1
|
Tonos J, Papinot B, Park DS, Raelison M, Ramaroson H, Stubbs J, Razafindratsima OH. Examining the structure of plant-lemur interactions in the face of imperfect knowledge. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2025; 39:e14323. [PMID: 39045776 PMCID: PMC11780189 DOI: 10.1111/cobi.14323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/17/2024] [Accepted: 04/26/2024] [Indexed: 07/25/2024]
Abstract
Biotic interactions, such as plant-animal seed dispersal mutualisms, are essential for ecosystem function. Such interactions are threatened by the possible extinction of the animal partners. Using a data set that includes plant-lemur interactions across Madagascar, we studied the current state of knowledge of these interactions and their structure to determine which plant species are most at risk of losing dispersal services due to the loss of lemurs. We found substantial gaps in understanding of plant-lemur interactions; data were substantially skewed toward a few lemur species and locations. There was also a large gap in knowledge on the interactions of plants and small-bodied or nocturnal lemurs and lemurs outside a few highly studied locations. Of the recorded interactions, a significant portion occurred between lemurs and endemic plants, rather than native or introduced plants. We also found that lemur species tended to primarily consume closely related plant species. Such interaction patterns may indicate the threats to Malagasy endemic plants and highlight how lemur population loss or reductions could affect plant phylogenetic diversity. When examining the impacts of lemur extinction, losing critically endangered species left 164 plant species with no known lemur frugivore partners. Despite phylogenetic patterns in lemur diet, plants for which the only known lemur frugivore is critically endangered were not closely related. These results emphasize the need for further studies to complete our knowledge on these essential interactions and to inform conservation priorities.
Collapse
Affiliation(s)
- Jadelys Tonos
- Department of Integrative BiologyUniversity of California, BerkeleyBerkeleyCaliforniaUSA
| | - Bastien Papinot
- Tundra Ecology Lab, Faculty of Life and Environmental SciencesUniversity of IcelandReykjavikIceland
| | - Daniel S. Park
- Purdue Center for Plant BiologyPurdue UniversityWest LafayetteIndianaUSA
| | | | - Herilantonirina Ramaroson
- Zootechnic, Veterinary and Fish Research Department (DRZVP)National Research Institute Applied for Rural Development (FOFIFA / CENRADERU)AntananarivoMadagascar
| | - Jessica Stubbs
- Department of Integrative BiologyUniversity of California, BerkeleyBerkeleyCaliforniaUSA
| | | |
Collapse
|
2
|
Li WB, Yang PP, Xia DP, Huffman MA, Li M, Li JH. Ecotourism Disturbance on an Endemic Endangered Primate in the Huangshan Man and the Biosphere Reserve of China: A Way to Move Forward. BIOLOGY 2022; 11:biology11071042. [PMID: 36101421 PMCID: PMC9312286 DOI: 10.3390/biology11071042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/07/2022] [Accepted: 07/07/2022] [Indexed: 12/05/2022]
Abstract
Simple Summary How to realize the sustainability of economic development and animal protection is a significant problem faced by Man and the Biosphere reserves. Although there are many theoretical frameworks, there is still a lack of supportive ecological evidence. This study analyzed aspects of the local human population, economic growth, number of tourists, and ticket income data of Huangshan Man and Biosphere Reserve (HMBR) as well as population and distribution changes in the flagship species (Tibetan macaque) in HMBR over a 30 year period. We found that after 30 years of implementing a sustainable development strategy in HMBR, the local economy and the population of Tibetan macaques have increased simultaneously. With economic growth, more funds for protection have been invested, improving the local environment significantly and expanding the existing distribution of the Tibetan macaque population. This study provides strong evidence for the sustainable development of Man and Biosphere reserves. We propose that economic and wildlife population growth and distribution area measures constitute a critical standard for the evaluation of sustainable development. Abstract The primary purpose of the Man and the Biosphere Program is the sustainable development of both the economy and nature conservation activities. Although the effectiveness of eco-tourism to reach this goal has been proposed, due to the lack of long-term monitoring data and a model species, there has been no obvious mechanism to evaluate the effectiveness of this policy. This study explored the effectiveness of the sustainable development policy of HMBR based on 30 years data of monitoring the Tibetan macaque, local human population, visitors, and annual ecotourism income in Huangshan by estimating species habitat suitability and the impact of ecotourism. The results showed increases in the income for the local human population, the number of visitors, and annual eco-tourism. Simultaneously, the reserve’s Tibetan macaque population size and suitable habitat areas increased. The macaques expanded their habitat to the low-altitude buffer zone (400–800 m), an area with lower eco-tourism disturbance. Scenic spots had a significant negative impact on habitat suitability (the substantially increased contributions of scenic spots from 0.71% to 32.88%). Our results and methods provide a suitable evaluation framework for monitoring the sustainable development and effectiveness of eco-tourism and wildlife conservation in Man and the Biosphere reserves.
Collapse
Affiliation(s)
- Wen-Bo Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China;
- International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral Ecology, School of Resources and Environmental Engineering, Anhui University, No. 111, Jiulong Road, Hefei 230601, China;
| | - Pei-Pei Yang
- International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral Ecology, School of Resources and Environmental Engineering, Anhui University, No. 111, Jiulong Road, Hefei 230601, China;
| | - Dong-Po Xia
- International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral Ecology, School of Life Sciences, Anhui University, No. 111, Jiulong Road, Hefei 230601, China;
| | - Michael A. Huffman
- Wildlife Research Center, Inuyama Campus, Kyoto University, Kyoto 606-8501, Japan;
| | - Ming Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China;
- Correspondence: (M.L.); (J.-H.L.)
| | - Jin-Hua Li
- International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral Ecology, School of Resources and Environmental Engineering, Anhui University, No. 111, Jiulong Road, Hefei 230601, China;
- School of Life Sciences, Hefei Normal University, No. 1688, Lianhua Road, Hefei 230601, China
- Correspondence: (M.L.); (J.-H.L.)
| |
Collapse
|
3
|
Predicting Hotspots and Prioritizing Protected Areas for Endangered Primate Species in Indonesia under Changing Climate. BIOLOGY 2021; 10:biology10020154. [PMID: 33672036 PMCID: PMC7919460 DOI: 10.3390/biology10020154] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/04/2021] [Accepted: 02/11/2021] [Indexed: 12/05/2022]
Abstract
Simple Summary Primates play an essential role in human life and its ecosystem. However, Indonesian primates have suffered many threats due to climate change and altered landscapes that lead to extinction. Therefore, primate conservation planning and strategies are important in maintaining their population. We quantified how extensively the protected areas overlapped primate hotspots and how it changes under mitigation and worst-case scenarios of climate change. Finally, we provide protected areas recommendations based on species richness and land-use changes under the worst-case scenario for Indonesian primate conservation planning and management options. Abstract Indonesia has a large number of primate diversity where a majority of the species are threatened. In addition, climate change is conservation issues that biodiversity may likely face in the future, particularly among primates. Thus, species-distribution modeling was useful for conservation planning. Herein, we present protected areas (PA) recommendations with high nature-conservation importance based on species-richness changes. We performed maximum entropy (Maxent) to retrieve species distribution of 51 primate species across Indonesia. We calculated species-richness change and range shifts to determine the priority of PA for primates under mitigation and worst-case scenarios by 2050. The results suggest that the models have an excellent performance based on seven different metrics. Current primate distributions occupied 65% of terrestrial landscape. However, our results indicate that 30 species of primates in Indonesia are likely to be extinct by 2050. Future primate species richness would be also expected to decline with the alpha diversity ranging from one to four species per 1 km2. Based on our results, we recommend 54 and 27 PA in Indonesia to be considered as the habitat-restoration priority and refugia, respectively. We conclude that species-distribution modeling approach along with the categorical species richness is effectively applicable for assessing primate biodiversity patterns.
Collapse
|
5
|
Melin AD, Nevo O, Shirasu M, Williamson RE, Garrett EC, Endo M, Sakurai K, Matsushita Y, Touhara K, Kawamura S. Fruit scent and observer colour vision shape food-selection strategies in wild capuchin monkeys. Nat Commun 2019; 10:2407. [PMID: 31160592 PMCID: PMC6546703 DOI: 10.1038/s41467-019-10250-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 04/30/2019] [Indexed: 11/29/2022] Open
Abstract
The senses play critical roles in helping animals evaluate foods, including fruits that can change both in colour and scent during ripening to attract frugivores. Although numerous studies have assessed the impact of colour on fruit selection, comparatively little is known about fruit scent and how olfactory and visual data are integrated during foraging. We combine 25 months of behavioural data on 75 wild, white-faced capuchins (Cebus imitator) with measurements of fruit colours and scents from 18 dietary plant species. We show that frequency of fruit-directed olfactory behaviour is positively correlated with increases in the volume of fruit odours produced during ripening. Monkeys with red-green colour blindness sniffed fruits more often, indicating that increased reliance on olfaction is a behavioural strategy that mitigates decreased capacity to detect red-green colour contrast. These results demonstrate a complex interaction among fruit traits, sensory capacities and foraging strategies, which help explain variation in primate behaviour.
Collapse
Affiliation(s)
- Amanda D Melin
- Department of Anthropology and Archaeology, University of Calgary, Calgary, AB, T2N 1N4, Canada.
- Department of Medical Genetics and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| | - Omer Nevo
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Mika Shirasu
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
- ERATO Touhara Chemosensory Signal Project, JST, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Rachel E Williamson
- Department of Anthropology and Archaeology, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Eva C Garrett
- Department of Anthropology, Boston University, Boston, MA, 02215, USA
| | - Mizuki Endo
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8562, Japan
| | - Kodama Sakurai
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8562, Japan
| | - Yuka Matsushita
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8562, Japan
| | - Kazushige Touhara
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
- ERATO Touhara Chemosensory Signal Project, JST, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Shoji Kawamura
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8562, Japan.
| |
Collapse
|