1
|
Yurkina DM, Shcherbakov KA, Romanova EA, Tvorogova AV, Feoktistov AM, Georgiev GP, Yashin DV, Sashchenko LP. Shortened PGLYRP1 Peptides Regulate Antitumor Activity of Cytotoxic Lymphocytes via TREM-1 Receptor: From Biology to Bioinformatics. Int J Mol Sci 2025; 26:4069. [PMID: 40362307 PMCID: PMC12071940 DOI: 10.3390/ijms26094069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/14/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
The pro-inflammatory immune response plays an important role in protecting the body from pathogens and tumors. In this study, we were able to identify three peptides of the innate immunity protein PGLYRP1 (Tag7) that could regulate the activity of the TREM-1 receptor. TREM-1 receptor activation on monocytes triggers the appearance of antitumor lymphocytes. All three peptides studied (17.0, N9, and N15) bind with the TREM-1 receptor with the Kds 1.32 ± 0.2 nM, 9.66 ± 0.5 nM, and 7.43 ± 0.4 nM, respectively. An N9 peptide inhibiting the activity of the receptor was identified in addition to two peptides (N9 and N15) that jointly trigger the activation of the receptor. The conducted molecular docking study revealed amino acid residues (Ile57, Ile58, Glu106, Ser108, Leu110, Tyr116, Pro118, Pro119, Arg130, and Val 132), necessary for various functions of peptides, providing important knowledge for understanding the mechanism of activation of this receptor that can also serve as a basis for the development of therapeutic drugs to regulate its activity in the treatment of autoimmune diseases and tumors.
Collapse
Affiliation(s)
- Daria M. Yurkina
- Institute of Gene Biology (RAS), 119334 Moscow, Russia; (D.M.Y.); (K.A.S.); (E.A.R.); (A.V.T.); (A.M.F.); (G.P.G.); (L.P.S.)
| | - Kirill A. Shcherbakov
- Institute of Gene Biology (RAS), 119334 Moscow, Russia; (D.M.Y.); (K.A.S.); (E.A.R.); (A.V.T.); (A.M.F.); (G.P.G.); (L.P.S.)
| | - Elena A. Romanova
- Institute of Gene Biology (RAS), 119334 Moscow, Russia; (D.M.Y.); (K.A.S.); (E.A.R.); (A.V.T.); (A.M.F.); (G.P.G.); (L.P.S.)
| | - Anna V. Tvorogova
- Institute of Gene Biology (RAS), 119334 Moscow, Russia; (D.M.Y.); (K.A.S.); (E.A.R.); (A.V.T.); (A.M.F.); (G.P.G.); (L.P.S.)
| | - Alexey M. Feoktistov
- Institute of Gene Biology (RAS), 119334 Moscow, Russia; (D.M.Y.); (K.A.S.); (E.A.R.); (A.V.T.); (A.M.F.); (G.P.G.); (L.P.S.)
- Institute of Molecular Biology (RAS), 119334 Moscow, Russia
| | - Georgii P. Georgiev
- Institute of Gene Biology (RAS), 119334 Moscow, Russia; (D.M.Y.); (K.A.S.); (E.A.R.); (A.V.T.); (A.M.F.); (G.P.G.); (L.P.S.)
| | - Denis V. Yashin
- Institute of Gene Biology (RAS), 119334 Moscow, Russia; (D.M.Y.); (K.A.S.); (E.A.R.); (A.V.T.); (A.M.F.); (G.P.G.); (L.P.S.)
| | - Lidia P. Sashchenko
- Institute of Gene Biology (RAS), 119334 Moscow, Russia; (D.M.Y.); (K.A.S.); (E.A.R.); (A.V.T.); (A.M.F.); (G.P.G.); (L.P.S.)
| |
Collapse
|
2
|
Steenvoorden TS, de Kruijf KC, Appelman B, Moggre B, Bos LDJ, Vlaar APJ, Douma RA, Uhel F, Kers J, Oppelaar JJ, van Vught LA, Beudel M, Elbers PWG, Wiersinga WJ, van der Poll T, Vogt L, Peters-Sengers H. Host Response Protein Biomarkers Indicative of Persistent Acute Kidney Injury in Critically Ill COVID-19 Patients. Crit Care Explor 2025; 7:e1222. [PMID: 40079888 PMCID: PMC11908758 DOI: 10.1097/cce.0000000000001222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025] Open
Abstract
IMPORTANCE Sepsis-related host-response anomalies contribute to acute kidney injury (AKI) duration. Data on the host-response specific to COVID-19-associated AKI (COVID-AKI) in critically ill patients is limited. OBJECTIVES We postulated that persistent COVID-AKI (> 48 hr) differs in host response from transient (< 48 hr) or no COVID-AKI. DESIGN, SETTING, AND PARTICIPANTS This prospective biomarker study observed patients with severe acute respiratory syndrome coronavirus 2 infection, without chronic kidney disease, in three ICUs from March 2020 to July 2020. AKI was assessed by hourly urine output and daily plasma creatinine. MAIN OUTCOMES AND MEASURES Luminex and enzyme-linked immunosorbent assay were used to analyze 48 plasma protein biomarkers across six pathophysiological domains, which were tested with mixed-effects models. RESULTS Of 177 included patients, 106 (59.9%) had AKI within the first 48 hours of admission, of whom 76 (71.7%) had persistent AKI and 30 (28.3%) transient AKI. Those with persistent AKI often had obesity, hypertension, and a higher Sequential Organ Failure Assessment score due to the renal component. Longitudinal analyses revealed that seven proteins were elevated in persistent AKI compared with no AKI. These were related to inflammation (triggering receptor expressed on myeloid cells 1, p < 0.001; tumor necrosis factor receptor 1, p < 0.001; procalcitonin, p = 0.001), complement activation (mannan-binding lectin serine protease-2, p = 0.001), kidney dysfunction (cystatin C, p < 0.001; neutrophil gelatinase-associated lipocalin, p < 0.001), and lung dysfunction (Clara cell secretory protein 16, p < 0.001). AKI (duration) was not associated with differences in the cytokine signaling, endothelial cell activation, or coagulation domains. CONCLUSIONS AND RELEVANCE In contrast with sepsis-associated AKI, primarily inflammation-related biomarker levels correlated with COVID-AKI persistence. This study offers insights into COVID-AKI and may guide approaches to mitigate its persistence.
Collapse
Affiliation(s)
- Thei S. Steenvoorden
- Department of Internal Medicine Nephrology Section, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Koen C. de Kruijf
- Department of Internal Medicine Nephrology Section, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Brent Appelman
- Center for Experimental and Molecular Medicine, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- The Amsterdam Institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Bas Moggre
- Department of Internal Medicine Nephrology Section, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Lieuwe D. J. Bos
- Department of Intensive Care, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Alexander P. J. Vlaar
- Department of Intensive Care, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Reneé A. Douma
- Department of Internal Medicine, Flevo Hospital, Almere, The Netherlands
| | - Fabrice Uhel
- Center for Experimental and Molecular Medicine, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- The Amsterdam Institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jesper Kers
- Department of Pathology, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Pathology, Leiden Transplant Center, Leiden University Medical Center, Leiden, The Netherlands
- Van ‘t Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Jetta J. Oppelaar
- Department of Internal Medicine Nephrology Section, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Lonneke A. van Vught
- Center for Experimental and Molecular Medicine, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Intensive Care, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Martijn Beudel
- Department of Neurology, Amsterdam University Medical Centers, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | - Paul W. G. Elbers
- Department of Intensive Care, Amsterdam UMC, Location VU Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - W. Joost Wiersinga
- Center for Experimental and Molecular Medicine, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- The Amsterdam Institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Division of Infectious Diseases, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Tom van der Poll
- Center for Experimental and Molecular Medicine, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- The Amsterdam Institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Division of Infectious Diseases, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Liffert Vogt
- Department of Internal Medicine Nephrology Section, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Hessel Peters-Sengers
- Center for Experimental and Molecular Medicine, Amsterdam UMC, Location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- The Amsterdam Institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Epidemiology and Data Science, Amsterdam UMC, Location VU, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Carandina A, Fanti G, Carminati A, Baroni M, Salafia G, Arosio B, Macchi C, Ruscica M, Vicenzi M, Carugo S, Borghi F, Spinazzè A, Cavallo DM, Tobaldini E, Montano N, Bonzini M. Indoor air pollution impacts cardiovascular autonomic control during sleep and the inflammatory profile. ENVIRONMENTAL RESEARCH 2024; 260:119783. [PMID: 39142457 DOI: 10.1016/j.envres.2024.119783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/21/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024]
Abstract
The present study explores the modifications of cardiovascular autonomic control (CAC) during wake and sleep time and the systemic inflammatory profile associated with exposure to indoor air pollution (IAP) in a cohort of healthy subjects. Twenty healthy volunteers were enrolled. Indoor levels of fine particulate matter (PM2.5), nitrogen dioxide (NO2) and volatile organic compounds (VOCs) were monitored using a portable detector for 7 days. Together, a 7-day monitoring was performed through a wireless patch that continuously recorded electrocardiogram, respiratory activity and actigraphy. Indexes of CAC during wake and sleep time were derived from the biosignals: heart rate and low-frequency to high-frequency ratio (LF/HF), index of sympathovagal balance with higher values corresponding to a predominance of the sympathetic branch. Cyclic variation of heart rate index (CVHRI events/hour) during sleep, a proxy for the evaluation of sleep apnea, was assessed for each night. After the monitoring, blood samples were collected to assess the inflammatory profile. Regression and correlation analyses were performed. A positive association between VOC exposure and the CVHRI (Δ% = +0.2% for 1 μg/m3 VOCs, p = 0.008) was found. The CVHRI was also positively associated with LF/HF during sleep, thus higher CVHRI values corresponded to a shift of the sympathovagal balance towards a sympathetic predominance (r = 0.52; p = 0.018). NO2 exposure was positively associated with both the pro-inflammatory biomarker TREM-1 and the anti-inflammatory biomarker IL-10 (Δ% = +1.2% and Δ% = +2.4%, for 1 μg/m3 NO2; p = 0.005 and p = 0.022, respectively). The study highlights a possible causal relationship between IAP exposure and higher risk of sleep apnea events, associated with impaired CAC during sleep, and a pro-inflammatory state counterbalanced by an increased anti-inflammatory response in healthy subjects. This process may be disrupted in vulnerable populations, leading to a harmful chronic pro-inflammatory profile. Thus, IAP may emerge as a critical and often neglected risk factor for the public health that can be addressed through targeted preventive interventions.
Collapse
Affiliation(s)
- Angelica Carandina
- Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza, 2023-2027, University of Milan, Milan, Italy; Department of Internal Medicine, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Giacomo Fanti
- Department of Science and High Technology, University of Insubria, Como, Italy
| | - Alessio Carminati
- Department of Science and High Technology, University of Insubria, Como, Italy
| | - Michele Baroni
- Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza, 2023-2027, University of Milan, Milan, Italy; Department of Cardio-Thoracic-Vascular Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Greta Salafia
- Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza, 2023-2027, University of Milan, Milan, Italy
| | - Beatrice Arosio
- Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza, 2023-2027, University of Milan, Milan, Italy
| | - Chiara Macchi
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Massimiliano Ruscica
- Department of Cardio-Thoracic-Vascular Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Marco Vicenzi
- Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza, 2023-2027, University of Milan, Milan, Italy; Department of Cardio-Thoracic-Vascular Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefano Carugo
- Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza, 2023-2027, University of Milan, Milan, Italy; Department of Cardio-Thoracic-Vascular Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesca Borghi
- Department of Science and High Technology, University of Insubria, Como, Italy; Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Andrea Spinazzè
- Department of Science and High Technology, University of Insubria, Como, Italy
| | | | - Eleonora Tobaldini
- Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza, 2023-2027, University of Milan, Milan, Italy; Department of Internal Medicine, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.
| | - Nicola Montano
- Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza, 2023-2027, University of Milan, Milan, Italy; Department of Internal Medicine, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Matteo Bonzini
- Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza, 2023-2027, University of Milan, Milan, Italy; Occupational Health Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
4
|
Pacheco-García U, Varela-López E, Serafín-López J. Immune Stimulation with Imiquimod to Best Face SARS-CoV-2 Infection and Prevent Long COVID. Int J Mol Sci 2024; 25:7661. [PMID: 39062904 PMCID: PMC11277483 DOI: 10.3390/ijms25147661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Through widespread immunization against SARS-CoV-2 prior to or post-infection, a substantial segment of the global population has acquired both humoral and cellular immunity, and there has been a notable reduction in the incidence of severe and fatal cases linked to this virus and accelerated recovery times for those infected. Nonetheless, a significant demographic, comprising around 20% to 30% of the adult population, remains unimmunized due to diverse factors. Furthermore, alongside those recovered from the infection, there is a subset of the population experiencing persistent symptoms referred to as Long COVID. This condition is more prevalent among individuals with underlying health conditions and immune system impairments. Some Long COVID pathologies stem from direct damage inflicted by the viral infection, whereas others arise from inadequate immune system control over the infection or suboptimal immunoregulation. There are differences in the serum cytokines and miRNA profiles between infected individuals who develop severe COVID-19 or Long COVID and those who control adequately the infection. This review delves into the advantages and constraints associated with employing imiquimod in human subjects to enhance the immune response during SARS-CoV-2 immunization. Restoration of the immune system can modify it towards a profile of non-susceptibility to SARS-CoV-2. An adequate immune system has the potential to curb viral propagation, mitigate symptoms, and ameliorate the severe consequences of the infection.
Collapse
Affiliation(s)
- Ursino Pacheco-García
- Department of Cardio-Renal Pathophysiology, Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City 14080, Mexico
| | - Elvira Varela-López
- Laboratory of Translational Medicine, Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City 14080, Mexico;
| | - Jeanet Serafín-López
- Department of Immunology, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City 11340, Mexico;
| |
Collapse
|
5
|
Agrawal S, Tran MT, Jennings TSK, Soliman MMH, Heo S, Sasson B, Rahmatpanah F, Agrawal A. Changes in the innate immune response to SARS-CoV-2 with advancing age in humans. Immun Ageing 2024; 21:21. [PMID: 38515147 PMCID: PMC10956333 DOI: 10.1186/s12979-024-00426-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 03/12/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUND Advancing age is a major risk factor for respiratory viral infections. The infections are often prolonged and difficult to resolve resulting hospitalizations and mortality. The recent COVID-19 pandemic has highlighted this as elderly subjects have emerged as vulnerable populations that display increased susceptibility and severity to SARS-CoV-2. There is an urgent need to identify the probable mechanisms underlying this to protect against future outbreaks of such nature. Innate immunity is the first line of defense against viruses and its decline impacts downstream immune responses. This is because dendritic cells (DCs) and macrophages are key cellular elements of the innate immune system that can sense and respond to viruses by producing inflammatory mediators and priming CD4 and CD8 T-cell responses. RESULTS We investigated the changes in innate immune responses to SARS-CoV-2 as a function of age. Our results using human PBMCs from aged, middle-aged, and young subjects indicate that the activation of DCs and monocytes in response to SARS-CoV-2 is compromised with age. The impairment is most apparent in pDCs where both aged and middle-aged display reduced responses. The secretion of IL-29 that confers protection against respiratory viruses is also decreased in both aged and middle-aged subjects. In contrast, inflammatory mediators associated with severe COVID-19 including CXCL-8, TREM-1 are increased with age. This is also apparent in the gene expression data where pathways related host defense display an age dependent decrease with a concomitant increase in inflammatory pathways. Not only are the inflammatory pathways and mediators increased after stimulation with SARS-CoV-2 but also at homeostasis. In keeping with reduced DC activation, the induction of cytotoxic CD8 T cells is also impaired in aged subjects. However, the CD8 T cells from aged subjects display increased baseline activation in accordance with the enhanced baseline inflammation. CONCLUSIONS Our results demonstrate a decline in protective anti-viral immune responses and increase in damaging inflammatory responses with age indicating that dysregulated innate immune responses play a significant role in the increased susceptibility of aged subjects to COVID-19. Furthermore, the dysregulation in immune responses develops early on as middle-aged demonstrate several of these changes.
Collapse
Affiliation(s)
- Sudhanshu Agrawal
- Division of Basic and Clinical Immunology, Department of Medicine, University of California Irvine, Irvine, CA, 92697, USA
| | - Michelle Thu Tran
- Division of Basic and Clinical Immunology, Department of Medicine, University of California Irvine, Irvine, CA, 92697, USA
| | | | - Marlaine Maged Hosny Soliman
- Division of Basic and Clinical Immunology, Department of Medicine, University of California Irvine, Irvine, CA, 92697, USA
| | - Sally Heo
- Division of Basic and Clinical Immunology, Department of Medicine, University of California Irvine, Irvine, CA, 92697, USA
| | - Bobby Sasson
- Department of Medicine, University of California Irvine, Irvine, CA, 92697, USA
| | - Farah Rahmatpanah
- Department of Pathology, University of California Irvine, Irvine, CA, 92697, USA
| | - Anshu Agrawal
- Division of Basic and Clinical Immunology, Department of Medicine, University of California Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
6
|
Matos ADO, Dantas PHDS, Queiroz HAGDB, Silva-Sales M, Sales-Campos H. TREM-2: friend or foe in infectious diseases? Crit Rev Microbiol 2024; 50:1-19. [PMID: 36403150 DOI: 10.1080/1040841x.2022.2146481] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/07/2022] [Indexed: 11/21/2022]
Abstract
The triggering receptor expressed on myeloid cells-2 (TREM-2) is an immune receptor expressed on immune and non-immune cells, more frequently investigated in neurodegenerative disorders and considered a marker for microglia activation. In infectious diseases, the receptor was initially believed to be an anti-inflammatory molecule, opposing the inflammation triggered by TREM-1. Currently, TREM-2 is associated with different aspects in response to infectious stimuli, including the induction of bacterial phagocytosis and clearance, containment of exacerbated pro-inflammatory responses, induction of M2 differentiation and activation of Th1 lymphocytes, besides of neurological damage after viral infection. Here, we present and discuss results published in the last two decades regarding the expression, activation and functions of TREM-2 during the course of bacterial, viral, fungal and parasitic infections. A surprisingly plasticity was observed regarding the roles of the receptor in the aforementioned contexts, which largely varied according to the cell/organ and pathogen type, besides influencing disease outcome. Therefore, our review aimed to critically overview the role of TREM-2 in infectious diseases, highlighting its potential to be used as a clinical biomarker or therapeutic target.
Collapse
Affiliation(s)
| | | | | | - Marcelle Silva-Sales
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Brazil
| | | |
Collapse
|
7
|
Van Singer M, Brahier T, Koch J, Hugli PO, Weckman AM, Zhong K, Kain TJ, Leligdowicz A, Bernasconi E, Ceschi A, Parolari S, Vuichard-Gysin D, Kain KC, Albrich WC, Boillat-Blanco N. Validation of sTREM-1 and IL-6 based algorithms for outcome prediction of COVID-19. BMC Infect Dis 2023; 23:630. [PMID: 37752433 PMCID: PMC10523774 DOI: 10.1186/s12879-023-08630-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/19/2023] [Indexed: 09/28/2023] Open
Abstract
BACKGROUND A prospective observational cohort study of COVID-19 patients in a single Emergency Department (ED) showed that sTREM-1- and IL-6-based algorithms were highly predictive of adverse outcome (Van Singer et al. J Allergy Clin Immunol 2021). We aim to validate the performance of these algorithms at ED presentation. METHODS This multicentric prospective observational study of PCR-confirmed COVID-19 adult patients was conducted in the ED of three Swiss hospitals. Data of the three centers were retrospectively completed and merged. We determined the predictive accuracy of the sTREM-1-based algorithm for 30-day intubation/mortality. We also determined the performance of the IL-6-based algorithm using data from one center for 30-day oxygen requirement. RESULTS 373 patients were included in the validation cohort, 139 (37%) in Lausanne, 93 (25%) in St.Gallen and 141 (38%) in EOC. Overall, 18% (93/373) patients died or were intubated by day 30. In Lausanne, 66% (92/139) patients required oxygen by day 30. The predictive accuracy of sTREM-1 and IL-6 were similar compared to the derivation cohort. The sTREM-1-based algorithm confirmed excellent sensitivity (90% versus 100% in the derivation cohort) and negative predictive value (94% versus 100%) for 30-day intubation/mortality. The IL-6-based algorithm performance was acceptable with a sensitivity of 85% versus 98% in the derivation cohort and a negative predictive value of 60% versus 92%. CONCLUSION The sTREM-1 algorithm demonstrated good reproducibility. A prospective randomized controlled trial, comparing outcomes with and without the algorithm, is necessary to assess its safety and impact on hospital and ICU admission rates. The IL-6 algorithm showed acceptable validity in a single center and need additional validation before widespread implementation.
Collapse
Affiliation(s)
- Mathias Van Singer
- Infectious Diseases Service, University Hospital of Lausanne, Lausanne, Switzerland.
| | - Thomas Brahier
- Infectious Diseases Service, University Hospital of Lausanne, Lausanne, Switzerland
| | - Jana Koch
- Division of Infectious Diseases and Hospital Epidemiology, Cantonal Hospital St.Gallen, St.Gallen, Switzerland
| | - Pr Olivier Hugli
- Emergency Department, University Hospital of Lausanne, Lausanne, Switzerland
| | - Andrea M Weckman
- Tropical Disease Unit, Department of Medicine, Sandra Rotman Centre for Global Health, University of Toronto, University Health Network-Toronto General, Toronto, ON, Canada
| | - Kathleen Zhong
- Tropical Disease Unit, Department of Medicine, Sandra Rotman Centre for Global Health, University of Toronto, University Health Network-Toronto General, Toronto, ON, Canada
| | - Taylor J Kain
- Tropical Disease Unit, Department of Medicine, Sandra Rotman Centre for Global Health, University of Toronto, University Health Network-Toronto General, Toronto, ON, Canada
| | | | - Enos Bernasconi
- Division of infectious diseases, Ente Ospedaliero Cantonale, University of Geneva and University of Southern Switzerland, Lugano, Lugano, Switzerland
| | - Alessandro Ceschi
- Division of infectious diseases, Ente Ospedaliero Cantonale, University of Geneva and University of Southern Switzerland, Lugano, Lugano, Switzerland
- Ente Ospedaliero Cantonale (EOC), University Hospital Zurich and University of Southern Switzerland, Lugano, Switzerland
| | - Sara Parolari
- Department of Infectious Diseases and Hospital Epidemiology, Cantonal Hospital Muensterlingen, Thurgau Hospital Group, Muensterlingen, Switzerland
| | - Danielle Vuichard-Gysin
- Department of Infectious Diseases and Hospital Epidemiology, Cantonal Hospital Muensterlingen, Thurgau Hospital Group, Muensterlingen, Switzerland
| | - Kevin C Kain
- Tropical Disease Unit, Department of Medicine, Sandra Rotman Centre for Global Health, University of Toronto, University Health Network-Toronto General, Toronto, ON, Canada
| | - Werner C Albrich
- Division of Infectious Diseases and Hospital Epidemiology, Cantonal Hospital St.Gallen, St.Gallen, Switzerland
| | | |
Collapse
|
8
|
Resende ADS, de Oliveira YLM, de Franca MNF, Magalhães LS, Correa CB, Fukutani KF, Lipscomb MW, de Moura TR. Obesity in Severe COVID-19 Patients Has a Distinct Innate Immune Phenotype. Biomedicines 2023; 11:2116. [PMID: 37626613 PMCID: PMC10452870 DOI: 10.3390/biomedicines11082116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/13/2023] [Accepted: 07/23/2023] [Indexed: 08/27/2023] Open
Abstract
Obesity alters the capacity of effective immune responses in infections. To further address this phenomenon in the context of COVID-19, this study investigated how the immunophenotype of leukocytes was altered in individuals with obesity in severe COVID-19. This cross-sectional study enrolled 27 ICU COVID-19 patients (67% women, 56.33 ± 19.55 years) that were assigned to obese (BMI ≥ 30 kg/m2, n = 9) or non-obese (BMI < 30kg/m2, n = 18) groups. Monocytes, NK, and both Low-Density (LD) and High-Density (HD) neutrophils were isolated from peripheral blood samples, and surface receptors' frequency and expression patterns were analyzed by flow cytometry. Clinical status and biochemical data were additionally evaluated. The frequency of monocytes was negatively correlated with BMI, while NK cells and HD neutrophils were positively associated (p < 0.05). Patients with obesity showed a significant reduction of monocytes, and these cells expressed high levels of PD-L1 (p < 0.05). A higher frequency of NK cells and increased expression of TREM-1+ on HD neutrophils were detected in obese patients (p < 0.05). The expression of receptors related to antigen-presentation, phagocytosis, chemotaxis, inflammation and suppression were strongly correlated with clinical markers only in obese patients (p < 0.05). Collectively, these outcomes revealed that obesity differentially affected, and largely depressed, innate immune response in severe COVID-19.
Collapse
Affiliation(s)
- Ayane de Sá Resende
- Health Sciences Graduate Program, Federal University of Sergipe, Aracaju 49060-100, Sergipe, Brazil; (Y.L.M.d.O.); (M.N.F.d.F.); (L.S.M.); (C.B.C.); (K.F.F.)
| | - Yrna Lorena Matos de Oliveira
- Health Sciences Graduate Program, Federal University of Sergipe, Aracaju 49060-100, Sergipe, Brazil; (Y.L.M.d.O.); (M.N.F.d.F.); (L.S.M.); (C.B.C.); (K.F.F.)
| | - Mariana Nobre Farias de Franca
- Health Sciences Graduate Program, Federal University of Sergipe, Aracaju 49060-100, Sergipe, Brazil; (Y.L.M.d.O.); (M.N.F.d.F.); (L.S.M.); (C.B.C.); (K.F.F.)
| | - Lucas Sousa Magalhães
- Health Sciences Graduate Program, Federal University of Sergipe, Aracaju 49060-100, Sergipe, Brazil; (Y.L.M.d.O.); (M.N.F.d.F.); (L.S.M.); (C.B.C.); (K.F.F.)
- Department of Parasitology and Pathology, ICBS, Federal University of Alagoas, Maceio 57072-900, Alagoas, Brazil
| | - Cristiane Bani Correa
- Health Sciences Graduate Program, Federal University of Sergipe, Aracaju 49060-100, Sergipe, Brazil; (Y.L.M.d.O.); (M.N.F.d.F.); (L.S.M.); (C.B.C.); (K.F.F.)
- Physiological Sciences Graduate Program, Federal University of Sergipe, São Cristovao 49100-000, Sergipe, Brazil
| | - Kiyoshi Ferreira Fukutani
- Health Sciences Graduate Program, Federal University of Sergipe, Aracaju 49060-100, Sergipe, Brazil; (Y.L.M.d.O.); (M.N.F.d.F.); (L.S.M.); (C.B.C.); (K.F.F.)
| | | | - Tatiana Rodrigues de Moura
- Health Sciences Graduate Program, Federal University of Sergipe, Aracaju 49060-100, Sergipe, Brazil; (Y.L.M.d.O.); (M.N.F.d.F.); (L.S.M.); (C.B.C.); (K.F.F.)
| |
Collapse
|
9
|
Vassiliou AG, Vrettou CS, Keskinidou C, Dimopoulou I, Kotanidou A, Orfanos SE. Endotheliopathy in Acute COVID-19 and Long COVID. Int J Mol Sci 2023; 24:8237. [PMID: 37175942 PMCID: PMC10179170 DOI: 10.3390/ijms24098237] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/28/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023] Open
Abstract
The pulmonary endothelium is a highly regulated organ that performs a wide range of functions under physiological and pathological conditions. Since endothelial dysfunction has been demonstrated to play a direct role in sepsis and acute respiratory distress syndrome, its role in COVID-19 has also been extensively investigated. Indeed, apart from the COVID-19-associated coagulopathy biomarkers, new biomarkers were recognised early during the pandemic, including markers of endothelial cell activation or injury. We systematically searched the literature up to 10 March 2023 for studies examining the association between acute and long COVID-19 severity and outcomes and endothelial biomarkers.
Collapse
Affiliation(s)
- Alice G. Vassiliou
- First Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 106 76 Athens, Greece; (C.S.V.); (C.K.); (I.D.); (A.K.)
| | | | | | | | | | - Stylianos E. Orfanos
- First Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 106 76 Athens, Greece; (C.S.V.); (C.K.); (I.D.); (A.K.)
| |
Collapse
|