1
|
Lee S, Lee J, Ju J, Cho H, Choi Y, Lee S. Application of Membrane Capacitive Deionization as Pretreatment Strategy for Enhancing Salinity Gradient Power Generation. MEMBRANES 2025; 15:56. [PMID: 39997682 PMCID: PMC11857244 DOI: 10.3390/membranes15020056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/02/2025] [Accepted: 02/04/2025] [Indexed: 02/26/2025]
Abstract
Salinity gradient power (SGP) technologies, including pressure-retarded osmosis (PRO) and reverse electrodialysis (RED), have the potential to be utilized for the purpose of harvesting energy from the difference in salinity between two water streams. One challenge associated with SGP is a reduction in power density due to membrane fouling when impaired water is utilized as a low-salinity water stream. Accordingly, this study sought to explore the feasibility of membrane capacitive deionization (MCDI), a low-energy water treatment technique, as a novel pretreatment method for SGP. Laboratory-scale experiments were conducted to evaluate the impact of MCDI pretreatment on the performance of PRO and RED. The low-salinity water was obtained from a brackish water reverse osmosis (BWRO) plant, while the high-salinity water was a synthetic seawater desalination brine. The removal efficiency of organic and inorganic substances in brackish water reverse osmosis (BWRO) brine by MCDI was estimated, as well as theoretical energy consumption. The results demonstrated that MCDI attained removal efficiencies of up to 88.8% for organic substances and 78.8% for inorganic substances. This resulted in a notable enhancement in the lower density for both PRO and RED. The power density of PRO exhibited a notable enhancement, reaching 3.57 W/m2 in comparison to 1.14 W/m2 recorded for the BWRO brine. Conversely, the power density of RED increased from 1.47 W/m2 to 2.05 W/m2. Given that the energy consumption by MCDI is relatively low, it can be surmised that the MCDI pretreatment enhances the overall efficiency of both PRO and RED. However, to fully capitalize on the benefits of MCDI pretreatment, it is recommended that further process optimization be conducted.
Collapse
Affiliation(s)
- Seoyeon Lee
- School of Civil and Environmental Engineering, Kookimin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul 02707, Republic of Korea; (S.L.); (J.L.); (H.C.); (Y.C.)
| | - Juyoung Lee
- School of Civil and Environmental Engineering, Kookimin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul 02707, Republic of Korea; (S.L.); (J.L.); (H.C.); (Y.C.)
| | - Jaehyun Ju
- Korea Testing Laboratory, 10, Chungui-ro, Jinju-si 52852, Republic of Korea;
| | - Hyeongrak Cho
- School of Civil and Environmental Engineering, Kookimin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul 02707, Republic of Korea; (S.L.); (J.L.); (H.C.); (Y.C.)
| | - Yongjun Choi
- School of Civil and Environmental Engineering, Kookimin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul 02707, Republic of Korea; (S.L.); (J.L.); (H.C.); (Y.C.)
| | - Sangho Lee
- School of Civil and Environmental Engineering, Kookimin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul 02707, Republic of Korea; (S.L.); (J.L.); (H.C.); (Y.C.)
- Water Technologies Innovation Institute and Research Advancement (WTIIRA), Saudi Water Authority (SWA), Al-Jubail 31951, Saudi Arabia
| |
Collapse
|
2
|
Platek-Mielczarek A, Lang J, Töpperwien F, Walde D, Scherer M, Taylor DP, Schutzius TM. Engineering Electrode Rinse Solution Fluidics for Carbon-Based Reverse Electrodialysis Devices. ACS APPLIED MATERIALS & INTERFACES 2023; 15:48826-48837. [PMID: 37812816 PMCID: PMC10591279 DOI: 10.1021/acsami.3c10680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/22/2023] [Indexed: 10/11/2023]
Abstract
Natural salinity gradients are a promising source of so-called "blue energy", a renewable energy source that utilizes the free energy of mixing for power generation. One promising blue energy technology that converts these salinity gradients directly into electricity is reverse electrodialysis (RED). Used at its full potential, it could provide a substantial portion of the world's electricity consumption. Previous theoretical and experimental works have been done on optimizing RED devices, with the latter often focusing on precious and expensive metal electrodes. However, in order to rationally design and apply RED devices, we need to investigate all related transport phenomena─especially the fluidics of salinity gradient mixing and the redox electrolyte at various concentrations, which can have complex intertwined effects─in a fully functioning and scalable system. Here, guided by fundamental electrochemical and fluid dynamics theories, we work with an iron-based redox electrolyte with carbon electrodes in a RED device with tunable microfluidic environments and study the fundamental effects of electrolyte concentration and flow rate on the potential-driven redox activity and power output. We focus on optimizing the net power output, which is the difference between the gross power output generated by the RED device and the pumping power input, needed for salinity gradient mixing and redox electrolyte reactions. We find through this holistic approach that the electrolyte concentration in the electrode rinse solution is crucial for increasing the electrical current, while the pumping power input depends nonlinearly on the membrane separation distance. Finally, from this understanding, we designed a five cell-pair (CP) RED device that achieved a net power density of 224 mW m-2 CP-1, a 60% improvement compared to the nonoptimized case. This study highlights the importance of the electrode rinse solution fluidics and composition when rationally designing RED devices based on scalable carbon-based electrodes.
Collapse
Affiliation(s)
- Anetta Platek-Mielczarek
- Laboratory
for Multiphase Thermofluidics and Surface Nanoengineering, Department
of Mechanical and Process Engineering, ETH
Zurich, Sonneggstrasse 3, Zurich CH-8092, Switzerland
| | - Johanna Lang
- Laboratory
for Multiphase Thermofluidics and Surface Nanoengineering, Department
of Mechanical and Process Engineering, ETH
Zurich, Sonneggstrasse 3, Zurich CH-8092, Switzerland
| | - Feline Töpperwien
- Laboratory
for Multiphase Thermofluidics and Surface Nanoengineering, Department
of Mechanical and Process Engineering, ETH
Zurich, Sonneggstrasse 3, Zurich CH-8092, Switzerland
| | - Dario Walde
- Laboratory
for Multiphase Thermofluidics and Surface Nanoengineering, Department
of Mechanical and Process Engineering, ETH
Zurich, Sonneggstrasse 3, Zurich CH-8092, Switzerland
| | - Muriel Scherer
- Laboratory
for Multiphase Thermofluidics and Surface Nanoengineering, Department
of Mechanical and Process Engineering, ETH
Zurich, Sonneggstrasse 3, Zurich CH-8092, Switzerland
| | - David P. Taylor
- Laboratory
of Thermodynamics in Emerging Technologies, Department of Mechanical
and Process Engineering, ETH Zurich, Sonneggstrasse 3, Zurich 8092, Switzerland
| | - Thomas M. Schutzius
- Laboratory
for Multiphase Thermofluidics and Surface Nanoengineering, Department
of Mechanical and Process Engineering, ETH
Zurich, Sonneggstrasse 3, Zurich CH-8092, Switzerland
- Department
of Mechanical Engineering, University of
California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
3
|
Rastgar M, Moradi K, Burroughs C, Hemmati A, Hoek E, Sadrzadeh M. Harvesting Blue Energy Based on Salinity and Temperature Gradient: Challenges, Solutions, and Opportunities. Chem Rev 2023; 123:10156-10205. [PMID: 37523591 DOI: 10.1021/acs.chemrev.3c00168] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Greenhouse gas emissions associated with power generation from fossil fuel combustion account for 25% of global emissions and, thus, contribute greatly to climate change. Renewable energy sources, like wind and solar, have reached a mature stage, with costs aligning with those of fossil fuel-derived power but suffer from the challenge of intermittency due to the variability of wind and sunlight. This study aims to explore the viability of salinity gradient power, or "blue energy", as a clean, renewable source of uninterrupted, base-load power generation. Harnessing the salinity gradient energy from river estuaries worldwide could meet a substantial portion of the global electricity demand (approximately 7%). Pressure retarded osmosis (PRO) and reverse electrodialysis (RED) are more prominent technologies for blue energy harvesting, whereas thermo-osmotic energy conversion (TOEC) is emerging with new promise. This review scrutinizes the obstacles encountered in developing osmotic power generation using membrane-based methods and presents potential solutions to overcome challenges in practical applications. While certain strategies have shown promise in addressing some of these obstacles, further research is still required to enhance the energy efficiency and feasibility of membrane-based processes, enabling their large-scale implementation in osmotic energy harvesting.
Collapse
Affiliation(s)
- Masoud Rastgar
- Department of Mechanical Engineering, Advanced Water Research Lab (AWRL), University of Alberta, 10-367 Donadeo Innovation Center for Engineering, Edmonton, Alberta T6G 1H9, Canada
| | - Kazem Moradi
- Department of Mechanical Engineering, Advanced Water Research Lab (AWRL), University of Alberta, 10-367 Donadeo Innovation Center for Engineering, Edmonton, Alberta T6G 1H9, Canada
- Department of Mechanical Engineering, Computational Fluid Engineering Laboratory, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Cassie Burroughs
- Department of Chemical & Materials Engineering, University of Alberta, 12-263 Donadeo Innovation Centre for Engineering, Edmonton, Alberta T6G 1H9, Canada
| | - Arman Hemmati
- Department of Mechanical Engineering, Computational Fluid Engineering Laboratory, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Eric Hoek
- Department of Civil & Environmental Engineering, University of California Los Angeles (UCLA), Los Angeles, California 90095-1593, United States
- Energy Storage & Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Mohtada Sadrzadeh
- Department of Mechanical Engineering, Advanced Water Research Lab (AWRL), University of Alberta, 10-367 Donadeo Innovation Center for Engineering, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
4
|
Zuo X, Zhang S, Kong F, Xu Q. Application of electrochemical oxidation for the enhancement of antibiotic resistant bacteria removal in stormwater bioretention cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160477. [PMID: 36436643 DOI: 10.1016/j.scitotenv.2022.160477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 11/07/2022] [Accepted: 11/21/2022] [Indexed: 06/16/2023]
Abstract
Recently, increasing attention has been paid to the removal of antibiotic resistant bacteria (ARB) during electrochemical advanced oxidation processes. However, there is still no available literature about the application of electrochemical oxidation (EO) to enhance ARB removal in stormwater bioretention cells. Batch experiments were conducted to investigate target ARB (E. coli K-12 carrying blaTEM, tetR and aphA) removals in bioretention cells with different current densities and ratios of air to water (A/W). ARB removals for bioretention cells with 17.6 μA/m2 of current density and 24:1 of A/W ratio was the largest with 5.28 log reduction, which was obviously higher than the one (3.68 log reduction) in the control (without EO). H2O2 production could be responsible for ARB removals in the used bioretention cells, where H2O2 levels increased at first and then decreased with the increase of current densities and A/W ratios. The evaluation for the application of EO implied that the highest antibiotic resistance (AR) conjugation frequency (3.8 × 10-3) at 3.5 μA/m2 of current density and 48:1 of A/W ratios was 124.5 % of the one in the control, while the largest AR transformation frequencies at 17.6 μA/m2 of current density and 48:1 of A/W ratios was 366.9 % (tetR) and 216.2 % (aphA) of the corresponding in the control, and there were still stable for both dominant microflora and metabolic activities in bioretention cells with electricity and aeration, suggesting that EO could be promising for the enhancement of ARB removals in bioretention cells.
Collapse
Affiliation(s)
- XiaoJun Zuo
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Joint Laboratory of Atmospheric Pollution Control, Nanjing 210044, China.
| | - SongHu Zhang
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Joint Laboratory of Atmospheric Pollution Control, Nanjing 210044, China
| | - FanXin Kong
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Joint Laboratory of Atmospheric Pollution Control, Nanjing 210044, China
| | - QiangQiang Xu
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Joint Laboratory of Atmospheric Pollution Control, Nanjing 210044, China
| |
Collapse
|
5
|
Simões C, Saakes M, Brilman D. Toward Redox-Free Reverse Electrodialysis with Carbon-Based Slurry Electrodes. Ind Eng Chem Res 2023; 62:1665-1675. [PMID: 36719299 PMCID: PMC9881007 DOI: 10.1021/acs.iecr.2c03567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/15/2023]
Abstract
Clean and renewable salinity gradient energy can be harvested using reverse electrodialysis (RED). The electrode system is an essential part to convert ionic current into electrical current. In this study, a typical 0.10 × 0.10 m2 RED stack with a cross-flow configuration was used to test carbon-based slurry electrodes (CSEs) to replace the usual redox solutions, like hexacyanoferrate, to enhance the RED process' sustainability, stability, and economic value. Six different slurry compositions comprising activated carbon, carbon black, and graphite powder were tested. The CSE characteristics were systematically studied by measuring viscosity, electrode compartment pressure drop, maximum current density, stability, and performance of power density and energy efficiency. Using a single membrane configuration, the CSE ran continuously for 17 days with a stable output. The application of CSEs for RED, with artificial seawater and river water, using mixing activated carbon and carbon black at a total concentration of 20 wt %, resulted in the best performance with a net power density of 0.7 W·m-2. Moreover, higher current densities up to 350 A·m-2 were tested for ED and shown to be feasible until 150 A·m-2. CSEs show promising versatility for different application modes.
Collapse
Affiliation(s)
- Catarina Simões
- Wetsus,
European Centre of Excellence for Sustainable Water Technology, PO Box 1113, Leeuwarden 8900 CC, The
Netherlands
- Sustainable
Process Technology, Faculty of Science and Technology, University of Twente, PO Box 217, Enschede 7500 AE, The Netherlands
| | - Michel Saakes
- Wetsus,
European Centre of Excellence for Sustainable Water Technology, PO Box 1113, Leeuwarden 8900 CC, The
Netherlands
| | - Derk Brilman
- Sustainable
Process Technology, Faculty of Science and Technology, University of Twente, PO Box 217, Enschede 7500 AE, The Netherlands
| |
Collapse
|
6
|
Qi S, Grossman AD, Ronen A, Bernstein R. Low-biofouling anaerobic electro-conductive membrane bioreactor: The role of pH changes in bacterial inactivation and biofouling mitigation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Han JH. Complete Suppression of Dispersed Inorganic Precipitates in Reverse Electrodialysis via Seawater Acidification. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ji-Hyung Han
- Jeju Global Research Centre, Korea Institute of Energy Research, 200 Haemajihaean-ro, Gujwa-eup, Jeju 63357, Republic of Korea
| |
Collapse
|
8
|
Gonzalez-Vogel A, Moltedo JJ, Rojas OJ. Desalination by pulsed electrodialysis reversal: Approaching fully closed-loop water systems in wood pulp mills. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 298:113518. [PMID: 34403919 DOI: 10.1016/j.jenvman.2021.113518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 08/03/2021] [Accepted: 08/07/2021] [Indexed: 06/13/2023]
Abstract
A pulsed electrodialysis reversal (pEDR) process is proposed to desalinate spent water after particle removal, biological and chemical coagulation, which are commonly used as a sequence in Kraft pulp mills. pEDR affords closed-loop processing, reducing the need for freshwater intake while maintaining the quality of recirculating process streams. Compared with conventional electrodialysis, pEDR minimizes production losses (from 5 % to 0.6 %), extending the time for hydraulic reversal (from 15 min to at least 2 h). Simultaneously, the conductivity of the effluent is significantly reduced, from 2100 to 200 μS/cm, reaching a quality similar to the feed water. The operation cost (0.38 US$/m3) is factored in the techno-economic viability of the process water recirculation, which is also demonstrated for its scalability. Additionally, WinGEMS simulation highlights the benefits of installing a pEDR unit, positively impacting mill water under different recirculation rates. Overall, we show remarkable gains in water economy, operation (maintenance and fouling), and quality, which are critical factors in achieving resource sufficiency.
Collapse
Affiliation(s)
- Alvaro Gonzalez-Vogel
- Bioforest S. A, Camino Coronel Km 15, VIII Region, Chile; Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Finland.
| | - Juan J Moltedo
- Bioforest S. A, Camino Coronel Km 15, VIII Region, Chile
| | - Orlando J Rojas
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Finland; Bioproducts Institute, Department of Chemical and Biological Engineering, Chemistry and Wood Science, University of British Columbia, 2360, East Mall, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
9
|
Oh Y, Han JH, Kim H, Jeong N, Vermaas DA, Park JS, Chae S. Active Control of Irreversible Faradic Reactions to Enhance the Performance of Reverse Electrodialysis for Energy Production from Salinity Gradients. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:11388-11396. [PMID: 34310128 DOI: 10.1021/acs.est.1c02734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Irreversible faradic reactions in reverse electrodialysis (RED) are an emerging concern for scale-up, reducing the overall performance of RED and producing environmentally harmful chemical species. Capacitive RED (CRED) has the potential to generate electricity without the necessity of irreversible faradic reactions. However, there is a critical knowledge gap in the fundamental understanding of the effects of operational stack voltages of CRED on irreversible faradic reactions and the performance of CRED. This study aims to develop an active control strategy to avoid irreversible faradic reactions and pH change in CRED, focusing on the effects of a stack voltage (0.9-5.0 V) on irreversible faradic reactions and power generation. Results show that increasing the initial output voltage of CRED by increasing a stack voltage has an insignificant impact on irreversible faradic reactions, regardless of the stack voltage applied, but a cutoff output voltage of CRED is mainly responsible for controlling irreversible faradic reactions. The CRED system with eliminating irreversible faradic reactions achieved a maximum power density (1.6 W m-2) from synthetic seawater (0.513 M NaCl) and freshwater (0.004 M NaCl). This work suggests that the control of irreversible faradic reactions in CRED can provide stable power generation using salinity gradients in large-scale operations.
Collapse
Affiliation(s)
- Yoontaek Oh
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Ji-Hyung Han
- Jeju Global Research Center, Korea Institute of Energy Research, Jeju-si, Jeju 63357, Republic of Korea
| | - Hanki Kim
- Jeju Global Research Center, Korea Institute of Energy Research, Jeju-si, Jeju 63357, Republic of Korea
| | - Namjo Jeong
- Jeju Global Research Center, Korea Institute of Energy Research, Jeju-si, Jeju 63357, Republic of Korea
| | - David A Vermaas
- Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Jin-Soo Park
- Department of Green Chemical Engineering, College of Engineering, Sangmyung University, Dongnam-gu, Cheonan-si, Chungnam 31066, Republic of Korea
| | - Soryong Chae
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, Ohio 45221, United States
| |
Collapse
|
10
|
Chen QB, Wang J, Liu Y, Zhao J, Li P. Novel energy-efficient electrodialysis system for continuous brackish water desalination: Innovative stack configurations and optimal inflow modes. WATER RESEARCH 2020; 179:115847. [PMID: 32408183 DOI: 10.1016/j.watres.2020.115847] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 03/30/2020] [Accepted: 04/16/2020] [Indexed: 06/11/2023]
Abstract
Electrodialysis (ED) is a well-established brackish water (BW) desalination technology that has been commercially applied for decades. However, the energy efficiency of BWED cannot approach optimization because of the low salt concentration of BW. In this study, a novel two hydraulic-stage ED desalination system was presented to enhance mass transfer and reduce energy consumption. In terms of energy-efficient strategies, it involved not only innovative membrane stack configurations (resin-filled electrode cells and asymmetric cell pairs design) but also optimizing inflow modes (electrolytes parallel flow and dilute/concentrate counter flow). Results showed that thin resin-filled (1 mm) electrode cells, asymmetric cell pair design (cell pairs ratio of 1st and 2nd-hydraulic stages, 1.2), and optimizations of general inflow mode were beneficial for savings 10-30% of energy consumption at the same salt removal ratio (SR). The synergistic effects of these strategies indicated that this novel ED system could save ∼40% of the energy consumption at the same SR, compared with conventional two hydraulic-stage ED system (CED). Three stage continuous BWED performance tests, compared with a CED, showed that a 36.9% total energy saving could be achieved using the novel ED system when the BW concentration decreased from 3500 mg/L to the quality requirement of drinking water (∼450 mg/L). It was therefore possible to open the way for saving energy in BWED systems.
Collapse
Affiliation(s)
- Qing-Bai Chen
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Jianyou Wang
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| | - Yu Liu
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Jinli Zhao
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Pengfei Li
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| |
Collapse
|
11
|
Han JH, Jeong N, Kim CS, Hwang KS, Kim H, Nam JY, Jwa E, Yang S, Choi J. Reverse electrodialysis (RED) using a bipolar membrane to suppress inorganic fouling around the cathode. WATER RESEARCH 2019; 166:115078. [PMID: 31542547 DOI: 10.1016/j.watres.2019.115078] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/08/2019] [Accepted: 09/09/2019] [Indexed: 06/10/2023]
Abstract
When operating reverse electrodialysis (RED) with several hundreds of cell pairs, a large stack voltage of more than 10 V facilitates water electrolysis, even when redox couples are employed for the electrode reaction. Upon feeding natural water containing multivalent ions, ion crossover through a shielding membrane causes inorganic scaling around the cathode and the interior of the membrane stack, due to the combination with the hydroxide ions produced via water reduction. In this work, we introduce a bipolar membrane (BPM) as a shielding membrane at the cathode to suppress inorganic precipitation. Water splitting in the bilayer structure of the BPM can block the ions diffusing from the catholyte and the feed solution, maintaining the current density. To evaluate the effect of the BPM on the inorganic precipitates, diluted sea salt solution is allowed to flow through the outermost feed channel near the cathode, in order to maintain as large a stack voltage as possible, which is important to induce water splitting in the BPM when incorporated into an RED stack of 100 cell pairs. We measure the electric power of the RED according to the arrangement of the BPM and compare it with that of conventional RED. The degree of inorganic scaling is also compared according to the kind of shielding membrane used (anion exchange membrane, cation exchange membrane, and BPM (Neosepta or Fumasep)). The BPM (Neosepta) shows the best performance for suppressing the formation of precipitates. It can hence be used to design a highly stable electrode system for long-term operation of a large-scale RED feeding natural water.
Collapse
Affiliation(s)
- Ji-Hyung Han
- Jeju Global Research Center, Korea Institute of Energy Research, 200 Haemajihaean-ro, Gujwa-eup, Jeju, 63357, South Korea.
| | - Namjo Jeong
- Jeju Global Research Center, Korea Institute of Energy Research, 200 Haemajihaean-ro, Gujwa-eup, Jeju, 63357, South Korea
| | - Chan-Soo Kim
- Jeju Global Research Center, Korea Institute of Energy Research, 200 Haemajihaean-ro, Gujwa-eup, Jeju, 63357, South Korea
| | - Kyo Sik Hwang
- Jeju Global Research Center, Korea Institute of Energy Research, 200 Haemajihaean-ro, Gujwa-eup, Jeju, 63357, South Korea
| | - Hanki Kim
- Jeju Global Research Center, Korea Institute of Energy Research, 200 Haemajihaean-ro, Gujwa-eup, Jeju, 63357, South Korea
| | - Joo-Youn Nam
- Jeju Global Research Center, Korea Institute of Energy Research, 200 Haemajihaean-ro, Gujwa-eup, Jeju, 63357, South Korea
| | - Eunjin Jwa
- Jeju Global Research Center, Korea Institute of Energy Research, 200 Haemajihaean-ro, Gujwa-eup, Jeju, 63357, South Korea
| | - SeungCheol Yang
- Jeju Global Research Center, Korea Institute of Energy Research, 200 Haemajihaean-ro, Gujwa-eup, Jeju, 63357, South Korea; School of Materials Science and Engineering, Changwon National University, 20 Changwondaehak-ro, Uichang-gu, Changwon-si, Gyeongsangnam-do, 51140, South Korea
| | - Jiyeon Choi
- Jeju Global Research Center, Korea Institute of Energy Research, 200 Haemajihaean-ro, Gujwa-eup, Jeju, 63357, South Korea
| |
Collapse
|
12
|
Han JH, Kim H, Hwang KS, Jeong N, Kim CS. Hydrogen Production from Water Electrolysis Driven by High Membrane Voltage of Reverse Electrodialysis. J ELECTROCHEM SCI TE 2019. [DOI: 10.33961/jecst.2019.03160] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|