1
|
Qian WJ, Yan JS, Gang XY, Xu L, Shi S, Li X, Na FJ, Cai LT, Li HM, Zhao MF. Intercellular adhesion molecule-1 (ICAM-1): From molecular functions to clinical applications in cancer investigation. Biochim Biophys Acta Rev Cancer 2024; 1879:189187. [PMID: 39317271 DOI: 10.1016/j.bbcan.2024.189187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024]
Abstract
Intercellular adhesion molecule-1 (ICAM-1) is a versatile molecule that plays a critical role in various physiological and pathological processes, particularly in tumor development where its impact is bidirectional. On the one hand, it augments the immune response by promoting immune cell migration, infiltration, and the formation of immunological synapses, thus facilitating potent antitumor effects. Simultaneously, it contributes to tumor immune evasion and influences metastasis by mediating transendothelial migration (TEM), epithelial-to-mesenchymal transition (EMT), and epigenetic modification of tumor cells. Despite its significant potential, the full clinical utility of ICAM-1 has yet to be fully realized. In this review, we thoroughly examine recent advancements in understanding the role of ICAM-1 in tumor development, its relevance in predicting therapeutic efficacy and prognosis, as well as the progress in clinical translational research on anti-ICAM-1-based therapies, encompassing including monoclonal antibodies, immunotherapy, antibody-drug conjugate (ADC), and conventional treatments. By shedding light on these innovative strategies, we aim to underscore ICAM-1's significance as a valuable and multifaceted target for cancer treatment, igniting enthusiasm for further research and facilitating translation into clinical applications.
Collapse
Affiliation(s)
- Wen-Jing Qian
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jin-Shan Yan
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang 110001, China
| | - Xiao-Yu Gang
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang 110001, China
| | - Lu Xu
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang 110001, China
| | - Sha Shi
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang 110001, China
| | - Xin Li
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang 110001, China
| | - Fang-Jian Na
- Network Information Center, China Medical University, Shenyang, China
| | - Lu-Tong Cai
- Psychological Medicine, Shenyang Medical College, Shenyang, China
| | - He-Ming Li
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang 110001, China; Guangdong Association of Clinical Trials (GACT)/Chinese Thoracic Oncology Group (CTONG) and Guangdong Provincial Key Lab of Translational Medicine in Lung Cancer, Guangzhou, China.
| | - Ming-Fang Zhao
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
2
|
Lee S, Kim H, Kim BS, Chae S, Jung S, Lee JS, Yu J, Son K, Chung M, Kim JK, Hwang D, Baek SH, Jeon NL. Angiogenesis-on-a-chip coupled with single-cell RNA sequencing reveals spatially differential activations of autophagy along angiogenic sprouts. Nat Commun 2024; 15:230. [PMID: 38172108 PMCID: PMC10764361 DOI: 10.1038/s41467-023-44427-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 12/13/2023] [Indexed: 01/05/2024] Open
Abstract
Several functions of autophagy associated with proliferation, differentiation, and migration of endothelial cells have been reported. Due to lack of models recapitulating angiogenic sprouting, functional heterogeneity of autophagy in endothelial cells along angiogenic sprouts remains elusive. Here, we apply an angiogenesis-on-a-chip to reconstruct 3D sprouts with clear endpoints. We perform single-cell RNA sequencing of sprouting endothelial cells from our chip to reveal high activation of autophagy in two endothelial cell populations- proliferating endothelial cells in sprout basements and stalk-like endothelial cells near sprout endpoints- and further the reciprocal expression pattern of autophagy-related genes between stalk- and tip-like endothelial cells near sprout endpoints, implying an association of autophagy with tip-stalk cell specification. Our results suggest a model describing spatially differential roles of autophagy: quality control of proliferating endothelial cells in sprout basements for sprout elongation and tip-stalk cell specification near sprout endpoints, which may change strategies for developing autophagy-based anti-angiogenic therapeutics.
Collapse
Affiliation(s)
- Somin Lee
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, South Korea
- Institute of Advanced Machines and Design, Seoul National University, Seoul, South Korea
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Hyunkyung Kim
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, South Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea
| | - Bum Suk Kim
- Department of New Biology, DGIST, Daegu, South Korea
| | - Sehyun Chae
- Neurovascular Unit Research Group, Korea Brain Research Institute, Daegu, South Korea
| | - Sangmin Jung
- Department of Mechanical Engineering, Seoul National University, Seoul, South Korea
| | - Jung Seub Lee
- Department of Mechanical Engineering, Seoul National University, Seoul, South Korea
| | - James Yu
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, South Korea
| | - Kyungmin Son
- Department of Mechanical Engineering, Seoul National University, Seoul, South Korea
| | - Minhwan Chung
- Department of Mechanical Engineering, Seoul National University, Seoul, South Korea
| | - Jong Kyoung Kim
- Department of New Biology, DGIST, Daegu, South Korea.
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, South Korea.
| | - Daehee Hwang
- School of Biological Sciences, Seoul National University, Seoul, South Korea.
| | - Sung Hee Baek
- Creative Research Initiatives Center for Epigenetic Code and Diseases, School of Biological Sciences, Seoul National University, Seoul, South Korea.
| | - Noo Li Jeon
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, South Korea.
- Institute of Advanced Machines and Design, Seoul National University, Seoul, South Korea.
- Department of Mechanical Engineering, Seoul National University, Seoul, South Korea.
- Qureator, Inc., San Diego, CA, USA.
| |
Collapse
|
3
|
Poonasri M, Mankhong S, Chiranthanut N, Srisook K. 4-methoxycinnamyl p-coumarate reduces neuroinflammation by blocking NF-κB, MAPK, and Akt/GSK-3β pathways and enhancing Nrf2/HO-1 signaling cascade in microglial cells. Biomed Pharmacother 2023; 168:115808. [PMID: 37922650 DOI: 10.1016/j.biopha.2023.115808] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023] Open
Abstract
The active compound, 4-methoxycinnamyl p-coumarate (MCC), derived from the rhizome of Etlingera pavieana (Pierre ex Gagnep) R.M.Sm., has been shown to exert anti-inflammatory effects in several inflammatory models. However, its effects on microglial cells remain elusive. In the current study, we aimed to investigate the anti-neuroinflammatory activities of MCC and determine the potential mechanisms underlying its action on lipopolysaccharide (LPS)-induced BV2 microglial cells. Our results revealed that MCC significantly reduced the secretion of nitric oxide (NO) and prostaglandin E2, concomitantly inhibiting the expression levels of inducible NO synthase and cyclooxygenase-2 mRNA and proteins. Additionally, MCC effectively decreased the production of reactive oxygen species in LPS-induced BV2 microglial cells. MCC also attenuates the activation of NF-κB by suppressing the phosphorylation of IκBα and NF-κB p65 subunits and by blocking the nuclear translocation of NF-κB p65 subunits. Furthermore, MCC significantly reduced the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (MAPK), and protein kinase B (Akt)/glycogen synthase kinase-3β (GSK-3β). In addition, MCC markedly increased the expression of heme oxygenase-1 (HO-1) by upregulating the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. Collectively, our findings suggest that the anti-inflammatory activities of MCC could be attributed to its ability to suppress the activation of NF-κB, MAPK, and Akt/GSK-3β while enhancing that of Nrf2-mediated HO-1. Accordingly, MCC has promising therapeutic potential to treat neuroinflammation-related diseases.
Collapse
Affiliation(s)
- Mayuree Poonasri
- Department of Biochemistry and Research Unit of Natural Bioactive Compounds for Healthcare Products Development, Faculty of Science, Burapha University, Chonburi 20131, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Burapha University, Chonburi, Thailand
| | - Sakulrat Mankhong
- Department of Development and Stem Cells, Institute of Genetics and Molecular and Cellular Biology (IGBMC), 1 Rue Laurent Fries, 67404 Illkirch, France
| | - Natthakarn Chiranthanut
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Klaokwan Srisook
- Department of Biochemistry and Research Unit of Natural Bioactive Compounds for Healthcare Products Development, Faculty of Science, Burapha University, Chonburi 20131, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Burapha University, Chonburi, Thailand.
| |
Collapse
|
4
|
Acute and subchronic oral toxicity assessment of extract from Etlingera pavieana rhizomes. Toxicol Rep 2022; 9:1472-1483. [DOI: 10.1016/j.toxrep.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 01/26/2022] [Accepted: 07/06/2022] [Indexed: 11/19/2022] Open
|
5
|
Convenient synthesis of long alkyl-chain triazolylglycosides using ionic liquid as dual promoter-solvent: Readily access to non-ionic triazolylglycoside surfactants for evaluation of cytotoxic activity. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153325] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|