1
|
Xu F, Zheng H, Dong X, Zhou A, Emu Q. miRNA expression signatures induced by pasteurella multocida infection in goats lung. Sci Rep 2024; 14:19626. [PMID: 39179681 PMCID: PMC11343864 DOI: 10.1038/s41598-024-69654-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 08/07/2024] [Indexed: 08/26/2024] Open
Abstract
MicroRNAs (miRNAs) are important regulators of gene expression and are involved in bacterial pathogenesis and host-pathogen interactions. In this study, we investigated the function of miRNAs in the regulation of host responses to Pasteurella multocida infection. Using next-generation sequencing, we analyzed miRNA expression pattern and identified differentially expressed miRNAs in Pasteurella multocida-infected goat lungs. In addition, we investigated the function of differentially expressed miRNAs andtheir targeted signaling pathways in bacterial infection processes. The results showed that Pasteurella multocida infection led to 69 significantly differentially expressed miRNAs, including 28 known annotated miRNAs with miR-497-3p showing the most significant difference. Gene target prediction and functional enrichment analyses showed that the target genes were mainly involved in cell proliferation, regulation of the cellular metabolic process, positive regulation of cellular process, cellular senescence, PI3K-Akt signaling pathway, FoxO signaling pathway and infection-related pathways. In conclusion, these data provide a new perspective on the roles of miRNAs in Pasteurella multocida infection.
Collapse
Affiliation(s)
- Feng Xu
- Animal Genetics and Breeding Key Laboratory of Sichuan Province, Animal Science Academy of Sichuan Province, Chengdu, China
| | - Hao Zheng
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan, China
| | - Xia Dong
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan, China
| | - Ao Zhou
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan, China.
| | - Quzhe Emu
- Animal Genetics and Breeding Key Laboratory of Sichuan Province, Animal Science Academy of Sichuan Province, Chengdu, China.
| |
Collapse
|
2
|
Zhou Y, Yuan F, Jia C, Chen F, Li F, Wang L. MiR-497-3p induces Premature ovarian failure by targeting KLF4 to inactivate Klotho/PI3K/AKT/mTOR signaling pathway. Cytokine 2023; 170:156294. [PMID: 37549487 DOI: 10.1016/j.cyto.2023.156294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 03/19/2023] [Accepted: 07/05/2023] [Indexed: 08/09/2023]
Abstract
BACKGROUND Premature ovarian failure (POF), as a gynecological endocrine disease, features the manifestation of irregular menstruation, amenorrhea, infertility and perimenopausal syndrome. MicroRNAs (miRNAs) have been reported to modulate POF. However, the specific regulatory mechanism of miR-497-3p in POF remain unclear. METHODS Quantitative reverse transcription-PCR (RT-qPCR) and western blot were implemented to analyze RNA and protein levels, respectively. Comet assay was performed for the detection of DNA damage. Flow cytometry analysis and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays were performed to measure apoptosis of CTX-induced KGN cell (POF cell model). Bioinformatics was utilized to screen out the downstream mRNAs potentially regulated by miR-497-3p. Chromatin immunoprecipitation (ChIP) assay, luciferase reporter assay and RNA pulldown assays were performed to demonstrate the interaction between miR-497-3p and Kruppel-like factor 4 (KLF4) or between KLF4 and Klotho (KL). Rescue assays were performed to verify the involvement of Klotho in miR-497-3p-mediated functions of POF cell model. RESULTS MiR-497-3p was upregulated in CTX-treated KGN cells. Knockdown of miR-497-3p could reverse the promoting effects of CTX on DNA damage and cell apoptosis. MiR-497-3p negatively regulated Klotho expression by directly targeting the transcription activator KLF4. KLF4 activated Klotho transcription. MiR-497-3p inactivated PI3K/AKT/mTOR signaling pathway through KLF4/Klotho axis. Klotho knockdown reversed the effects of MiR-497-3p on the functions of POF cell model. CONCLUSION MiR-497-3p promotes DNA damage and apoptosis in CTX-treated KGN cells by targeting KLF4 to downregulate Klotho and inactivate the PI3K/AKT/mTOR signaling pathway. This study unveils novel mechanisms associated with cell functional changes in POF and may enrich therapeutic strategy for POF.
Collapse
Affiliation(s)
- Yuhan Zhou
- Department of Reproductive Medicine, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, Hubei, China
| | - Feifei Yuan
- Department of Reproductive Medicine, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, Hubei, China
| | - Chunlian Jia
- Department of Reproductive Medicine, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, Hubei, China
| | - Fen Chen
- Department of Reproductive Medicine, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, Hubei, China.
| | - Fei Li
- Department of Reproductive Medicine, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, Hubei, China.
| | - Lingyu Wang
- Department of Reproductive Medicine, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, Hubei, China.
| |
Collapse
|
3
|
Alkaline tea tree oil nanoemulsion nebulizers for the treatment of pneumonia induced by drug-resistant Acinetobacter baumannii. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Zhang F, Zhou Y, Ding J. The current landscape of microRNAs (miRNAs) in bacterial pneumonia: opportunities and challenges. Cell Mol Biol Lett 2022; 27:70. [PMID: 35986232 PMCID: PMC9392286 DOI: 10.1186/s11658-022-00368-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/01/2022] [Indexed: 11/12/2022] Open
Abstract
MicroRNAs (miRNAs), which were initially discovered in Caenorhabditis elegans, can regulate gene expression by recognizing cognate sequences and interfering with the transcriptional or translational machinery. The application of bioinformatics tools for structural analysis and target prediction has largely driven the investigation of certain miRNAs. Notably, it has been found that certain miRNAs which are widely involved in the inflammatory response and immune regulation are closely associated with the occurrence, development, and outcome of bacterial pneumonia. It has been shown that certain miRNA techniques can be used to identify related targets and explore associated signal transduction pathways. This enhances the understanding of bacterial pneumonia, notably for "refractory" or drug-resistant bacterial pneumonia. Although these miRNA-based methods may provide a basis for the clinical diagnosis and treatment of this disease, they still face various challenges, such as low sensitivity, poor specificity, low silencing efficiency, off-target effects, and toxic reactions. The opportunities and challenges of these methods have been completely reviewed, notably in bacterial pneumonia. With the continuous improvement of the current technology, the miRNA-based methods may surmount the aforementioned limitations, providing promising support for the clinical diagnosis and treatment of "refractory" or drug-resistant bacterial pneumonia.
Collapse
Affiliation(s)
- Fan Zhang
- Beijing Key Laboratory of Basic Research With Traditional Chinese Medicine On Infectious Diseases, Beijing Institute of Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Yunxin Zhou
- Beijing Key Laboratory of Basic Research With Traditional Chinese Medicine On Infectious Diseases, Beijing Institute of Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Junying Ding
- Beijing Key Laboratory of Basic Research With Traditional Chinese Medicine On Infectious Diseases, Beijing Institute of Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
| |
Collapse
|
5
|
Ashrafizadeh M, Zarrabi A, Mostafavi E, Aref AR, Sethi G, Wang L, Tergaonkar V. Non-coding RNA-based regulation of inflammation. Semin Immunol 2022; 59:101606. [PMID: 35691882 DOI: 10.1016/j.smim.2022.101606] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 05/01/2022] [Accepted: 05/25/2022] [Indexed: 01/15/2023]
Abstract
Inflammation is a multifactorial process and various biological mechanisms and pathways participate in its development. The presence of inflammation is involved in pathogenesis of different diseases such as diabetes mellitus, cardiovascular diseases and even, cancer. Non-coding RNAs (ncRNAs) comprise large part of transcribed genome and their critical function in physiological and pathological conditions has been confirmed. The present review focuses on miRNAs, lncRNAs and circRNAs as ncRNAs and their potential functions in inflammation regulation and resolution. Pro-inflammatory and anti-inflammatory factors are regulated by miRNAs via binding to 3'-UTR or indirectly via affecting other pathways such as SIRT1 and NF-κB. LncRNAs display a similar function and they can also affect miRNAs via sponging in regulating levels of cytokines. CircRNAs mainly affect miRNAs and reduce their expression in regulating cytokine levels. Notably, exosomal ncRNAs have shown capacity in inflammation resolution. In addition to pre-clinical studies, clinical trials have examined role of ncRNAs in inflammation-mediated disease pathogenesis and cytokine regulation. The therapeutic targeting of ncRNAs using drugs and nucleic acids have been analyzed to reduce inflammation in disease therapy. Therefore, ncRNAs can serve as diagnostic, prognostic and therapeutic targets in inflammation-related diseases in pre-clinical and clinical backgrounds.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34396 Istanbul, Turkey.
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Translational Sciences, Xsphera Biosciences Inc. 6, Tide Street, Boston, MA 02210, USA
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore.
| | - Lingzhi Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), Singapore, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
6
|
Wu K, Tao G, Xu T, An Y, Yu X, Wang Y, Wang S, Guo W, Ma L. Downregulation of miR-497-5p prevents liver ischemia-reperfusion injury in association with MED1/TIMP-2 axis and the NF-κB pathway. FASEB J 2021; 35:e21180. [PMID: 33715222 DOI: 10.1096/fj.202001029r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 10/20/2020] [Accepted: 10/28/2020] [Indexed: 12/21/2022]
Abstract
Liver ischemia-reperfusion (I/R) injury is a common clinical pathological phenomenon, which is accompanied by the occurrence in liver transplantation. However, the underlying mechanism is not yet fully understood. MicroRNAs (miRNAs) play an important role in liver I/R injury. Therefore, the study of miRNAs function will contribute a new biological marker diagnosis of liver I/R injury. This study aims to evaluate effects of miR-497-5p in liver I/R injury in mice. The related regulatory factors of miR-497-5p in liver I/R injury were predicted by bioinformatics analysis. Vascular occlusion was performed to establish the liver I/R injury animal models. Hypoxia/reoxygenation (H/R) was performed to establish the in vitro models. Hematoxylin-eosin (HE) staining was conducted to assess liver injury. The inflammatory factors were evaluated by enzyme-linked immunosorbent assay (ELISA). Flow cytometry was adopted to assess the cell apoptosis. The expression of miR-497b-5p was increased in liver I/R injury. Knockdown of miR-497b-5p inhibited the production of inflammatory factors and cell apoptosis. Overexpression of mediator complex subunit 1 (MED1) and tissue inhibitor of metalloproteinase 2 (TIMP2) inhibited cell apoptosis to alleviate liver I/R injury. miR-497b-5p could activate the nuclear factor kappa-B (NF-κB) pathway by inhibiting the MED1/TIMP-2 axis to promote liver I/R injury. This study may provide a new strategy for the treatment of liver I/R injury.
Collapse
Affiliation(s)
- Kun Wu
- Department of General Surgery, the Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, P. R. China
| | - Guoquan Tao
- Department of General Surgery, the Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, P. R. China
| | - Ting Xu
- The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, P. R. China.,The First Affiliated Hospital of Xinjiang Medical University, Urumqi, P. R. China
| | - Yuanyuan An
- Department of V.I.P Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, P. R. China
| | - Xiangyou Yu
- Department of Critical Care Medicine, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, P. R. China
| | - Yi Wang
- Department of Critical Care Medicine, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, P. R. China
| | - Shaochuang Wang
- Department of Hepatobiliary Surgery, the Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, P. R. China
| | - Wen Guo
- Department of Critical Care Medicine, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, P. R. China
| | - Long Ma
- Department of Critical Care Medicine, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, P. R. China
| |
Collapse
|