1
|
Li Q, Yu X, Ye L, Hou T, Liu Y, Liu G, Wang Q, Zhang D. Hypermucoviscous Multidrug-Resistant Klebsiella variicola Strain LL2208 Isolated from Chinese Longsnout Catfish ( Leiocassis longirostris): Highly Similar to Human K. variicola Strains. Pathogens 2024; 13:647. [PMID: 39204247 PMCID: PMC11356897 DOI: 10.3390/pathogens13080647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/23/2024] [Accepted: 07/30/2024] [Indexed: 09/03/2024] Open
Abstract
Outbreaks of bacterial diseases occur in farmed Chinese longsnout catfish (Leiocassis longirostris). Due to limited information on aquatic Klebsiella variicola-infected animals, this study aimed to identify strain LL2208 isolated from diseased L. longirostris, determine its biological features, and evaluate its risk to public health. Strain LL2208 was tested for molecular identification, challenge, string, biofilm formation, and antimicrobial susceptibility. Furthermore, the whole genome of the strain was sequenced and analyzed. Based on molecular identification, strain LL2208 was identified as K. variicola. Artificial infection showed that this strain was moderately virulent to L. longirostris with an LD50 = 7.92 × 107 CFU/mL. Antibiotic sensitivity tests showed that this strain was resistant to penicillins, macrolides, aminoglycosides, amphenicols, glycopeptides, and lincosamide, indicating multidrug resistance. Strain LL2208 has a genome size of 5,557,050 bp, with a GC content of 57.38%, harboring 30 antimicrobial resistance genes and numerous virulence-related genes. Its molecular type was ST595-KL16-O5. Collinearity analysis showed that strain LL2208 was highly similar to the human-derived K. variicola strain. In conclusion, the multidrug-resistant and virulent K. variicola strain LL2208 was isolated from fish and may have originated from humans. These results provide a foundation for further studies on the transmission of K. variicola between humans and aquatic animals.
Collapse
Affiliation(s)
- Qingyong Li
- Fisheries Research and Extension Center of Huizhou, Huizhou 516055, China; (Q.L.); (X.Y.); (L.Y.); (T.H.); (Y.L.); (G.L.)
| | - Xin Yu
- Fisheries Research and Extension Center of Huizhou, Huizhou 516055, China; (Q.L.); (X.Y.); (L.Y.); (T.H.); (Y.L.); (G.L.)
| | - Lin Ye
- Fisheries Research and Extension Center of Huizhou, Huizhou 516055, China; (Q.L.); (X.Y.); (L.Y.); (T.H.); (Y.L.); (G.L.)
| | - Tongyu Hou
- Fisheries Research and Extension Center of Huizhou, Huizhou 516055, China; (Q.L.); (X.Y.); (L.Y.); (T.H.); (Y.L.); (G.L.)
| | - Yi Liu
- Fisheries Research and Extension Center of Huizhou, Huizhou 516055, China; (Q.L.); (X.Y.); (L.Y.); (T.H.); (Y.L.); (G.L.)
| | - Guiming Liu
- Fisheries Research and Extension Center of Huizhou, Huizhou 516055, China; (Q.L.); (X.Y.); (L.Y.); (T.H.); (Y.L.); (G.L.)
| | - Qing Wang
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China;
- Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Defeng Zhang
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China;
- Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| |
Collapse
|
2
|
Ameur E, Sarra M, Yosra D, Mariem K, Nabil A, Ibrahim J, Alarjani KM, Lynen F, Larbi KM. Chemical compositions of Eucalyptus sp. Essential oils and the evaluation of their combinations as a promising treatment against ear bacterial infections. BMC Complement Med Ther 2024; 24:220. [PMID: 38849805 PMCID: PMC11157906 DOI: 10.1186/s12906-024-04494-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 05/08/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND The chemical composition and biological activities of Eucalyptus essential oils (EOs) have been documented in numerous studies against multiple infectious diseases. The antibacterial activity of individual Eucalyptus EOs against strains that cause ear infections was investigated in our previous study. The study's antibacterial activity was promising, which prompted us to explore this activity further with EO blends. METHODS We tested 15 combinations (9 binary combinations and 6 combinations of binary combinations) of Eucalyptus EOs extracted by hydrodistillation from eight Tunisian Eucalyptus species dried leaves against six bacterial strains responsible for ear infections: three bacterial isolates (Haemophilus influenzae, Haemophilus parainfluenzae, and Klebsiella pneumoniae) and three reference bacteria strains (Pseudomonas aeruginosa, ATTC 9027; Staphylococcus aureus, ATCC 6538; and Escherichia coli, ATCC 8739). The EOs were analyzed using GC/FID and GC/MS. The major compounds, as well as all values obtained from the bacterial growth inhibition assay, were utilized for statistical analysis. RESULTS The antibacterial activity of the EO blends exhibited significant variation within Eucalyptus species, bacterial strains, and the applied methods. Principal component analysis (PCA) and hierarchical cluster analysis (HCA), based on the diameters of the inhibition zone, facilitated the identification of two major groups and ten subgroups based on the level of antibacterial activity. The highest antibacterial activity was observed for the mixture of EOs extracted from E. panctata, E. accedens, and E. cladoclayx (paac) as well as E. panctata, E. wandoo, E. accedens, and E. cladoclayx (pwac) using the disc diffusion method. Additionally, significant activity was noted with EOs extracted from E. panctata, E. wandoo (pw) and E. panctata, E. accedens (pa) using the broth microdilution method. CONCLUSION Our findings suggest that certain EO combinations (paac, pwac, pw, and pa) could be considered as potential alternative treatment for ear infections due to their demonstrated highly promising antibacterial activities.
Collapse
Affiliation(s)
- Elaissi Ameur
- Chemical, Pharmacological and Gallenic Development Laboratory, Faculty of Pharmacy, University of Monastir, Avenue Avicennne, 5019, Monastir, Tunisia.
| | - Moumni Sarra
- Chemical, Pharmacological and Gallenic Development Laboratory, Faculty of Pharmacy, University of Monastir, Avenue Avicennne, 5019, Monastir, Tunisia
| | - Derbali Yosra
- Chemical, Pharmacological and Gallenic Development Laboratory, Faculty of Pharmacy, University of Monastir, Avenue Avicennne, 5019, Monastir, Tunisia
| | - Khouja Mariem
- Water, and Forestry. INRGREF. Laboratory of Management and Valorization of Forest Resources, University of Carthage, The National Research Institute of Rural Engineering, 2080, Ariana, Tunisia
| | - Abid Nabil
- Laboratory of Transmissible Diseases and Biological Active Substances LR99ES27, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Jlasssi Ibrahim
- Laboratory of Transmissible Diseases and Biological Active Substances LR99ES27, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Khaloud Mohammed Alarjani
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Frederic Lynen
- Separation Science Group, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281-S4 Bis, B-9000, Ghent, Belgium
| | - Khouja Mohamed Larbi
- Water, and Forestry. INRGREF. Laboratory of Management and Valorization of Forest Resources, University of Carthage, The National Research Institute of Rural Engineering, 2080, Ariana, Tunisia
| |
Collapse
|
3
|
Mani J, Johnson J, Hosking H, Schmidt L, Batley R, du Preez R, Broszczak D, Walsh K, Neilsen P, Naiker M. Bioassay-Guided Fractionation of Pittosporum angustifolium and Terminalia ferdinandiana with Liquid Chromatography Mass Spectroscopy and Gas Chromatography Mass Spectroscopy Exploratory Study. PLANTS (BASEL, SWITZERLAND) 2024; 13:807. [PMID: 38592847 PMCID: PMC10974205 DOI: 10.3390/plants13060807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/28/2024] [Accepted: 03/06/2024] [Indexed: 04/11/2024]
Abstract
Bioprospecting native Australian plants offers the potential discovery of latent and novel bioactive compounds. The promising cytotoxic and antibacterial activity of methanolic extracts of Pittosporum angustifolium and Terminalia ferdinandiana led to further fractionation and isolation using our laboratory's bioassay-guided fractionation protocol. Hence, the aim of this study was to further evaluate the bioactivity of the fractions and subfractions and characterize bioactive compounds using liquid chromatography mass spectroscopy (LC-MS/MS) and gas chromatography MS (GC-MS). Compounds tentatively identified in P. angustifolium Fraction 1 using LC-ESI-QTOF-MS/MS were chlorogenic acid and/or neochlorogenic acid, bergapten, berberine, 8'-epitanegool and rosmarinic acid. GC-MS analysis data showed the presence of around 100 compounds, mainly comprising carboxylic acids, sugars, sugar alcohols, amino acids and monoalkylglycerols. Furthermore, the fractions obtained from T. ferdinandiana flesh extracts showed no cytotoxicity, except against HT29 cell lines, and only Fraction 2 exhibited some antibacterial activity. The reduced bioactivity observed in the T. ferdinandiana fractions could be attributed to the potential loss of synergy as compounds become separated within the fractions. As a result, the further fractionation and separation of compounds in these samples was not pursued. However, additional dose-dependent studies are warranted to validate the bioactivity of T. ferdinandiana flesh fractions, particularly since this is an understudied species. Moreover, LC-MS/GC-MS studies confirm the presence of bioactive compounds in P. angustifolium Fraction 1/subfractions, which helps to explain the significant acute anticancer activity of this plant. The screening process designed in this study has the potential to pave the way for developing scientifically validated phytochemical/bioactivity information on ethnomedicinal plants, thereby facilitating further bioprospecting efforts and supporting the discovery of novel drugs in modern medicine.
Collapse
Affiliation(s)
- Janice Mani
- College of Science and Sustainability, CQUniversity, North Rockhampton, QLD 4701, Australia; (J.J.); (H.H.); (R.B.); (R.d.P.); (K.W.); (P.N.); (M.N.)
- Institute for Future Farming Systems, CQUniversity, Bundaberg, QLD 4670, Australia
| | - Joel Johnson
- College of Science and Sustainability, CQUniversity, North Rockhampton, QLD 4701, Australia; (J.J.); (H.H.); (R.B.); (R.d.P.); (K.W.); (P.N.); (M.N.)
- Institute for Future Farming Systems, CQUniversity, Bundaberg, QLD 4670, Australia
| | - Holly Hosking
- College of Science and Sustainability, CQUniversity, North Rockhampton, QLD 4701, Australia; (J.J.); (H.H.); (R.B.); (R.d.P.); (K.W.); (P.N.); (M.N.)
| | - Luke Schmidt
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4000, Australia; (L.S.); (D.B.)
| | - Ryan Batley
- College of Science and Sustainability, CQUniversity, North Rockhampton, QLD 4701, Australia; (J.J.); (H.H.); (R.B.); (R.d.P.); (K.W.); (P.N.); (M.N.)
| | - Ryan du Preez
- College of Science and Sustainability, CQUniversity, North Rockhampton, QLD 4701, Australia; (J.J.); (H.H.); (R.B.); (R.d.P.); (K.W.); (P.N.); (M.N.)
| | - Daniel Broszczak
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4000, Australia; (L.S.); (D.B.)
| | - Kerry Walsh
- College of Science and Sustainability, CQUniversity, North Rockhampton, QLD 4701, Australia; (J.J.); (H.H.); (R.B.); (R.d.P.); (K.W.); (P.N.); (M.N.)
- Institute for Future Farming Systems, CQUniversity, Bundaberg, QLD 4670, Australia
| | - Paul Neilsen
- College of Science and Sustainability, CQUniversity, North Rockhampton, QLD 4701, Australia; (J.J.); (H.H.); (R.B.); (R.d.P.); (K.W.); (P.N.); (M.N.)
| | - Mani Naiker
- College of Science and Sustainability, CQUniversity, North Rockhampton, QLD 4701, Australia; (J.J.); (H.H.); (R.B.); (R.d.P.); (K.W.); (P.N.); (M.N.)
- Institute for Future Farming Systems, CQUniversity, Bundaberg, QLD 4670, Australia
- Jawun Research Centre, Cairns, QLD 4870, Australia
| |
Collapse
|
4
|
Yang X, Yang J, Gu X, Tao Y, Ji H, Miao X, Shen S, Zang H. (-)-Guaiol triggers immunogenic cell death and inhibits tumor growth in non-small cell lung cancer. Mol Cell Biochem 2023; 478:1611-1620. [PMID: 36441354 PMCID: PMC10209243 DOI: 10.1007/s11010-022-04613-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/10/2022] [Indexed: 11/29/2022]
Abstract
(-)-Guaiol is a sesquiterpenoid found in many traditional Chinese medicines with potent antitumor activity. However, its therapeutic effect and mechanism in non-small cell lung cancer (NSCLC) have not been fully elucidated. In this study, (-)-Guaiol was found to induce immunogenic cell death (ICD) in NSCLC in vitro. Using (-)-Guaiol in vivo, we found that (-)-Guaiol could suppress tumor growth, increase dendritic cell activation, and enhance T-cell infiltration. Vaccination experiments suggest that cellular immunoprophylaxis after (-)-Guaiol intervention can suppress tumor growth. Previous studies have found that (-)-Guaiol induces apoptosis and autophagy in NSCLC. Apoptosis and autophagy are closely related to ICD. To explore whether autophagy and apoptosis are involved in (-)-Guaiol-induced ICD, we used inhibitors of apoptosis and autophagy. The results showed that the release of damage-associated molecular patterns (DAMPs) was partly reversed after inhibition of apoptosis and autophagy. In conclusion, these results suggested that the (-)-Guaiol triggers immunogenic cell death and inhibits tumor growth in NSCLC.
Collapse
Affiliation(s)
- Xiaohui Yang
- Department of Oncology, Nantong Hospital of Traditional Chinese Medicine, Nantong, 226000 China
| | - Junling Yang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001 Jiangsu Province China
| | - Xiaoxia Gu
- Department of Oncology, Nantong Hospital of Traditional Chinese Medicine, Nantong, 226000 China
| | - Yuhua Tao
- Department of Oncology, Nantong Hospital of Traditional Chinese Medicine, Nantong, 226000 China
| | - Hongjuan Ji
- Department of Oncology, Nantong Hospital of Traditional Chinese Medicine, Nantong, 226000 China
| | - Xian Miao
- Department of Oncology, Nantong Hospital of Traditional Chinese Medicine, Nantong, 226000 China
| | - Shuijie Shen
- Department of Oncology, Nantong Hospital of Traditional Chinese Medicine, Nantong, 226000 China
| | - Haiyang Zang
- Department of Spleen and Stomach, Nantong Hospital of Traditional Chinese Medicine, Nantong, 226000 China
| |
Collapse
|
5
|
Cheesman MJ, Alcorn S, Verma V, Cock IE. An assessment of the growth inhibition profiles of Hamamelis virginiana L. extracts against Streptococcus and Staphylococcus spp. J Tradit Complement Med 2021; 11:457-465. [PMID: 34522640 PMCID: PMC8427463 DOI: 10.1016/j.jtcme.2021.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/05/2021] [Accepted: 03/26/2021] [Indexed: 11/19/2022] Open
Abstract
Staphylococcal and streptococcal species trigger a wide variety of infections involving epithelial tissues. Virginian witch hazel (WH; Hamamelis virginiana L.; family: Hamamelidaceae) is a plant that has been used traditionally by Native Americans to treat a variety of skin conditions. Extracts from the leaves were examined for their inhibitory effects on these bacterial species. Solvents of different polarity (water, methanol, ethyl acetate, hexane and chloroform) were used to prepare extracts from WH leaves, and the aqueous resuspensions were screened for antibacterial activities using disc diffusion and liquid dilution assays. Extract phytochemical profiles and toxicities were also examined, and combinations of extracts with conventional antibiotics were tested against each bacterial strain. The methanolic and aqueous extracts inhibited the growth of S. oralis, S. pyogenes, S. epidermidis and S. aureus, but not S. mutans. The extracts were especially active against staphylococcal species, with MIC values between 200 and 500 μg/ml. Combinations of active extracts with conventional antibiotics failed to yield beneficial interactions, except for two cases where additive interactions were observed (aqueous WH extract combined with chloramphenicol against S. oralis, and methanolic WH extract combined with ciprofloxacin against S. aureus). Phytochemical assays indicated an abundance of tannins, triterpenoids and phenolics in the water and methanol extracts, with trace amounts of these components in the ethyl acetate extract. Phytochemicals were not detected in hexane and chloroform extracts. Thus, phytochemical abundance in extracts was concordant with antibacterial activities. All extracts were found to be non-toxic in Artemia nauplii assays. These findings indicate the potential for WH leaf extracts for clinical use in treating staphylococcal and streptococcal infections, while substantiating their traditional Native American uses. H. virginiana extracts inhibited the growth of common bacterial skin pathogens. MIC values were determined and indicated strong inhibitory activity. The aqueous extract potentiated the antibacterial activity of chloramphenicol. The methanolic extracts potentiated activity of ciprofloxacin. All extracts were determined to be non-toxic by Artemia nauplii assays.
Collapse
Affiliation(s)
- Matthew J. Cheesman
- School of Pharmacy and Pharmacology, Gold Coast Campus, Griffith University, Australia
- Menzies Health Institute Queensland, Quality Use of Medicines Network, Australia
| | - Sean Alcorn
- School of Pharmacy and Pharmacology, Gold Coast Campus, Griffith University, Australia
- Menzies Health Institute Queensland, Quality Use of Medicines Network, Australia
| | - Vishal Verma
- School of Pharmacy and Pharmacology, Gold Coast Campus, Griffith University, Australia
- Menzies Health Institute Queensland, Quality Use of Medicines Network, Australia
| | - Ian E. Cock
- School of Environment and Science, Nathan Campus, Griffith University, Australia
- Environmental Futures Research Institute, Nathan Campus, Griffith University, Australia
- Corresponding author. School of Natural Sciences, Nathan Campus, Griffith University, 170 Kessels Rd, Nathan, Queensland, 4111, Australia.
| |
Collapse
|
6
|
Weston-Green K, Clunas H, Jimenez Naranjo C. A Review of the Potential Use of Pinene and Linalool as Terpene-Based Medicines for Brain Health: Discovering Novel Therapeutics in the Flavours and Fragrances of Cannabis. Front Psychiatry 2021; 12:583211. [PMID: 34512404 PMCID: PMC8426550 DOI: 10.3389/fpsyt.2021.583211] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 07/08/2021] [Indexed: 01/02/2023] Open
Abstract
"Medicinal cannabis" is defined as the use of cannabis-based products for the treatment of an illness. Investigations of cannabis compounds in psychiatric and neurological illnesses primarily focus on the major cannabinoids, cannabidiol (CBD) and Δ9-tetrahydrocannabinol (Δ9-THC), which are hypothesised to benefit multiple illnesses manifesting cognitive impairment, neurodegeneration and neuro-inflammation, as well as chronic pain, epilepsy and post-traumatic stress disorder, respectively. The cannabis plant contains >500 compounds, including terpenes responsible for the flavour and fragrance profiles of plants. Recently, research has begun providing evidence on the potential use of certain plant-derived terpenes in modern medicine, demonstrating anti-oxidant, anti-inflammatory, and neuroprotective effects of these compounds. This review examined the effects of two key terpenes, pinene and linalool, on parameters relevant to neurological and psychiatric disorders, highlighting gaps in the literature and recommendations for future research into terpene therapeutics. Overall, evidence is mostly limited to preclinical studies and well-designed clinical trials are lacking. Nevertheless, existing data suggests that pinene and linalool are relevant candidates for further investigation as novel medicines for illnesses, including stroke, ischemia, inflammatory and neuropathic pain (including migraine), cognitive impairment (relevant to Alzheimer's disease and ageing), insomnia, anxiety, and depression. Linalool and pinene influence multiple neurotransmitter, inflammatory and neurotrophic signals as well as behaviour, demonstrating psycho-activity (albeit non-intoxicating). Optimising the phytochemical profile of cannabis chemovars to yield therapeutic levels of beneficial terpenes and cannabinoids, such as linalool, pinene and CBD, could present a unique opportunity to discover novel medicines to treat psychiatric and neurological illnesses; however, further research is needed.
Collapse
Affiliation(s)
- Katrina Weston-Green
- Neurohorizons Laboratory, Molecular Horizons and School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- Australian Centre for Cannabinoid Clinical and Research Excellence (ACRE), New Lambton Heights, NSW, Australia
| | - Helen Clunas
- Neurohorizons Laboratory, Molecular Horizons and School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- Australian Centre for Cannabinoid Clinical and Research Excellence (ACRE), New Lambton Heights, NSW, Australia
| | - Carlos Jimenez Naranjo
- Neurohorizons Laboratory, Molecular Horizons and School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- Australian Centre for Cannabinoid Clinical and Research Excellence (ACRE), New Lambton Heights, NSW, Australia
| |
Collapse
|
7
|
Ryan RYM, Fernandez A, Wong Y, Miles JJ, Cock IE. The medicinal plant Tabebuia impetiginosa potently reduces pro-inflammatory cytokine responses in primary human lymphocytes. Sci Rep 2021; 11:5519. [PMID: 33750911 PMCID: PMC7970899 DOI: 10.1038/s41598-021-85211-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/20/2020] [Indexed: 11/09/2022] Open
Abstract
Bark from the Handroanthus impetiginosus (Mart. ex DC.) Mattos (Bignoniaceae) tree has long been used in traditional South American healing practises to treat inflammation. However, its anti-inflammatory activity has not been closely examined. Here we use chemical extraction, qualitative phytochemical examination, toxicity testing and quantitative examination of anti-inflammatory activity on human cells ex vivo. All extracts were found to be nontoxic. We found different extracts exhibited unique cytokine profiles with some extracts outperforming a positive control used in the clinic. These results verify the immunomodulatory activity of Handroanthus impetiginosus (Mart. ex DC.) Mattos (Bignoniaceae) tree bark-derived compounds. Collectively, combining a lack of toxicity and potency in human immune cells supports further fractionation and research.
Collapse
Affiliation(s)
- Rachael Y M Ryan
- Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, Cairns, QLD, 4878, Australia.,Centre for Molecular Therapeutics, James Cook University, Cairns, 4878, Australia.,School of Environment and Science, Griffith University, Brisbane, QLD, 4111, Australia
| | - Alejandra Fernandez
- School of Environment and Science, Griffith University, Brisbane, QLD, 4111, Australia.,Environmental Futures Research Institute, Griffith University, Brisbane, QLD, 4111, Australia
| | - Yide Wong
- Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, Cairns, QLD, 4878, Australia.,Centre for Molecular Therapeutics, James Cook University, Cairns, 4878, Australia.,Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns, 4878, Australia
| | - John J Miles
- Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, Cairns, QLD, 4878, Australia. .,Centre for Molecular Therapeutics, James Cook University, Cairns, 4878, Australia. .,Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns, 4878, Australia.
| | - Ian E Cock
- School of Environment and Science, Griffith University, Brisbane, QLD, 4111, Australia. .,Environmental Futures Research Institute, Griffith University, Brisbane, QLD, 4111, Australia.
| |
Collapse
|
8
|
Mazerand C, Cock IE. The Therapeutic Properties of Plants Used Traditionally to Treat Gastrointestinal Disorders on Groote Eylandt, Australia. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:2438491. [PMID: 33224248 PMCID: PMC7671805 DOI: 10.1155/2020/2438491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/10/2020] [Accepted: 10/28/2020] [Indexed: 01/12/2023]
Abstract
The First Australians had well-developed healing systems. Groote Eylandt inhabitants used a variety of plant species to treat diarrhoea and other gastrointestinal illnesses. This study was undertaken to test, identify, and evaluate traditional medicines to treat these conditions against gastrointestinal bacterial, protozoal, and viral pathogens, as well as against cancer cell proliferation. Six plant species (Buchanania obovata Engl., Casuarina equisetifolia L., Eucalyptus tetrodonta F. Muell., Planchonia careya (F. Muell.) R. Knuth, Terminalia carpentariae C. T. White, and Vigna vexillata (L.) A. Rich.) were selected from a survey of a panel of elders from the Warnindhilyagwa tribe and compared with the published literature. Decoctions prepared according to traditional methods were screened for growth inhibitory activity of a panel of diarrhoea-causing bacterial pathogens by disc diffusion and liquid dilution MIC assays. Inhibitory activity against the gastrointestinal protozoal parasite Giardia duodenalis and antiproliferative activity against human colorectal (Caco2) and cervical (HeLa) cancer cell lines were evaluated using MTS-based colorimetric cell proliferation assays. Preliminary antiviral screening was accomplished using an MS2 bacteriophage plaque reduction assay. Toxicity was evaluated using Artemia franciscana nauplii mortality and HDF cell viability bioassays. All traditional medicines tested inhibited bacterial growth, often with MIC values substantially <1000 μg/mL. T. carpentariae was particularly noteworthy, with MIC values of 230-350 μg/mL against Citrobacter freundii, Salmonella newport, Shigella sonnei, Staphylococcus aureus, and Staphylococcus epidermidis. This species also had MICs 450-950 μg/mL against all other bacterial pathogens. B. obovata Engl. and E. tetrodonta were also good inhibitors of bacterial growth, albeit with substantially higher MIC values than determined for T. carpentariae. The T. carpentariae decoction was also the best inhibitor of MS2 phage replication (IC50 = 427 μg/mL) and Caco2 and HeLa proliferation (IC50 values of 885 and 85 μg/mL, respectively). None of the extracts were particularly strong inhibitors of Giardia duodenalis growth. All decoctions were nontoxic in the Artemia nauplii and HDF cell viability bioassays, indicating their suitability for therapeutic use.
Collapse
Affiliation(s)
- Cécile Mazerand
- School of Environment and Science, Griffith University, Brisbane 4111, Australia
- School of Biology, Ecole de Biologie Industrielle (EBI), Cergy, France
| | - Ian Edwin Cock
- School of Environment and Science, Griffith University, Brisbane 4111, Australia
- Environmental Futures Research Institute, Griffith University, Brisbane, Australia
| |
Collapse
|
9
|
Cheesman MJ, Ilanko A, Blonk B, Cock IE. Developing New Antimicrobial Therapies: Are Synergistic Combinations of Plant Extracts/Compounds with Conventional Antibiotics the Solution? Pharmacogn Rev 2017; 11:57-72. [PMID: 28989242 PMCID: PMC5628525 DOI: 10.4103/phrev.phrev_21_17] [Citation(s) in RCA: 254] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The discovery of penicillin nearly 90 years ago revolutionized the treatment of bacterial disease. Since that time, numerous other antibiotics have been discovered from bacteria and fungi, or developed by chemical synthesis and have become effective chemotherapeutic options. However, the misuse of antibiotics has lessened the efficacy of many commonly used antibiotics. The emergence of resistant strains of bacteria has seriously limited our ability to treat bacterial illness, and new antibiotics are desperately needed. Since the discovery of penicillin, most antibiotic development has focused on the discovery of new antibiotics derived from microbial sources, or on the synthesis of new compounds using existing antibiotic scaffolds to the detriment of other lines of discovery. Both of these methods have been fruitful. However, for a number of reasons discussed in this review, these strategies are unlikely to provide the same wealth of new antibiotics in the future. Indeed, the number of newly developed antibiotics has decreased dramatically in recent years. Instead, a reexamination of traditional medicines has become more common and has already provided several new antibiotics. Traditional medicine plants are likely to provide further new antibiotics in the future. However, the use of plant extracts or pure natural compounds in combination with conventional antibiotics may hold greater promise for rapidly providing affordable treatment options. Indeed, some combinational antibiotic therapies are already clinically available. This study reviews the recent literature on combinational antibiotic therapies to highlight their potential and to guide future research in this field.
Collapse
Affiliation(s)
- Matthew J. Cheesman
- School of Parmacy and Pharmacology, Gold Coast Campus, Griffith University, Parklands Drive, Southport, Queensland 4222, Australia
- Menzies Health Institute Queensland, Quality Use of Medicines Network, Queensland 4222, Australia
| | - Aishwarya Ilanko
- School of Natural Sciences, Nathan Campus, Griffith University, Nathan, Queensland 4111, Australia
| | - Baxter Blonk
- School of Natural Sciences, Nathan Campus, Griffith University, Nathan, Queensland 4111, Australia
| | - Ian E. Cock
- School of Natural Sciences, Nathan Campus, Griffith University, Nathan, Queensland 4111, Australia
- Environmental Futures Research Institute, Nathan Campus, Griffith University, Nathan, Queensland 4111, Australia
| |
Collapse
|