly up-regulated and eight miRNAs were significantly down-regulated. Additionally, 724 genes were significantly up-regulated and 13 genes were significantly down-regulated in LTA group relative to the control group. Bta-miR-196a, bta-miR-2285aj-5p, bta-miR-143, bta-miR-2433, bta-miR-2284f and bta-miR-2368-3p were selected from 51 differentially expressed miRNAs and are discussed in this manuscript. Target gene prediction revealed that the target genes of these six miRNAs were all differentially expressed, including MT1E, SPDYA, FGL1, TLR2, PAPOLG, ZDHHC17 and SMC4. Subsequently, the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the target genes with differentially expressed miRNAs were enriched in mitogen-activated protein kinase (MAPK) signalling pathway, rheumatoid arthritis and cancer. Therefore, the results of this study provided new evidences for the molecular mechanism of LTA-induced mastitis, which may provide new targets for the diagnosis and treatment of mastitis in dairy cattle.
Collapse
Affiliation(s)
- Puxiu Shen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Jingcheng Yu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Chenbo Yan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Dexin Yang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Chao Tong
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Xinzhuang Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
9
|
Zuo G, Gao Y, Lu G, Bu M, Liu J, Zhang J, Fan X, Chen H, Wang X, She Y. Auriculotherapy Modulates Macrophage Polarization to Reduce Inflammatory Response in a Rat Model of Acne. Mediators Inflamm 2023; 2023:6627393. [PMID: 37159798 PMCID: PMC10163966 DOI: 10.1155/2023/6627393] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 03/28/2023] [Accepted: 04/17/2023] [Indexed: 05/11/2023] Open
Abstract
Background The inflammatory response is an important part of the pathogenesis of acne vulgaris. Auriculotherapy has been shown to have a good therapeutic effect on this disease. The aim of this study was to explore the mechanism underlying the anti-inflammatory effect of auriculotherapy in the treatment of acne vulgaris. Methods Propionibacterium acnes was injected subcutaneously into the ears of rats to establish an animal model of acne. The auriculotherapy intervention in rats consisted of auricular bloodletting therapy (ABT), auricular point sticking (APS), or a combination of both (ABPS). The anti-inflammatory effects of auriculotherapy were evaluated by measuring changes in ear thickness, local body surface microcirculation in the ear, and serum inflammatory factors in rats. The polarization of macrophages was analyzed by flow cytometry, and the expression of TLR2/NF-κB signaling pathway in the target tissues was analyzed using western blot. Results ABT, APS, and ABPS all reduced the erythema of ear acne, decreased microcirculation in localized ear acne, and decreased serum levels of TNF-α and IL-1β in rats. Meanwhile, the three interventions reduced M1-type macrophages and increased M2-type macrophages; only APS could reduce the expression of TLR2/NF-κB signaling pathway. Conclusion ABT, APS, and ABPS can improve the inflammatory symptoms of acne and reduce inflammatory cytokines. APS may exert anti-inflammatory effects by altering macrophage polarization and decreasing TLR2/NF-κB expression.
Collapse
Affiliation(s)
- Guang Zuo
- School of Acupuncture-Moxibustion and Tuina, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Yidan Gao
- School of Acupuncture-Moxibustion and Tuina, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Guangtong Lu
- School of Acupuncture-Moxibustion and Tuina, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Ming Bu
- School of Acupuncture-Moxibustion and Tuina, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Jun Liu
- Department of Rehabilitation, School of Acupuncture-Moxibustion and Tuina, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
- Hebei International Joint Research Center for Dominant Diseases in Chinese Medicine and Acupuncture, Shijiazhuang 050091, China
| | - Juncha Zhang
- Hebei International Joint Research Center for Dominant Diseases in Chinese Medicine and Acupuncture, Shijiazhuang 050091, China
| | - Xisheng Fan
- Hebei International Joint Research Center for Dominant Diseases in Chinese Medicine and Acupuncture, Shijiazhuang 050091, China
| | - Hao Chen
- School of Acupuncture-Moxibustion and Tuina, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Xuesong Wang
- School of Acupuncture-Moxibustion and Tuina, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Yanfen She
- Hebei International Joint Research Center for Dominant Diseases in Chinese Medicine and Acupuncture, Shijiazhuang 050091, China
- Department of Experimental Acupuncture, School of Acupuncture-Moxibustion and Tuina, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| |
Collapse
|
10
|
Sitthichai P, Chanpirom S, Maneerat T, Charoensup R, Tree-Udom T, Pintathong P, Laphookhieo S, Sripisut T. Kaempferia parviflora Rhizome Extract as Potential Anti-Acne Ingredient. Molecules 2022; 27:molecules27144401. [PMID: 35889274 PMCID: PMC9321094 DOI: 10.3390/molecules27144401] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
Kaempferia parviflora (Black ginger) is used widely in medical fields as an anti-microorganism and anti-inflammation. In this study, the aim was to evaluate the in vitro and in vivo anti-acne efficacy of black ginger extract. The results indicate that the methanol and ethanol extracts showed the highest total phenolic contents, without a significant difference, whereas the n-hexane extract showed the highest total flavonoid content. Nine flavones were detected using UPLC−QTOF−MS, and the ethyl acetate extract showed the highest amount of 5,7-dimethoxyflavone (DMF) according to HPLC. Antibacterial activity against Staphylococcus aureus, S. epidermidis, and Cutibacterium acnes was observed. All the extracts showed antimicrobial activity against C. acnes, revealing MICs in the range of 0.015 to 0.030 mg/mL, whereas the ethyl acetate extract inhibited the growth of S. epidermidis with a MIC of 3.84 mg/mL. In addition, the ethyl acetate extract showed the highest activity regarding nitric oxide inhibition (IC50 = 12.59 ± 0.35 µg/mL). The ethyl acetate extract was shown to be safe regarding cell viability at 0.1 mg/mL. The anti-acne efficacy was evaluated on volunteers. The volunteers were treated in two groups: one administered a 0.02% ethyl acetate extract gel-cream (n = 9) and one administered a placebo (n = 9) for 6 weeks. The group treated with the gel-cream containing the extract showed 36.52 and 52.20% decreases in acne severity index (ASI) after 4 and 6 weeks, respectively, and 18.19 and 18.54% decreases in erythema, respectively. The results suggest that K. parviflora could be a potent active ingredient in anti-inflammatory and anti-acne products.
Collapse
Affiliation(s)
- Pawee Sitthichai
- School of Cosmetic Science, Mae Fah Luang University, Chiang Rai 57100, Thailand; (P.S.); (S.C.); (T.T.-U.); (P.P.)
| | - Setinee Chanpirom
- School of Cosmetic Science, Mae Fah Luang University, Chiang Rai 57100, Thailand; (P.S.); (S.C.); (T.T.-U.); (P.P.)
- Phytocosmetics and Cosmeceuticals Research Group, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Tharakorn Maneerat
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand; (T.M.); (S.L.)
- Center of Chemical Innovation for Sustainability (CIS), Mae Fah Luang University, Chiang Rai 57100, Thailand
- Medicinal Plants Innovation Center of Mae Fah Luang University, Mae Fah Luang University, Chiang Rai 57100, Thailand;
| | - Rawiwan Charoensup
- Medicinal Plants Innovation Center of Mae Fah Luang University, Mae Fah Luang University, Chiang Rai 57100, Thailand;
- School of Integrative Medicine, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Thapakorn Tree-Udom
- School of Cosmetic Science, Mae Fah Luang University, Chiang Rai 57100, Thailand; (P.S.); (S.C.); (T.T.-U.); (P.P.)
- Phytocosmetics and Cosmeceuticals Research Group, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Punyawatt Pintathong
- School of Cosmetic Science, Mae Fah Luang University, Chiang Rai 57100, Thailand; (P.S.); (S.C.); (T.T.-U.); (P.P.)
| | - Surat Laphookhieo
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand; (T.M.); (S.L.)
- Center of Chemical Innovation for Sustainability (CIS), Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Tawanun Sripisut
- School of Cosmetic Science, Mae Fah Luang University, Chiang Rai 57100, Thailand; (P.S.); (S.C.); (T.T.-U.); (P.P.)
- Phytocosmetics and Cosmeceuticals Research Group, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Correspondence: ; Tel.: +66-53-916-833
| |
Collapse
|
11
|
MicroRNA Cross-Involvement in Acne Vulgaris and Hidradenitis Suppurativa: A Literature Review. Int J Mol Sci 2022; 23:ijms23063241. [PMID: 35328662 PMCID: PMC8955726 DOI: 10.3390/ijms23063241] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 02/04/2023] Open
Abstract
Acne Vulgaris (AV) and Hidradenitis suppurativa (HS) are common chronic inflammatory skin conditions that affect the follicular units that often coexist or are involved in differential diagnoses. Inflammation in both these diseases may result from shared pathways, which may partially explain their frequent coexistence. MicroRNAs (miRNAs) are a class of endogenous, short, non-protein coding, gene-silencing or promoting RNAs that may promote various inflammatory diseases. This narrative review investigates the current knowledge regarding miRNAs and their link to AV and HS. The aim is to examine the role of these molecules in the pathogenesis of AV and HS and to identify possible common miRNAs that could explain the similar characteristics of these two diseases. Five miRNA (miR-155 miR-223-, miR-21, and miRNA-146a) levels were found to be altered in both HS and AV. These miRNAs are related to pathogenetic aspects common to both pathologies, such as the regulation of the innate immune response, regulation of the Th1/Th17 axis, and fibrosis processes that induce scar formation. This review provides a starting point for further studies aimed at investigating the role of miRNAs in AV and HS for their possible use as diagnostic-therapeutic targets.
Collapse
|
12
|
Zhang M, Yin C, Chen Y, Wang J, Jiang J. Upstream stimulatory factor 2 (USF2) induced upregulation of triggering receptor expressed on myeloid cells 1 (TREM1) promotes endometritis by regulating toll-like receptor (TLR) 2/4-nuclear factor-kappaB (NF-κB) signaling pathway. Bioengineered 2022; 13:3609-3619. [PMID: 35100093 PMCID: PMC8973694 DOI: 10.1080/21655979.2022.2030619] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Triggering receptor expressed on myeloid cells 1 (TREM1) participates in the development of endometritis. This study aims at identifying the effects and interaction of TREM1 and upstream stimulatory factor 2 (USF2) in endometritis by using a model of lipopolysaccharide (LPS)-induced human endometrial epithelial cells (HEnEpCs). ELISA was performed to determine the levels of interleukin (IL)-6, IL-1β, and tumor necrosis factor (TNF-α) after LPS stimulation. TREM1 and USF2 expression was examined with RT-qPCR and Western blot. The JASPAR database was employed to predict the binding site between USF2 and TREM1, which was confirmed by luciferase reporter and chromatin immunoprecipitation assays. After TREM1 overexpression, IL-6, IL-1β, and TNF-α expression was detected by ELISA. Next, the binding of TREM1 to toll-like receptor (TLR) 2/4 was examined with co-immunoprecipitation. Then, proteins in TLR2/4-nuclear factor-kappaB (NF-κB) signaling in HEnEpCs under LPS condition were assessed by Western blot or immunofluorescence before and after TREM1 knockdown. Finally, TLR2 or TLR4 was silenced to explore whether intervene TLR2/4-NF-κB signaling pathway could rescue TREM1-overexpression-induced inflammation in LPS-induced HEnEpCs. Results revealed that upregulated TREM1 was observed in LPS-challenged HEnEpCs. Next, USF2 was found to have transcriptionally active TREM1 expression. Additionally, USF2 knockdown decreased the levels of IL-6, IL-1β, and TNF-α, whereas this effect was rescued after TREM1 overexpression. Besides, TREM1 could bind to TLR2/4 to regulate NF-κB signaling. Moreover, the intervention of TLR2/4-NF-κB signaling pathway rescued TREM1-overexpression-induced inflammation in LPS-stimulated HEnEpCs. Collectively, USF2 promotes endometritis by upregulating TREM1, thereby activating TLR2/4-NF-κB pathway.
Collapse
Affiliation(s)
- Miao Zhang
- Department of Gynecology and Obstetrics, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Chengkun Yin
- Department of Radiology, Suining Central Hospital, Suining, China
| | - Yan Chen
- Department of Gynecology and Obstetrics, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Juan Wang
- Department of Gynecology and Obstetrics, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jing Jiang
- Department of Gynecology and Obstetrics, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
13
|
Ghafouri-Fard S, Abak A, Shoorei H, Talebi SF, Mohaqiq M, Sarabi P, Taheri M, Mokhtari M. Interaction between non-coding RNAs and Toll-like receptors. Biomed Pharmacother 2021; 140:111784. [PMID: 34087695 DOI: 10.1016/j.biopha.2021.111784] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/11/2022] Open
Abstract
Toll-like receptors (TLRs) are a large group of pattern recognition receptors which are involved in the regulation of innate immune responses. Based on the interplay between TLRs and adapter molecules, two distinctive signaling cascades, namely the MyD88-dependent and TRIF-dependent pathways have been recognized. TLRs are involved in the development of a wide variety of diseases including cancer and autoimmune disorders. A large body of evidence has shown interaction between two classes of non-coding RNAs, namely microRNAs (miRNAs) and long noncoding RNAs (lncRNAs). These interactions have prominent roles in the pathogenesis of several disorders including infectious disorders, autoimmune conditions and neoplastic disorders. This review aims at description of the interaction between these non-coding RNAs and TLRs.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefe Abak
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Mahdi Mohaqiq
- School of Advancement, Centennial College, Ashtonbee Campus, Toronto, ON, Canada
| | - Parisa Sarabi
- Deputy for Research & Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Majid Mokhtari
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Zhang W, Zhou K, Zhang X, Wu C, Deng D, Yao Z. Roles of the H19/microRNA‑675 axis in the proliferation and epithelial‑mesenchymal transition of human cutaneous squamous cell carcinoma cells. Oncol Rep 2021; 45:39. [PMID: 33649811 PMCID: PMC7905556 DOI: 10.3892/or.2021.7990] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/15/2021] [Indexed: 12/12/2022] Open
Abstract
The long non-coding RNA (lncRNA) H19 and microRNA(miR)-675 were reported to serve an important role in the tumorigenesis and metastasis of numerous cancer types by promoting the epithelial-mesenchymal transition (EMT) process; however, the underlying mechanisms of action of H19 and miR-675 in cutaneous squamous cell carcinoma (cSCC) remain unknown. The mRNA expression levels of H19 and miR-675 were analyzed using reverse transcription-quantitative PCR, and Cell Counting Kit-8, wound healing and Transwell assays were performed to analyze the cell proliferation, migration and invasion of cSCC cells, respectively. The levels of cell apoptosis were also determined using a TUNEL assay. Protein expression levels of p53 and marker proteins related to the EMT process were analyzed using western blotting. In addition, a dual luciferase reporter assay was performed to determine the interactions between H19, miR-675 and p53. The results of the present study revealed that the expression levels of H19 and miR-675 were upregulated in cSCC tissues and cSCC cell lines. The knockdown of H19 or miR-675 expression inhibited cell proliferation, migration and invasion, but induced cell apoptosis. In addition, the expression levels of EMT-related markers were also downregulated. The overexpression of H19 upregulated the expression levels of its predicted target, miR-675, which subsequently promoted the EMT process and downregulated the expression levels of p53. Conversely, the genetic silencing of H19 or miR-675 inhibited proliferation and invasion in SCL1 and A431 cSCC cell lines. In conclusion, the findings of the present study provided novel insight into the potential role of H19 and miR-675 in the development, metastasis and progression of cSCC, which may help the development of treatments for cSCC.
Collapse
Affiliation(s)
- Wenqing Zhang
- Department of Dermatology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, P.R. China
| | - Kaili Zhou
- Department of Dermatology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, P.R. China
| | - Xue Zhang
- Department of Dermatology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, P.R. China
| | - Chenglong Wu
- Department of Dermatology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, P.R. China
| | - Dan Deng
- Department of Dermatology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, P.R. China
| | - Zhirong Yao
- Department of Dermatology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, P.R. China
| |
Collapse
|
15
|
The diagnostic and prognostic values of microRNA-196a in cancer. Biosci Rep 2021; 41:227199. [PMID: 33289788 PMCID: PMC7791550 DOI: 10.1042/bsr20203559] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/23/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023] Open
Abstract
MicroRNA-196a (miR-196a) was previously reported to be up-regulated in cancers, and it has the diagnostic and prognostic values in cancers. Whereas, the conclusion was still unclear according to the published data. To assess such roles of miR-196a in cancers, the present study was conducted based on published data and online cancer-related databases. To identify the relevant published data, we searched articles in databases and then the relevant data were extracted to evaluate the correlation between miR-196a expression and diagnosis, prognosis for cancer patients. The pooled results showed that miR-196a was a valuable diagnostic biomarker in cancer (area under curve (AUC) = 0.87, 95% CI: 0.84–0.90; sensitivity (SEN) = 0.73, 95% CI: 0.64–0.81; specificity (SPE) = 0.90, 95% CI: 0.81–0.95), which was consistent with the data from databases (breast cancer: miR-196a-3p: AUC = 0.77, 95% CI: 0.74–0.79; miR-196a-5p: AUC = 0.71, 95% CI: 0.66–0.75; pancreatic cancer: miR-196a-3p: AUC = 0.80, 95% CI: 0.73–0.87; miR-196a-5p: AUC = 0.61, 95% CI: 0.51–0.71). In addition, the pooled result revealed that elevated miR-196a expression in tumor tissues (HR = 2.54, 95% CI: 1.79–3.61, PHeterogeneity=0.000, I2 = 75.8%) or serum/plasma (HR = 4.06, 95% CI: 2.67–6.18, PHeterogeneity=0.668, I2 = 0%) of patients was an unfavorable survival biomarker, which was consistent with the data from databases (adrenocortical carcinoma: HR = 5.70; esophageal carcinoma: HR = 1.93; brain lower grade glioma: HR = 2.91; GSE40267: HR = 2.47, 95% CI: 1.2–5.07; TCGA: HR = 1.82, 95% CI: 1.21–2.74; GSE19783: HR = 4.24, 95% CI: 1–18.06). In short, our results demonstrated that miR-196a in tumor tissue or serum/plasma could be used as a prognostic and diagnostic values for cancers.
Collapse
|