1
|
Yang M, Wu Z, Wang X, Yin Z, Tan X, Zhao J. Facile preparation of MnO 2-TiO 2 nanotube arrays composite electrode for electrochemical detection of hydrogen peroxide. Talanta 2022; 244:123407. [PMID: 35366513 DOI: 10.1016/j.talanta.2022.123407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/16/2021] [Accepted: 03/23/2022] [Indexed: 01/10/2023]
Abstract
The MnO2-TNTA composite electrodes were obtained through depositing MnO2 into TiO2 nanotube arrays (TNTA) by successive ionic layer adsorption reaction (SILAR) and subsequent hydrothermal method. The MnO2-TNTA nanocomposites were used as electrochemical sensors for the detection of hydrogen peroxide (H2O2). The preparation conditions of MnO2-TNTA electrodes and test conditions affect the electrochemical detection performance significantly. The optimal conditions are listed as follows: the number of SILAR cycles, 6 times; KMnO4 solution temperature, 50 °C; supporting electrolyte, 0.5 M NaOH. Under these conditions, the MnO2-TNTA electrode exhibits the best performance for detecting H2O2. The optimized MnO2-TNTA electrode has a minimum detection limit of 0.6 μM (S/N = 3) and a linear range of 5 μM ∼ 13 mM, which is much superior to the previously-reported electrodes. Moreover, the optimized MnO2-TNTA electrode possesses high selectivity, excellent stability and good reproducibility in the detection of H2O2. When used in the determination of H2O2 content in actual samples including disinfectant and milk, it also shows good accuracy, ideal recovery (96.00% ∼ 102.67%) and high precision (RSD < 4.0%).
Collapse
Affiliation(s)
- Mengyao Yang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Zhigang Wu
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Xixin Wang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China.
| | - Zekun Yin
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Xu Tan
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Jianling Zhao
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China.
| |
Collapse
|
2
|
Sarraf M, Nasiri-Tabrizi B, Yeong CH, Madaah Hosseini HR, Saber-Samandari S, Basirun WJ, Tsuzuki T. Mixed oxide nanotubes in nanomedicine: A dead-end or a bridge to the future? CERAMICS INTERNATIONAL 2021; 47:2917-2948. [PMID: 32994658 PMCID: PMC7513735 DOI: 10.1016/j.ceramint.2020.09.177] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 05/12/2023]
Abstract
Nanomedicine has seen a significant rise in the development of new research tools and clinically functional devices. In this regard, significant advances and new commercial applications are expected in the pharmaceutical and orthopedic industries. For advanced orthopedic implant technologies, appropriate nanoscale surface modifications are highly effective strategies and are widely studied in the literature for improving implant performance. It is well-established that implants with nanotubular surfaces show a drastic improvement in new bone creation and gene expression compared to implants without nanotopography. Nevertheless, the scientific and clinical understanding of mixed oxide nanotubes (MONs) and their potential applications, especially in biomedical applications are still in the early stages of development. This review aims to establish a credible platform for the current and future roles of MONs in nanomedicine, particularly in advanced orthopedic implants. We first introduce the concept of MONs and then discuss the preparation strategies. This is followed by a review of the recent advancement of MONs in biomedical applications, including mineralization abilities, biocompatibility, antibacterial activity, cell culture, and animal testing, as well as clinical possibilities. To conclude, we propose that the combination of nanotubular surface modification with incorporating sensor allows clinicians to precisely record patient data as a critical contributor to evidence-based medicine.
Collapse
Key Words
- ALP, Alkaline Phosphatase
- APH, Anodization-Cyclic Precalcification-Heat Treatment
- Ag2O NPs, Silver Oxide Nanoparticles
- AgNPs, Silver Nanoparticles
- Anodization
- BIC, Bone-Implant Contact
- Bioassays
- CAGR, Compound Annual Growth Rate
- CT, Computed Tomography
- DMF, Dimethylformamide
- DMSO, Dimethyl Sulfoxide
- DRI, Drug-Releasing Implants
- E. Coli, Escherichia Coli
- ECs, Endothelial Cells
- EG, Ethylene Glycol
- Electrochemistry
- FA, Formamide
- Fe2+, Ferrous Ion
- Fe3+, Ferric Ion
- Fe3O4, Magnetite
- GEP, Gene Expression Programming
- GO, Graphene Oxide
- HA, Hydroxyapatite
- HObs, Human Osteoblasts
- HfO2 NTs, Hafnium Oxide Nanotubes
- IMCs, Intermetallic Compounds
- LEDs, Light emitting diodes
- MEMS, Microelectromechanical Systems
- MONs, Mixed Oxide Nanotubes
- MOPSO, Multi-Objective Particle Swarm Optimization
- MSCs, Mesenchymal Stem Cells
- Mixed oxide nanotubes
- NMF, N-methylformamide
- Nanomedicine
- OPC1, Osteo-Precursor Cell Line
- PSIs, Patient-Specific Implants
- PVD, Physical Vapor Deposition
- RF, Radio-Frequency
- ROS, Radical Oxygen Species
- S. aureus, Staphylococcus Aureus
- S. epidermidis, Staphylococcus Epidermidis
- SBF, Simulated Body Fluid
- TiO2 NTs, Titanium Dioxide Nanotubes
- V2O5, Vanadium Pentoxide
- VSMCs, Vascular Smooth Muscle Cells
- XPS, X-ray Photoelectron Spectroscopy
- ZrO2 NTs, Zirconium Dioxide Nanotubes
- hASCs, Human Adipose-Derived Stem Cells
Collapse
Affiliation(s)
- Masoud Sarraf
- Centre of Advanced Materials, Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
- Materials Science and Engineering Department, Sharif University of Technology, P.O. Box 11155-9466, Azadi Avenue, Tehran, Iran
| | - Bahman Nasiri-Tabrizi
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
- New Technologies Research Center, Amirkabir University of Technology, Tehran, Iran
| | - Chai Hong Yeong
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | - Hamid Reza Madaah Hosseini
- Materials Science and Engineering Department, Sharif University of Technology, P.O. Box 11155-9466, Azadi Avenue, Tehran, Iran
| | | | - Wan Jefrey Basirun
- Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Takuya Tsuzuki
- Research School of Electrical Energy and Materials Engineering, College of Engineering and Computer Science, Australian National University, Canberra, 2601, Australia
| |
Collapse
|
3
|
TiO2 nanotube arrays with a volume expansion factor greater than 2.0: Evidence against the field-assisted ejection theory. Electrochem commun 2020. [DOI: 10.1016/j.elecom.2020.106717] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
4
|
The Electrochemical Oxidation of Hydroquinone and Catechol through a Novel Poly-geminal Dicationic Ionic Liquid (PGDIL)-TiO 2 Composite Film Electrode. Polymers (Basel) 2019; 11:polym11111907. [PMID: 31752426 PMCID: PMC6918233 DOI: 10.3390/polym11111907] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/11/2019] [Accepted: 11/15/2019] [Indexed: 11/16/2022] Open
Abstract
A novel poly-geminal dicationic ionic liquid (PGDIL)-TiO2/Au composite film electrode was successfully prepared by electrochemical polymerization of 1,4-bis(3-(m-aminobenzyl)imidazol-1-yl)butane bis(hexafluorinephosphate) containing polymerizable anilino groups in the electrolyte containing nano-TiO2. The basic properties of PGDIL-TiO2/Au composite films were studied by SEM, cyclic voltammetry, electrochemical impedance spectroscopy, and differential pulse voltammetry. The SEM results revealed that the PGDIL-TiO2 powder has a more uniform and smaller particle size than the PGDIL. The cyclic voltammetry results showed that the catalytic effect on electrochemical oxidation of hydroquinone and catechol of the PGDIL-TiO2 electrode is the best, yet the Rct of PGDIL-TiO2 electrode is higher than that of PGDIL and TiO2 electrode, which is caused by the synergistic effect between TiO2 and PGDIL. The PGDIL-TiO2/Au composite electrode presents a good enhancement effect on the reversible electrochemical oxidation of hydroquinone and catechol, and differential pulse voltammetry tests of the hydroquinone and catechol in a certain concentration range revealed that the PGDIL-TiO2/Au electrode enables a high sensitivity to the differentiation and detection of hydroquinone and catechol. Furthermore, the electrochemical catalytic mechanism of the PGDIL-TiO2/Au electrode was studied. It was found that the recombination of TiO2 improved the reversibility and activity of the PGDIL-TiO2/Au electrode for the electrocatalytic reaction of HQ and CC. The PGDIL-TiO2/Au electrode is also expected to be used for catalytic oxidation and detection of other organic pollutants containing -OH groups.
Collapse
|