1
|
Trębala M, Łamacz A. Modern Catalytic Materials for the Oxygen Evolution Reaction. Molecules 2025; 30:1656. [PMID: 40333588 PMCID: PMC12029354 DOI: 10.3390/molecules30081656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 04/04/2025] [Accepted: 04/05/2025] [Indexed: 05/09/2025] Open
Abstract
The oxygen evolution reaction (OER) has, in recent years, attracted great interest from scientists because of its prime role in a number of renewable energy technologies. It is one of the reactions that occurs during hydrogen production through water splitting, is used in rechargeable metal-air batteries, and plays a fundamental role in regenerative fuel cells. Therefore, there is an emerging need to develop new, active, stable, and cost-effective materials for OER. This review presents the latest research on various groups of materials, showing their potential to be used as OER electrocatalysts, as well as their shortcomings. Particular attention has been paid to metal-organic frameworks (MOFs) and their derivatives, as those materials offer coordinatively unsaturated sites, high density of transition metals, adjustable pore size, developed surface area, and the possibility to be modified and combined with other materials.
Collapse
Affiliation(s)
- Michał Trębala
- Department of Engineering and Technology of Chemical Processes, Wroclaw University of Science and Technology, Gdanska 7/9, 50-344 Wroclaw, Poland
| | - Agata Łamacz
- Department of Engineering and Technology of Chemical Processes, Wroclaw University of Science and Technology, Gdanska 7/9, 50-344 Wroclaw, Poland
| |
Collapse
|
2
|
Carbon-Based Composites as Electrocatalysts for Oxygen Evolution Reaction in Alkaline Media. MATERIALS 2021; 14:ma14174984. [PMID: 34501072 PMCID: PMC8434594 DOI: 10.3390/ma14174984] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 12/15/2022]
Abstract
This review paper presents the most recent research progress on carbon-based composite electrocatalysts for the oxygen evolution reaction (OER), which are of interest for application in low temperature water electrolyzers for hydrogen production. The reviewed materials are primarily investigated as active and stable replacements aimed at lowering the cost of the metal electrocatalysts in liquid alkaline electrolyzers as well as potential electrocatalysts for an emerging technology like alkaline exchange membrane (AEM) electrolyzers. Low temperature electrolyzer technologies are first briefly introduced and the challenges thereof are presented. The non-carbon electrocatalysts are briefly overviewed, with an emphasis on the modes of action of different active phases. The main part of the review focuses on the role of carbon–metal compound active phase interfaces with an emphasis on the synergistic and additive effects. The procedures of carbon oxidative pretreatment and an overview of metal-free carbon catalysts for OER are presented. Then, the successful synthesis protocols of composite materials are presented with a discussion on the specific catalytic activity of carbon composites with metal hydroxides/oxyhydroxides/oxides, chalcogenides, nitrides and phosphides. Finally, a summary and outlook on carbon-based composites for low temperature water electrolysis are presented.
Collapse
|
3
|
Bernard P, Stelmachowski P, Broś P, Makowski W, Kotarba A. Demonstration of the Influence of Specific Surface Area on Reaction Rate in Heterogeneous Catalysis. JOURNAL OF CHEMICAL EDUCATION 2021; 98:935-940. [PMID: 33814599 PMCID: PMC8016114 DOI: 10.1021/acs.jchemed.0c01101] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 12/28/2020] [Indexed: 06/02/2023]
Abstract
Heterogeneous catalysis plays an important role in many chemical reactions, especially those applied in industrial processes, and therefore, its theoretical foundations are introduced not only to students majoring in chemical engineering or catalysis but also as part of general chemistry courses. The consideration of catalytic activity of various solids and mechanisms of catalytic reactions requires the introduction of the concept of an active site, which together with the catalyst specific surface area are discussed as key parameters controlling the reaction rate. There are many known demonstrations of heterogeneous catalysis phenomena that can be performed live in a lecture hall, but all of them focus only on the general idea of catalytic processes and are not suitable for quantitative analysis. Therefore, herein we present a simple demonstration of the influence of the specific surface area of a catalyst on the rate of a catalytic reaction. This demonstration is based on a model reaction of hydrogen peroxide decomposition catalyzed by cobalt spinel (Co3O4) calcined at various temperatures. The differences in reaction rates can be monitored visually, and the obtained data can be used directly for a simple kinetic analysis, including comparison of numerical values of the reaction rate constants.
Collapse
|
4
|
Wang Y, Zhang S, Meng X, Wang T, Feng Y, Zhang W, He YS, Huang Y, Yang N, Ma ZF. Surface Tuning to Promote the Electrocatalysis for Oxygen Evolution Reaction: From Metal-Free to Cobalt-Based Carbon Electrocatalysts. ACS APPLIED MATERIALS & INTERFACES 2021; 13:503-513. [PMID: 33372775 DOI: 10.1021/acsami.0c17599] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Heterogeneous electrocatalytic reactions only occur at the interface between the electrocatalyst and reactant. Therefore, the active sites are only necessary to be distributed on the surface of the electrocatalyst. Based on this motivation, here, we demonstrate a systematic study on surface tuning for a carbon-based electrocatalyst from metal-free (with the heteroatoms N and S, NS/C) to metal-containing surfaces (with Co, N, and S, CoNS/C). The CoNS/C electrocatalyst was obtained by pyrolyzing the Co precoordinated and p-toluenesulfonate-doped polypyrrole (PPy). It was found that the coordination of Co on the PPy ring tuned the final carbon electrocatalyst into a catalyst with a CoNx moiety-rich surface. In addition, the as-synthesized CoNS/C was determined to have a very high loading of cobalt up to 2.02 wt %. The pyrolysis of the cobalt-containing precursor tends to proceed toward a characteristic of a higher sp2 carbon content, a higher surface area, and more nitrogen as well as active nitrogen sites than its metal-free counterpart. The most distinguished feature for such a catalyst is that the truly most active component is only distributed on the surface, in contrast with that of the conventional metal-N-based catalyst present throughout the bulky structure. Especially, the electrocatalytic activity toward oxygen evolution reaction (OER) has been investigated experimentally and theoretically. The results showed that the OER performance of the carbon-based electrocatalyst was remarkably boosted after the introduction of Co with an overpotential decrease from 678 to 345 mV at 10 mA cm-2. Furthermore, CoNS/C displayed an excellent durability upon a long-term measurement. The apparent activation energy measurements revealed that the metal-rich surface contributed to overcome the energy barrier for OER. In addition, density functional theory calculations have been conducted to explain the correlated OER mechanism. This study is expected to provide an effective strategy for the design and the synthesis of highly active metal-nitrogen-type electrocatalysts with a high metal loading for various electrocatalytic reactions.
Collapse
Affiliation(s)
- Yanan Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, P. R. China
| | - Shuguang Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, P. R. China
| | - Xiuxia Meng
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, P. R. China
| | - Ting Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, P. R. China
| | - Yu Feng
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, P. R. China
| | - Weimin Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, P. R. China
| | - Yu-Shi He
- Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yucheng Huang
- College of Chemistry and Material Science, Anhui Normal University, Wuhu 241000, People's Republic of China
| | - Naitao Yang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, P. R. China
| | - Zi-Feng Ma
- Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
5
|
Comparative Study of Strategies for Enhancing the Performance of Co3O4/Al2O3 Catalysts for Lean Methane Combustion. Catalysts 2020. [DOI: 10.3390/catal10070757] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Spinel-type cobalt oxide is a highly active catalyst for oxidation reactions owing to its remarkable redox properties, although it generally exhibits poor mechanical, textural and structural properties. Supporting this material on a porous alumina can significantly improve these characteristics. However, the strong cobalt–alumina interaction leads to the formation of inactive cobalt aluminate, which limits the activity of the resulting catalysts. In this work, three different strategies for enhancing the performance of alumina-supported catalysts are examined: (i) surface protection of the alumina with magnesia prior to the deposition of the cobalt precursor, with the objective of minimizing the cobalt–alumina interaction; (ii) coprecipitation of cobalt along with nickel, with the aim of improving the redox properties of the deposited cobalt and (iii) surface protection of alumina with ceria, to provide both a barrier effect, minimizing the cobalt–alumina interaction, and a redox promoting effect on the deposited cobalt. Among the examined strategies, the addition of ceria (20 wt % Ce) prior to the deposition of cobalt resulted in being highly efficient. This sample was characterized by a notable abundance of both Co3+ and oxygen lattice species, derived from the partial inhibition of cobalt aluminate formation and the insertion of Ce4+ cations into the spinel lattice.
Collapse
|
6
|
Golmohammadi F, Amiri M. Fabrication of MEA from Biomass-Based Carbon Nanofibers Composited with Nickel-Cobalt Oxides as a New Electrocatalyst for Oxygen Reduction Reaction in Passive Direct Methanol Fuel Cells. Electrocatalysis (N Y) 2020. [DOI: 10.1007/s12678-020-00607-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
7
|
Alegre C, Busacca C, Di Blasi A, Di Blasi O, Aricò AS, Antonucci V, Baglio V. Electrocatalysis of Oxygen on Bifunctional Nickel‐Cobaltite Spinel. ChemElectroChem 2020. [DOI: 10.1002/celc.201901584] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Cinthia Alegre
- Instituto de Carboquímica (ICB)Consejo Superior de Investigaciones Científicas (CSIC) C/. Miguel Luesma Castán, 4. 50018 Zaragoza Spain
- Istituto di Tecnologie Avanzate per l'Energia “Nicola Giordano” (ITAE)Consiglio Nazionale delle Ricerche (CNR) Salita S. Lucia sopra Contesse, 5. 98126 Messina Italy
| | - Concetta Busacca
- Istituto di Tecnologie Avanzate per l'Energia “Nicola Giordano” (ITAE)Consiglio Nazionale delle Ricerche (CNR) Salita S. Lucia sopra Contesse, 5. 98126 Messina Italy
| | - Alessandra Di Blasi
- Istituto di Tecnologie Avanzate per l'Energia “Nicola Giordano” (ITAE)Consiglio Nazionale delle Ricerche (CNR) Salita S. Lucia sopra Contesse, 5. 98126 Messina Italy
| | - Orazio Di Blasi
- Istituto di Tecnologie Avanzate per l'Energia “Nicola Giordano” (ITAE)Consiglio Nazionale delle Ricerche (CNR) Salita S. Lucia sopra Contesse, 5. 98126 Messina Italy
| | - Antonino S. Aricò
- Istituto di Tecnologie Avanzate per l'Energia “Nicola Giordano” (ITAE)Consiglio Nazionale delle Ricerche (CNR) Salita S. Lucia sopra Contesse, 5. 98126 Messina Italy
| | - Vincenzo Antonucci
- Istituto di Tecnologie Avanzate per l'Energia “Nicola Giordano” (ITAE)Consiglio Nazionale delle Ricerche (CNR) Salita S. Lucia sopra Contesse, 5. 98126 Messina Italy
| | - Vincenzo Baglio
- Istituto di Tecnologie Avanzate per l'Energia “Nicola Giordano” (ITAE)Consiglio Nazionale delle Ricerche (CNR) Salita S. Lucia sopra Contesse, 5. 98126 Messina Italy
| |
Collapse
|
8
|
|
9
|
Solvothermally Doping NiS2 Nanoparticles on Carbon with Ferric Ions for Efficient Oxygen Evolution Catalysis. Catalysts 2019. [DOI: 10.3390/catal9050458] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Exploring efficient non-precious metal based electrocatalysts for the oxygen evolution reaction (OER) is a prerequisite to implement the widespread application of a water electrolyzer and metal-air batteries. Herein, Fe-doped NiS2 nanoparticles on a carbon matrix (Fe-NiS2/C) are facilely prepared via a two-step solvothermal process, where Ni-containing metal organic frameworks (Ni-MOFs) are vulcanized in situ and carbonized by a solvothermal method to form abundant NiS2 nanoparticles homogeneously distributed on a carbon matrix (NiS2/C), followed by doping with ferric ions via a similar solvothermal treatment. The resulting Fe-NiS2/C nanoparticle composites show a rougher surface than the NiS2/C parent, likely due to the formation of more structural defects after ferric ion doping, which maximizes the exposure of active sites. Moreover, ferric ion doping can also regulate the surface electronic state to reduce the activation energy barrier for OER on NiS2/C sample. With these merits, the best sample Fe-NiS2/C-30 only requires a potential of +1.486 V (vs. RHE) to reach an OER current density of 10 mA cm−2 and can retain 96.85% of its initial current after continuous working for about 10 h in 1.0 M KOH aqueous solution, along with a small Tafel slope of 45.66 mV/dec, outperforming a commercial RuO2 catalyst. The results in this work enrich the method to tailor the catalytic activity of transition metal sulfides for electrochemical energy technologies.
Collapse
|
10
|
Ekebas E, Cetin A, Önal AM, Nalbant Esenturk E. Magnesium substituted cobalt spinel nanostructures for electrocatalytic water oxidation. J APPL ELECTROCHEM 2019. [DOI: 10.1007/s10800-018-01285-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Effect of Residual Na+ on the Combustion of Methane over Co3O4 Bulk Catalysts Prepared by Precipitation. Catalysts 2018. [DOI: 10.3390/catal8100427] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The effect of the presence of residual sodium (0.4 %wt) over a Co3O4 bulk catalyst for methane combustion was studied. Two samples, with and without residual sodium, were synthesized by precipitation and thoroughly characterised by X-ray diffraction (XRD), N2 physisorption, Wavelength Dispersive X-ray Fluorescence (WDXRF), temperature-programmed reduction with hydrogen followed by temperature-programmed reduction with oxygen (H2-TPR/O2-TPO), temperature-programmed reaction with methane (CH4-TPRe), ultraviolet–visible–near-infrared diffuse reflectance spectroscopy (UV-vis-NIR DRS), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). It was found that during calcination, a fraction of the sodium atoms initially deposited on the surface diffused and migrated into the spinel lattice, inducing a distortion that improved its textural and structural properties. However, surface sodium had an overall negative impact on the catalytic activity. It led to a reduction of surface Co3+ ions in favour of Co2+, thus ultimately decreasing the Co3+/Co2+ molar ratio (from 1.96 to 1.20) and decreasing the amount and mobility of active lattice oxygen species. As a result, the catalyst with residual sodium (T90 = 545 °C) was notably less active than its clean counterpart (T90 = 500 °C). All of this outlined the significance of a proper washing when synthesizing Co3O4 catalyst using a sodium salt as the precipitating agent.
Collapse
|
12
|
The Effect of Fe, Co, and Ni Structural Promotion of Cryptomelane (KMn8O16) on the Catalytic Activity in Oxygen Evolution Reaction. Electrocatalysis (N Y) 2018. [DOI: 10.1007/s12678-018-0488-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
13
|
Bifunctional electrocatalysts for oxygen reduction/evolution reactions derived from NiCoFe LDH materials. J APPL ELECTROCHEM 2018. [DOI: 10.1007/s10800-018-1210-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
14
|
Rovetta AAS, Browne MP, Harvey A, Godwin IJ, Coleman JN, Lyons MEG. Cobalt hydroxide nanoflakes and their application as supercapacitors and oxygen evolution catalysts. NANOTECHNOLOGY 2017; 28:375401. [PMID: 28696333 DOI: 10.1088/1361-6528/aa7f1b] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Finding alternative routes to access and store energy has become a major issue recently. Transition metal oxides have shown promising behaviour as catalysts and supercapacitors. Recently, liquid exfoliation of bulk metal oxides appears to be an effective route which provides access to two-dimensional (2D) nano-flakes, the size of which can be easily selected. These 2D materials exhibit excellent electrochemical charge storage and catalytic activity for the oxygen evolution reaction. In this study, various sized selected cobalt hydroxide nano-flake materials are fabricated by this time efficient and highly reproducible process. Subsquently, the electrochemical properties of the standard size Co(OH)2 nanoflakes were investigated. The oxide modified electrodes were prepared by spraying the metal oxide flake suspension onto a porous conductive support electrode foam, either glassy carbon or nickel. The cobalt hydroxide/nickel foam system was found to have an overpotential value at 10 mA cm-2 in 1 M NaOH as low as 280 mV and an associated redox capacitance exhibiting numerical values up to 1500 F g-1, thereby making it a viable dual use electrode.
Collapse
Affiliation(s)
- A A S Rovetta
- Trinity Electrochemical Energy Conversion & Electrocatalysis (TEECE) Group, School of Chemistry, Trinity College Dublin, Dublin, Ireland. AMBER and CRANN Institutes, Trinity College Dublin, Dublin, Ireland
| | | | | | | | | | | |
Collapse
|
15
|
Ercolino G, Stelmachowski P, Specchia S. Catalytic Performance of Pd/Co3O4 on SiC and ZrO2 Open Cell Foams for Process Intensification of Methane Combustion in Lean Conditions. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b01087] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Giuliana Ercolino
- Department
of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Paweł Stelmachowski
- Department
of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
- Faculty
of Chemistry, Jagiellonian University in Kraków, ul. Ingardena
3, 30-060 Kraków, Poland
| | - Stefania Specchia
- Department
of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| |
Collapse
|