1
|
Zhang Y, Meng S, Yu Y, Bi L, Tian J, Zhang L. Associations of dietary selenium intake with the risk of chronic diseases and mortality in US adults. Front Nutr 2024; 11:1363299. [PMID: 38978702 PMCID: PMC11228278 DOI: 10.3389/fnut.2024.1363299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 06/13/2024] [Indexed: 07/10/2024] Open
Abstract
Objective Selenium is an essential micronutrient and a type of dietary antioxidant. This study aimed to investigate the associations of dietary selenium intake with the risk of human chronic disease [cardiovascular disease (CVD), diabetes mellitus (DM), and cancer] and mortality among US general adults. Methods The dietary and demographic data in this study were collected from the National Health and Nutrition Examination Survey (NHANES) from 2007 to 2018. Death outcomes were determined by associating with the National Death Index (NDI) records as of December 31, 2019. Logistic regression analyses were used to investigate the relationship of selenium intake with the risk of CVD, DM, and cancer. The effect of dietary selenium on all-cause and disease-specific mortality was estimated with restricted cubic spline (RCS) curves based on the univariate and multivariate Cox proportional hazard models. Results Among the 25,801 participants, dietary selenium intake was divided into quintiles (Q1-Q5). After covariate adjustment, the results showed that the participants with higher quintiles (Q4 and Q5) of selenium intake tended to have a low risk of CVD (OR = 0.97, 95% CI: 0.96, 0.99; OR = 0.98, 95% CI: 0.97, 1.00, respectively). Moreover, the RCS curves showed a significant nonlinear association between selenium intake and the risk of all-cause (with a HR of 0.82, 95% CI: 0.68, 0.99) and DM-specific mortality (with the lowest HR of 0.30; 95% CI, 0.12-0.75). Furthermore, we conducted a subgroup analysis and found a negative correlation between the highest quartile of selenium intake and all-cause mortality among participants aged 50 and above (HR = 0.75, 95% CI: 0.60-0.93, p = 0.009). Conclusion Our results indicated that a moderate dietary selenium supplement decreased the risk of CVD and displayed a nonlinear trend in association with the risk of all-cause and DM-specific mortality among US adults. In addition, we found that participants aged 50 and older may benefit from higher selenium intake. However, these findings still need to be confirmed through further mechanism exploration.
Collapse
Affiliation(s)
- Yuchen Zhang
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shixin Meng
- The Basic Medical Sciences College of Nanjing Medical University, Nanjing, China
| | - Yuexin Yu
- Shanghai General Hospital, Shanghai, China
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liangwen Bi
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jihong Tian
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lizhen Zhang
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
2
|
Yadav S, Pandey A, Mali SN. From lab to nature: Recent advancements in the journey of gastroprotective agents from medicinal chemistry to phytotherapy. Eur J Med Chem 2024; 272:116436. [PMID: 38704935 DOI: 10.1016/j.ejmech.2024.116436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 05/07/2024]
Abstract
Peptic ulcer, affecting 10 % of the global population, results from imbalances in gastric juice pH and diminished mucosal defences. Key underlying factors are non-steroidal anti-inflammatory drugs (NSAIDs) and Helicobacter pylori infection, undermining mucosal resistance. Traditional treatments like proton pump inhibitors (PPIs) and histamine-2 (H2) receptor antagonists exhibit drawbacks such as adverse effects, relapses, and drug interactions. This review extensively explores the ethnomedicinal, synthetic and pharmacological facets of various potential peptic ulcer treatments. Rigorous methodologies involving electronic databases, and chemical structure verification via 'PubChem' and 'SciFinder' enhance the review's credibility. The provided information, spanning medicinal insights to intricate pharmacological mechanisms, establishes a robust groundwork for future research and the development of plant-derived or synthetic molecules for peptic ulcers, offering a promising alternative to conventional therapies.
Collapse
Affiliation(s)
- Susmita Yadav
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Anima Pandey
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Suraj N Mali
- School of Pharmacy, D.Y. Patil University (Deemed to be University), Sector 7, Nerul, Navi Mumbai, 400706, India.
| |
Collapse
|
3
|
Gastroprotective Effect of Ethanol Extracts from Bark of Magnolia officinalis on Ethanol-Induced Gastric Mucosal Damage in Rats. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6688414. [PMID: 34159200 PMCID: PMC8187047 DOI: 10.1155/2021/6688414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 12/18/2022]
Abstract
Background. Magnolia officinalis Rehd. and Wils. is widely used in Asian countries because of its multiple pharmacological effects. This study investigated the gastroprotective effect and mechanisms of the ethanol extracts from the bark of Magnolia officinalis (MOE) against ethanol-induced gastric mucosal damage in rats. Methods. MOE was prepared by reflux extraction with 70% ethanol, and its main compounds were analyzed by UPLC-Q-Exactive Orbitrap-MS. DPPH, ABTS, and FRAP methods were used to evaluate the antioxidant capacity of MOE in vitro. The gastroprotective effects of MOE were evaluated by the area of gastric injury, H&E (hematoxylin-eosin), and PAS (periodic acid-Schiff). The mechanism was explored by measuring the levels of cytokines and protein in the NF-κB signaling pathway. Results. 30 compounds were identified from MOE, mainly including lignans and alkaloids. MOE presented a high antioxidant activity in several oxidant in vitro systems. Gastric ulcer index and histological examination showed that MOE reduced ethanol-induced gastric mucosal injury in a dose-dependent manner. MOE pretreatment significantly restored the depleted activity of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) enzymes, reduced malondialdehyde (MDA), and prostaglandin E2 (PGE2) levels in the gastric tissue in rats. In addition, MOE also inhibited the activation of nuclear factor kappa B (NF-κB) pathway and decreased the production of proinflammatory cytokines. Conclusions. The gastroprotective effect of MOE was attributed to the inhibition of oxidative stress and the NF-κB inflammatory pathway. The results provided substantial evidence that MOE could be a promising phytomedicine for gastric ulcer prevention.
Collapse
|
4
|
Nogueira CW, Barbosa NV, Rocha JBT. Toxicology and pharmacology of synthetic organoselenium compounds: an update. Arch Toxicol 2021; 95:1179-1226. [PMID: 33792762 PMCID: PMC8012418 DOI: 10.1007/s00204-021-03003-5] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/10/2021] [Indexed: 12/17/2022]
Abstract
Here, we addressed the pharmacology and toxicology of synthetic organoselenium compounds and some naturally occurring organoselenium amino acids. The use of selenium as a tool in organic synthesis and as a pharmacological agent goes back to the middle of the nineteenth and the beginning of the twentieth centuries. The rediscovery of ebselen and its investigation in clinical trials have motivated the search for new organoselenium molecules with pharmacological properties. Although ebselen and diselenides have some overlapping pharmacological properties, their molecular targets are not identical. However, they have similar anti-inflammatory and antioxidant activities, possibly, via activation of transcription factors, regulating the expression of antioxidant genes. In short, our knowledge about the pharmacological properties of simple organoselenium compounds is still elusive. However, contrary to our early expectations that they could imitate selenoproteins, organoselenium compounds seem to have non-specific modulatory activation of antioxidant pathways and specific inhibitory effects in some thiol-containing proteins. The thiol-oxidizing properties of organoselenium compounds are considered the molecular basis of their chronic toxicity; however, the acute use of organoselenium compounds as inhibitors of specific thiol-containing enzymes can be of therapeutic significance. In summary, the outcomes of the clinical trials of ebselen as a mimetic of lithium or as an inhibitor of SARS-CoV-2 proteases will be important to the field of organoselenium synthesis. The development of computational techniques that could predict rational modifications in the structure of organoselenium compounds to increase their specificity is required to construct a library of thiol-modifying agents with selectivity toward specific target proteins.
Collapse
Affiliation(s)
- Cristina W Nogueira
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica E Toxicológica de Organocalcogênios, Centro de Ciências Naturais E Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil.
| | - Nilda V Barbosa
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica E Toxicológica de Organocalcogênios, Centro de Ciências Naturais E Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil
| | - João B T Rocha
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica E Toxicológica de Organocalcogênios, Centro de Ciências Naturais E Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil.
| |
Collapse
|
5
|
Benvenutti RC, Dalla Vecchia CA, Locateli G, Serpa PZ, Lutinski JA, Rodrigues Junior SA, Corralo V, Gutiérrez MV, Vilegas W, Somensi LB, Longo B, Knihs JF, Mota da Silva L, de Andrade SF, Roman Junior WA. Gastroprotective activity of hydroalcoholic extract of the leaves of Urera baccifera in rodents. JOURNAL OF ETHNOPHARMACOLOGY 2020; 250:112473. [PMID: 31836518 DOI: 10.1016/j.jep.2019.112473] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 12/01/2019] [Accepted: 12/09/2019] [Indexed: 05/24/2023]
Abstract
ETHNOPHARMACOLOGICAL IMPORTANCE The species Urera baccifera (L.) Gaudich. ex Wedd. (Urticaceae) is native to the Americas and is distributed widely throughout Brazil, where it is known as urtiga-brava, urtiga-vermelha, or urtigão. The leaves are often used as anti-inflammatory and antirheumatic agents and for the treatment of gastric disorders. However, the pharmacological mode of action underlying the gastroprotection induced by this species has not been investigated. AIM OF THE STUDY To contribute to the knowledge of the gastroprotective mode of action of the hydroalcoholic extract of U. baccifera (HEU) leaves. MATERIALS AND METHODS Antiulcerogenic effect of HEU against ethanol-induced acute gastric ulcer was evaluated in rats and mice at doses of 3-300 mg/kg. NO-synthase inhibitor (L-NAME), SH blocker (NEM), cyclooxygenase inhibitor (indomethacin) and alpha 2-adrenergic receptor antagonist yohimbine were used to evaluate the participation of cytoprotective factors in HEU gastroprotection. Moreover, the levels of reduced gluthatione (GSH) and cytokines (TNF, IL-6, IL4 and IL-10), as well as the enzymatic activity of gluthatione S-transferase (GST), myeloperoxidase (MPO), superoxide dismutase (SOD) and catalase (CAT) were measure. Moreover, the samples were analyzed histologically and the antisecretory capability of HEU were quantified using pylorus ligated rats. RESULTS The phytochemical analysis of HEU (UPLC/ESI-IT-MS) identified the flavonoids diosmetin and apigenin glucuronide. Furthermore, HEU decreased the occurrence of ethanol-induced ulcers at 30 and 300 mg/kg by 57% and 66%, respectively, compared with the vehicle. The gastroprotective effects were accompanied by increased GSH levels and GST and SOD activity as well as by reduced MPO activity in vivo and in vitro, revealing antioxidant effects and inhibition of neutrophil infiltration. The beneficial effects of 30 and 300 mg/kg HEU were also observed upon histological analyses. Regarding the mode of action, the gastroprotective effect of HEU was abolished by the pre-administration of L-NAME, NEM, indomethacin or yohimbine. Moreover, HEU was able to decrease the IL-6, IL-4 and IL-10 in ulcerated tissue, as well as the pepsin activity of the gastric juice in pylorus-ligated rats. CONCLUSION Together, the results confirmed that the gastroprotection elicited by HEU was due reduction in oxidative damage, neutrophil migration, and peptic activity. This work validates the popular use of U. baccifera to treat gastric disorders and supports important future research for the identification of gastroprotective molecules from this species.
Collapse
Affiliation(s)
- Régis Carlos Benvenutti
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Comunitária da Região de Chapecó, CEP 89809-900, Chapecó, SC, Brazil
| | - Cristian Alex Dalla Vecchia
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Comunitária da Região de Chapecó, CEP 89809-900, Chapecó, SC, Brazil
| | - Gelvani Locateli
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Comunitária da Região de Chapecó, CEP 89809-900, Chapecó, SC, Brazil
| | - Patrícia Zanotelli Serpa
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Comunitária da Região de Chapecó, CEP 89809-900, Chapecó, SC, Brazil
| | - Junir Antonio Lutinski
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Comunitária da Região de Chapecó, CEP 89809-900, Chapecó, SC, Brazil
| | | | - Vanessa Corralo
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Comunitária da Região de Chapecó, CEP 89809-900, Chapecó, SC, Brazil
| | - Max Vidal Gutiérrez
- Instituto de Biociências, Universidade Estadual Paulista, CEP 70770-901, São Vicente, SP, Brazil
| | - Wagner Vilegas
- Instituto de Biociências, Universidade Estadual Paulista, CEP 70770-901, São Vicente, SP, Brazil
| | - Lincon Bordignon Somensi
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí, CEP 88302-202, Itajaí, SC, Brazil
| | - Bruna Longo
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí, CEP 88302-202, Itajaí, SC, Brazil
| | - Jessica Ferreira Knihs
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí, CEP 88302-202, Itajaí, SC, Brazil
| | - Luisa Mota da Silva
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí, CEP 88302-202, Itajaí, SC, Brazil
| | - Sérgio Faloni de Andrade
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí, CEP 88302-202, Itajaí, SC, Brazil
| | - Walter Antônio Roman Junior
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Comunitária da Região de Chapecó, CEP 89809-900, Chapecó, SC, Brazil.
| |
Collapse
|