1
|
Ighalo JO, Kurniawan SB, Khongthaw B, Buhari J, Chauhan PK, Georgin J, Pfingsten Franco DS. Bisphenol A (BPA) toxicity assessment and insights into current remediation strategies. RSC Adv 2024; 14:35128-35162. [PMID: 39529868 PMCID: PMC11552486 DOI: 10.1039/d4ra05628k] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Bisphenol A (BPA) raises concerns among the scientific community as it is one of the most widely used compounds in industrial processes and a component of polycarbonate plastics and epoxy resins. In this review, we discuss the mechanism of BPA toxicity in food-grade plastics. Owing to its proliferation in the aqueous environment, we delved into the performance of various biological, physical, and chemical techniques for its remediation. Detailed mechanistic insights into these removal processes are provided. The toxic effects of BPA unravel as changes at the cellular level in the brain, which can result in learning difficulties, increased aggressiveness, hyperactivity, endocrine disorders, reduced fertility, and increased risk of dependence on illicit substances. Bacterial decomposition of BPA leads to new intermediates and products with lower toxicity. Processes such as membrane filtration, adsorption, coagulation, ozonation, and photocatalysis have also been shown to be efficient in aqueous-phase degradation. The breakdown mechanism of these processes is also discussed. The review demonstrates that high removal efficiency is usually achieved at the expense of high throughput. For the scalable application of BPA degradation technologies, removal efficiency needs to remain high at high throughput. We propose the need for process intensification using an integrated combination of these processes, which can solve multiple associated performance challenges.
Collapse
Affiliation(s)
- Joshua O Ighalo
- Department of Chemical Engineering, Nnamdi Azikiwe University P. M. B. 5025 Awka Nigeria
| | - Setyo Budi Kurniawan
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia Bangi 43600 Selangor Malaysia
| | - Banlambhabok Khongthaw
- Faculty of Applied Sciences and Biotechnology, Shoolini University Solan Himachal Pradesh 173229 India
| | - Junaidah Buhari
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia Bangi 43600 Selangor Malaysia
| | - P K Chauhan
- Faculty of Applied Sciences and Biotechnology, Shoolini University Solan Himachal Pradesh 173229 India
| | - Jordana Georgin
- Department of Civil and Environmental, Universidad de la Costa, CUC Calle 58 # 55-66 Barranquilla Atlántico Colombia
| | | |
Collapse
|
2
|
Barisci S, Suri R. Degradation of 1,4-dioxane from water and plating industry wastewater using electrochemical batch and plug flow reactors. J APPL ELECTROCHEM 2022. [DOI: 10.1007/s10800-022-01836-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
3
|
İskurt Ç, Aliyev E, Gengec E, Kobya M, Khataee A. Electrochemical oxidation of pretreated landfill leachate nanofiltration concentrate in terms of pollutants removal and formation of by-products. CHEMOSPHERE 2022; 307:135954. [PMID: 35963383 DOI: 10.1016/j.chemosphere.2022.135954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/14/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
This study compares the efficiencies of active (Ti/TiO2-RuO2-IrO2 (TIR)) and inactive (Ni/Boron Doped Diamond (BDD)) anodes in terms of pollutant treatment and by-product formation in pretreated (chemical coagulation) landfill leachate nanofiltration membrane concentrate (PLNC). PLNC has high chemical oxygen demand (COD:4900 mg/L), total organic carbon (TOC: 1874 mg/L), total Kjeldahl nitrogen (TKN: 520 mg/L), ammonium nitrogen (NH3-N: 21.35 mg/L), chloride (5700 mg/L) and sulfate (9000 mg/L - due to coagulant type). The parameters of COD, TOC, NH3-N, TKN, free and combined chlorine species, halogenated organic compounds (HOCs), adsorbable organic halogens (AOX), and nitrate at different current density (J: 111-555 A/m2) and initial pH (pHi:3.5-7) were compared for both anodes. The removal efficiencies at the optimum conditions (pHi 5.5, 333 A/m2 and 8 h) were obtained as 86.4% COD, 77.4% TOC, 93.4% TKN, 94.4% NH3-N with BDD and 34.3% COD, 27.3% TOC, 93.7% TKN, 97.4% NH3-N with TIR. According to gas chromatography-mass spectrometry (GC-MS) results obtained under optimum conditions, haloalkane/alkene, halonitroalkane, halonitrile, haloketone, haloalcohols, haloacids, haloaldehydes, haloamines/amides on both electrodes were detected as species of HOCs. In addition, the highest nitrate concentration was observed at the TIR anode, while the highest AOX concentration was observed at the BDD anode.
Collapse
Affiliation(s)
- Çisel İskurt
- Department of Environmental Engineering, Gebze Technical University, 41400, Gebze, Turkey
| | - Emil Aliyev
- Department of Environmental Engineering, Gebze Technical University, 41400, Gebze, Turkey
| | - Erhan Gengec
- Department of Environmental Protection, University of Kocaeli, 41275, Izmit, Kocaeli, Turkey
| | - Mehmet Kobya
- Department of Environmental Engineering, Gebze Technical University, 41400, Gebze, Turkey; Department of Environmental Engineering, Kyrgyz-Turkish Manas University, 720038, Bishkek, Kyrgyzstan.
| | - Alireza Khataee
- Department of Environmental Engineering, Gebze Technical University, 41400, Gebze, Turkey; Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran.
| |
Collapse
|
4
|
Wilk BK, Szopińska M, Sobaszek M, Pierpaoli M, Błaszczyk A, Luczkiewicz A, Fudala-Ksiazek S. Electrochemical oxidation of landfill leachate using boron-doped diamond anodes: pollution degradation rate, energy efficiency and toxicity assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:65625-65641. [PMID: 35501433 DOI: 10.1007/s11356-022-19915-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Electrochemical oxidation (EO), due to high efficiency and small carbon footprint, is regarded as an attractive option for on-site treatment of highly contaminated wastewater. This work shows the effectiveness of EO using three boron-doped diamond electrodes (BDDs) in sustainable management of landfill leachate (LL). The effect of the applied current density (25-100 mA cm-2) and boron doping concentration (B/C ratio: 500 ppm, 10,000 ppm and 15,000 ppm) on the performance of EO was investigated. It was found that, of the electrodes used, the one most effective at COD, BOD20 and ammonia removal (97.1%, 98.8% and 62%, respectively) was the electrode with the lowest boron doping. Then, to better elucidate the ecological role of LLs, before and after EO, cultivation of faecal bacteria and microscopic analysis of total (prokaryotic) cell number, together with ecotoxicity assay (Daphnia magna, Thamnocephalus platyurus and Artemia salina) were combined for the two better-performing electrodes. The EO process was very effective at bacterial cell inactivation using each of the two anodes, even within 2 h of contact time. In a complex matrix of LLs, this is probably a combined effect of electrogenerated oxidants (hydroxyl radicals, active chlorine and sulphate radicals), which may penetrate into the bacterial cells and/or react with cellular components. The toxicity of EO-treated LLs proved to be lower than that of raw ones. Since toxicity drops with increased boron doping, it is believed that appropriate electrolysis parameters can diminish the toxicity effect without compromising the nutrient-removal and disinfection capability, although salinity of LLs and related multistep-oxidation pathways needs to be further elucidated.
Collapse
Affiliation(s)
- Barbara Krystyna Wilk
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, 11/12 Narutowicza St, 80-233, Gdansk, Poland.
| | - Malgorzata Szopińska
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, 11/12 Narutowicza St, 80-233, Gdansk, Poland
| | - Michał Sobaszek
- Faculty of Electronics, Telecommunication and Informatics, Gdansk University of Technology, 11/12 Narutowicza St, 80-233, Gdansk, Poland
| | - Mattia Pierpaoli
- Faculty of Electronics, Telecommunication and Informatics, Gdansk University of Technology, 11/12 Narutowicza St, 80-233, Gdansk, Poland
| | - Agata Błaszczyk
- Faculty of Oceanography and Geography, University of Gdansk, Al. Marszałka Piłsudskiego 46, 81-378, Gdynia, Poland
| | - Aneta Luczkiewicz
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, 11/12 Narutowicza St, 80-233, Gdansk, Poland
| | - Sylwia Fudala-Ksiazek
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, 11/12 Narutowicza St, 80-233, Gdansk, Poland
| |
Collapse
|
5
|
Pisharody L, Gopinath A, Malhotra M, Nidheesh PV, Kumar MS. Occurrence of organic micropollutants in municipal landfill leachate and its effective treatment by advanced oxidation processes. CHEMOSPHERE 2022; 287:132216. [PMID: 34517234 DOI: 10.1016/j.chemosphere.2021.132216] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/25/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Landfilling is the most prominently adopted disposal technique for managing municipal solid waste across the globe. However, the main drawback associated with this method is the generation of leachate from the landfill site. Leachate, a highly concentrated liquid consisting of both organic and inorganic components arises environmental issues as it contaminates the nearby aquifers. Landfill leachate treatment by conventional methods is not preferred as the treatment methods are not much effective to remove these pollutants. Advanced oxidation processes (AOPs) based on both hydroxyl and sulfate radicals could be a promising method to remove the micropollutants completely or convert them to non-toxic compounds. The current review focuses on the occurrence of micropollutants in landfill leachate, their detection methods and removal from landfill leachate using AOPs. Pharmaceuticals and personal care products occur in the range of 10-1 to more than 100 μg L-1 whereas phthalates were found below the detectable limit to 384 μg L-1, pesticides in the order of 10-1 μg L-1 and polyaromatic hydrocarbons occur in concentration from 10-2 to 114.7 μg L-1. Solid-phase extraction is the most preferred method for extracting micropollutants from leachate and liquid chromatography (LC) - mass spectrophotometer (MS) for detecting the micropollutants. Limited studies have been focused on AOPs as a potential method for the degradation of micropollutants in landfill leachate. The potential of Fenton based techniques, electrochemical AOPs and ozonation are investigated for the removal of micropollutants from leachate whereas the applicability of photocatalysis for the removal of a wide variety of micropollutants from leachate needs in-depth studies.
Collapse
Affiliation(s)
- Lakshmi Pisharody
- The Zuckerberg Institute of Water Research, Ben-Gurion University, Israel
| | - Ashitha Gopinath
- Environmental Impact and Sustainability Division, CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, India
| | - Milan Malhotra
- Environmental Science and Engineering Department, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - P V Nidheesh
- Environmental Impact and Sustainability Division, CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, India.
| | - M Suresh Kumar
- Environmental Impact and Sustainability Division, CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, India
| |
Collapse
|
6
|
Kinetics of the Organic Compounds and Ammonium Nitrogen Electrochemical Oxidation in Landfill Leachates at Boron-Doped Diamond Anodes. MATERIALS 2021; 14:ma14174971. [PMID: 34501059 PMCID: PMC8433647 DOI: 10.3390/ma14174971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 11/18/2022]
Abstract
Electrochemical oxidation (EO) of organic compounds and ammonium in the complex matrix of landfill leachates (LLs) was investigated using three different boron-doped diamond electrodes produced on silicon substrate (BDD/Si)(levels of boron doping [B]/[C] = 500, 10,000, and 15,000 ppm—0.5 k; 10 k, and 15 k, respectively) during 8-h tests. The LLs were collected from an old landfill in the Pomerania region (Northern Poland) and were characterized by a high concentration of N-NH4+ (2069 ± 103 mg·L−1), chemical oxygen demand (COD) (3608 ± 123 mg·L−1), high salinity (2690 ± 70 mg Cl−·L−1, 1353 ± 70 mg SO42−·L−1), and poor biodegradability. The experiments revealed that electrochemical oxidation of LLs using BDD 0.5 k and current density (j) = 100 mA·cm−2 was the most effective amongst those tested (C8h/C0: COD = 0.09 ± 0.14 mg·L−1, N-NH4+ = 0.39 ± 0.05 mg·L−1). COD removal fits the model of pseudo-first-order reactions and N-NH4+ removal in most cases follows second-order kinetics. The double increase in biodegradability index—to 0.22 ± 0.05 (BDD 0.5 k, j = 50 mA·cm−2) shows the potential application of EO prior biological treatment. Despite EO still being an energy consuming process, optimum conditions (COD removal > 70%) might be achieved after 4 h of treatment with an energy consumption of 200 kW·m−3 (BDD 0.5 k, j = 100 mA·cm−2).
Collapse
|