1
|
Luo T, Zhang M, Li S, Situ M, Liu P, Wang M, Tao Y, Zhao S, Wang Z, Yang Y, Huang Y. Exome functional risk score and brain connectivity can predict social adaptability outcome of children with autism spectrum disorder in 4 years' follow up. Front Psychiatry 2024; 15:1384134. [PMID: 38818019 PMCID: PMC11137745 DOI: 10.3389/fpsyt.2024.1384134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/29/2024] [Indexed: 06/01/2024] Open
Abstract
Introduction Autism Spectrum Disorder (ASD) is a common neurodevelopmental disorder emerging in early childhood, with heterogeneous clinical outcomes across individuals. This study aims to recognize neuroimaging genetic factors associated with outcomes of ASD after a 4-year follow-up. Methods A total of 104 ASD children were included in this study; they underwent clinical assessments, MRI data acquisition, and the whole exome sequencing (WES). Exome functional risk score (EFRS) was calculated based on WES; and two modalities of brain connectivity were constructed based on MRI data, that is functional connectivity (FC) for functional MRI (fMRI), and individual differential structural covariance network (IDSCN) for structural MRI (sMRI), to explore the neuroimaging genetic biomarker of outcomes of ASD children. Results Regression analysis found EFRS predicts social adaptability at the 4-year follow-up (Y = -0.013X + 9.29, p = 0.003). We identified 19 pairs of FC associated with autism symptoms severity at follow-up, 10 pairs of FC and 4 pairs of IDSCN associated with social adaptability at follow-up, and 10 pairs of FC associated with ASD EFRS by support vector regression (SVR). Related brain regions with prognostic predictive effects are mainly distributed in superior frontal gyrus, occipital cortex, temporal cortex, parietal cortex, paracentral lobule, pallidum, and amygdala for FC, and temporal cortex, thalamus, and hippocampus for IDSCN. Mediation model showed that ASD EFRS affects the social communication of ASD children through the mediation of FC between left middle occipital gyrus and left pallidum (RMSEA=0.126, CMIN=80.66, DF=42, p< 0.001, CFI=0.867, AIC=152). Discussion Our findings underscore that both EFRS and brain connectivity can predict social adaptability, and that brain connectivity serving as mediator in the relationship of EFRS and behaviors of ASD, suggesting the intervention targets in the future clinical application.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Yi Huang
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Avrahami M, Ben-Dor DH, Ratzon R, Weizman A, Perlman Danieli P. Characterizing the clinical and sociodemographic profiles of hospitalized adolescents with autism spectrum disorder. Glob Ment Health (Camb) 2024; 11:e63. [PMID: 38827333 PMCID: PMC11140491 DOI: 10.1017/gmh.2024.63] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 04/17/2024] [Accepted: 05/02/2024] [Indexed: 06/04/2024] Open
Abstract
The prevalence of autism spectrum disorder (ASD) is increasing worldwide. Youngsters with ASD demonstrate higher rates of intellectual disabilities (IDs), comorbid psychopathology and psychiatric hospitalizations, compared to children in the general population. This study characterizes the demographics and clinical parameters of adolescent psychiatric inpatients with ASD compared to inpatients without ASD, all hospitalized during the study period. Additionally, within the ASD group, those with ID were compared to those without. The rate of males among participants with ASD was significantly higher than among those without ASD, and the duration of hospitalization was longer. In contrast, the rate of cigarette smoking, major depressive disorder and suicidal thoughts among those with ASD was lower. One-third of those with ASD had moderate to severe ID, about 10% had comorbid epilepsy, and about half of them demonstrated aggressive behavior. Most ASD patients showed significant improvement upon discharge, although the extent of improvement was more prominent among ASD patients with no ID. Our findings, consistent with previous research, indicate that hospitalization is beneficial to youths with ASD, both those with and those without ID. Further studies that include long-term follow-up are needed.
Collapse
Affiliation(s)
- Matan Avrahami
- Child and Adolescent Division, Geha Mental Health Center, Petah Tikva, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - David Haim Ben-Dor
- Child and Adolescent Division, Geha Mental Health Center, Petah Tikva, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Roy Ratzon
- Child and Adolescent Division, Geha Mental Health Center, Petah Tikva, Israel
| | - Abraham Weizman
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Laboratory of Molecular and Biological Psychiatry, Felsenstein Medical Research Center, Petah Tikva, Israel
- Research Unit, Geha Mental Health Center, Petah Tikva, Israel
| | - Polina Perlman Danieli
- Child and Adolescent Division, Geha Mental Health Center, Petah Tikva, Israel
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Centre for Addiction and Mental Health, Toronto, ON, Canada
| |
Collapse
|
3
|
Mollon J, Schultz LM, Huguet G, Knowles EEM, Mathias SR, Rodrigue A, Alexander-Bloch A, Saci Z, Jean-Louis M, Kumar K, Douard E, Almasy L, Jacquemont S, Glahn DC. Impact of Copy Number Variants and Polygenic Risk Scores on Psychopathology in the UK Biobank. Biol Psychiatry 2023; 94:591-600. [PMID: 36764568 PMCID: PMC10409883 DOI: 10.1016/j.biopsych.2023.01.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/11/2023]
Abstract
BACKGROUND Our understanding of the impact of copy number variants (CNVs) on psychopathology and their joint influence with polygenic risk scores (PRSs) remains limited. METHODS The UK Biobank recruited 502,534 individuals ages 37 to 73 years living in the United Kingdom between 2006 and 2010. After quality control, genotype data from 459,855 individuals were available for CNV calling. A total of 61 commonly studied recurrent neuropsychiatric CNVs were selected for analyses and examined individually and in aggregate (any CNV, deletion, or duplication). CNV risk scores were used to quantify intolerance of CNVs to haploinsufficiency. Major depressive disorder and generalized anxiety disorder PRSs were generated for White British individuals (N = 408,870). Mood/anxiety factor scores were generated using item-level questionnaire data (N = 501,289). RESULTS CNV carriers showed higher mood/anxiety scores than noncarriers, with the largest effects seen for intolerant deletions. A total of 11 individual deletions and 8 duplications were associated with higher mood/anxiety. Carriers of the 9p24.3 (DMRT1) duplication showed lower mood/anxiety. Associations remained significant for most CNVs when excluding individuals with psychiatric diagnoses. Nominally significant CNV × PRS interactions provided preliminary evidence that associations between select individual CNVs, but not CNVs in aggregate, and mood/anxiety may be modulated by PRSs. CONCLUSIONS CNVs associated with risk for psychiatric disorders showed small to large effects on dimensional mood/anxiety scores in a general population cohort, even when excluding individuals with psychiatric diagnoses. CNV × PRS interactions showed that associations between select CNVs and mood/anxiety may be modulated by PRSs.
Collapse
Affiliation(s)
- Josephine Mollon
- Department of Psychiatry, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts.
| | - Laura M Schultz
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Guillaume Huguet
- Department of Pediatrics, Université de Montréal, Montreal, Quebec, Canada; Department of Pediatrics, Center Hospitalier Universitaire Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Emma E M Knowles
- Department of Psychiatry, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Samuel R Mathias
- Department of Psychiatry, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Amanda Rodrigue
- Department of Psychiatry, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Aaron Alexander-Bloch
- Department of Child and Adolescent Psychiatry and Behavioral Science, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Lifespan Brain Institute, The Children's Hospital of Philadelphia and Penn Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Neurodevelopment and Psychosis Section, Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Zohra Saci
- Department of Pediatrics, Center Hospitalier Universitaire Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Martineau Jean-Louis
- Department of Pediatrics, Center Hospitalier Universitaire Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Kuldeep Kumar
- Department of Pediatrics, Center Hospitalier Universitaire Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Elise Douard
- Department of Pediatrics, Université de Montréal, Montreal, Quebec, Canada; Department of Pediatrics, Center Hospitalier Universitaire Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Laura Almasy
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Department of Genetics, Perelman School of Medicine, Penn-CHOP Lifespan Brain Institute, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sebastien Jacquemont
- Department of Pediatrics, Université de Montréal, Montreal, Quebec, Canada; Department of Pediatrics, Center Hospitalier Universitaire Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - David C Glahn
- Department of Psychiatry, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts; Olin Neuropsychiatry Research Center, Institute of Living, Hartford, Connecticut
| |
Collapse
|
4
|
Hope S, Shadrin AA, Lin A, Bahrami S, Rødevand L, Frei O, Hübenette SJ, Cheng W, Hindley G, Nag H, Ulstein L, Efrim-Budisteanu M, O'Connell K, Dale AM, Djurovic S, Nærland T, Andreassen OA. Bidirectional genetic overlap between autism spectrum disorder and cognitive traits. Transl Psychiatry 2023; 13:295. [PMID: 37709755 PMCID: PMC10502136 DOI: 10.1038/s41398-023-02563-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/27/2023] [Accepted: 07/17/2023] [Indexed: 09/16/2023] Open
Abstract
Autism spectrum disorder (ASD) is a highly heritable condition with a large variation in cognitive function. Here we investigated the shared genetic architecture between cognitive traits (intelligence (INT) and educational attainment (EDU)), and risk loci jointly associated with ASD and the cognitive traits. We analyzed data from genome-wide association studies (GWAS) of INT (n = 269,867), EDU (n = 766,345) and ASD (cases n = 18,381, controls n = 27,969). We used the bivariate causal mixture model (MiXeR) to estimate the total number of shared genetic variants, local analysis of co-variant annotation (LAVA) to estimate local genetic correlations, conditional false discovery rate (cond/conjFDR) to identify specific overlapping loci. The MiXeR analyses showed that 12.7k genetic variants are associated with ASD, of which 12.0k variants are shared with EDU, and 11.1k are shared with INT with both positive and negative relationships within overlapping variants. The majority (59-68%) of estimated shared loci have concordant effect directions, with a positive, albeit modest, genetic correlation between ASD and EDU (rg = 0.21, p = 2e-13) and INT (rg = 0.22, p = 4e-12). We discovered 43 loci jointly associated with ASD and cognitive traits (conjFDR<0.05), of which 27 were novel for ASD. Functional analysis revealed significant differential expression of candidate genes in the cerebellum and frontal cortex. To conclude, we quantified the genetic architecture shared between ASD and cognitive traits, demonstrated mixed effect directions, and identified the associated genetic loci and molecular pathways. The findings suggest that common genetic risk factors for ASD can underlie both better and worse cognitive functioning across the ASD spectrum, with different underlying biology.
Collapse
Affiliation(s)
- Sigrun Hope
- K.G. Jebsen Centre for Neurodevelopmental Disorders, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
- Department of Neurohabilitation, Oslo University Hospital, Oslo, Norway.
- NevSom, Department of Rare Disorders and Disabilities, Oslo University Hospital, Oslo, Norway.
| | - Alexey A Shadrin
- K.G. Jebsen Centre for Neurodevelopmental Disorders, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- NORMENT, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Aihua Lin
- NORMENT, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Shahram Bahrami
- NORMENT, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Linn Rødevand
- NORMENT, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Oleksandr Frei
- NORMENT, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Center for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway
| | - Saira J Hübenette
- K.G. Jebsen Centre for Neurodevelopmental Disorders, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Weiqiu Cheng
- NORMENT, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Guy Hindley
- NORMENT, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Heidi Nag
- Frambu Resource Centre for Rare Disorders, Siggerud, Norway
| | | | - Magdalena Efrim-Budisteanu
- Prof. Dr. Alex Obregia Clinical Hospital of Psychiatry, Bucharest, Romania
- "Victor Babes", Național Institute of Pathology, Bucharest, Romania
| | - Kevin O'Connell
- NORMENT, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Anders M Dale
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
- Department of Cognitive Sciences, University of California, San Diego, La Jolla, CA, USA
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Srdjan Djurovic
- K.G. Jebsen Centre for Neurodevelopmental Disorders, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Terje Nærland
- K.G. Jebsen Centre for Neurodevelopmental Disorders, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- NevSom, Department of Rare Disorders and Disabilities, Oslo University Hospital, Oslo, Norway
| | - Ole A Andreassen
- K.G. Jebsen Centre for Neurodevelopmental Disorders, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- NORMENT, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
5
|
Darling Rasmussen P, Elmose M, Lien G, Musaeus A, Kirubakaran R, Ribeiro JP, Storebø OJ. Remarkable high frequency of insecure attachment in children with ADHD persists in a three-year follow-up. Nord J Psychiatry 2022; 76:323-329. [PMID: 34632915 DOI: 10.1080/08039488.2021.1969428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Studies have pointed to a complicated and mutual relationship between attention deficit hyperactivity disorder (ADHD) and attachment. In an observational follow-up study conducted in 2015 60 children from 7 years to 12 years recently diagnosed with ADHD were included and assessed according to attachment representation showing 85% of the children to be insecurely attached. AIM The aim of this study was to investigate the stability of this remarkably high frequency of insecure attachment in the same cohort of children. METHODS Children previously assessed using the child attachment interview (CAI) when diagnosed with ADHD were contacted three years later for a follow-up CAI assessment. RESULTS At follow-up, 31 children participated in the CAI-interviews. Since their diagnosis with ADHD, the children had received treatment as usual. The CAI-interviews showed a continued high rate of insecure attachment with 90% of the children classifying as insecurely attached compared to expected 38% in the normal population. Of these, the majority of children (77%) were classified as dismissing. CONCLUSION Our findings suggest that targeting ADHD-symptoms with our current treatment strategies does not in itself improve attachment security. Attachment security may in turn be a factor of importance when evaluating general functioning and prognosis.
Collapse
Affiliation(s)
| | - Mette Elmose
- Department of Psychology, University of Southern Denmark, Odense M, Denmark
| | - Gunnhild Lien
- Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark
| | - Amalie Musaeus
- Department of Child and Adolescent Psychiatry, Holbaek, Denmark
| | | | | | - Ole Jakob Storebø
- Psychiatric Research Unit, Slagelse, Denmark.,Department of Psychology, University of Southern Denmark, Odense M, Denmark.,Child and Adolescent Psychiatric Department, Roskilde, Denmark
| |
Collapse
|
6
|
Balogh L, Pulay AJ, Réthelyi JM. Genetics in the ADHD Clinic: How Can Genetic Testing Support the Current Clinical Practice? Front Psychol 2022; 13:751041. [PMID: 35350735 PMCID: PMC8957927 DOI: 10.3389/fpsyg.2022.751041] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 01/03/2022] [Indexed: 12/12/2022] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder with a childhood prevalence of 5%. In about two-thirds of the cases, ADHD symptoms persist into adulthood and often cause significant functional impairment. Based on the results of family and twin studies, the estimated heritability of ADHD approximates 80%, suggests a significant genetic component in the etiological background of the disorder; however, the potential genetic effects on disease risk, symptom severity, and persistence are unclear. This article provides a brief review of the genome-wide and candidate gene association studies with a focus on the clinical aspects, summarizing findings of ADHD disease risk, ADHD core symptoms as dimensional traits, and other traits frequently associated with ADHD, which may contribute to the susceptibility to other comorbid psychiatric disorders. Furthermore, neuropsychological impairment and measures from neuroimaging and electrophysiological paradigms, emerging as potential biomarkers, also provide a prominent target for molecular genetic studies, since they lie in the pathway from genes to behavior; therefore, they can contribute to the understanding of the underlying neurobiological mechanisms and the interindividual heterogeneity of clinical symptoms. Beyond the aforementioned aspects, throughout the review, we also give a brief summary of the genetic results, including polygenic risk scores that can potentially predict individual response to different treatment options and may offer a possibility for personalized treatment for the therapy of ADHD in the future.
Collapse
Affiliation(s)
- Lívia Balogh
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Attila J Pulay
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - János M Réthelyi
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| |
Collapse
|
7
|
Ronald A, de Bode N, Polderman TJC. Systematic Review: How the Attention-Deficit/Hyperactivity Disorder Polygenic Risk Score Adds to Our Understanding of ADHD and Associated Traits. J Am Acad Child Adolesc Psychiatry 2021; 60:1234-1277. [PMID: 33548493 PMCID: PMC11164195 DOI: 10.1016/j.jaac.2021.01.019] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 01/04/2021] [Accepted: 01/28/2021] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To investigate, by systematically reviewing the literature, whether the attention-deficit/hyperactivity disorder (ADHD) polygenic risk score (PRS) associates with ADHD and related traits in independent clinical and population samples. METHOD PubMed, Embase and PsychoInfo were systematically searched, alongside study bibliographies. Quality assessments were conducted, and a best-evidence synthesis was applied. Studies were excluded when the predictor was not based on the latest ADHD genome-wide association study, when PRS was not based on genome-wide results, or when the study was a review. Initially, 197 studies were retrieved (February 22, 2020), and a second search (June 3, 2020) yielded a further 49 studies. From both searches, 57 studies were eligible, and 44 studies met inclusion criteria. RESULTS Included studies were published in the last 3 years. Over 80% of the studies were rated excellent, based on a standardized quality assessment. Evidence of associations between ADHD PRS and the following categories was strong: ADHD, ADHD traits, brain structure, education, externalizing behaviors, neuropsychological constructs, physical health, and socioeconomic status. Evidence for associations with addiction, autism, and mental health were mixed and were, so far, inconclusive. Odds ratios for PRS associating with ADHD ranged from 1.22% to 1.76%; variance explained in dimensional assessments of ADHD traits was 0.7% to 3.3%. CONCLUSION A new wave of high-quality research using the ADHD PRS has emerged. Eventually, symptoms may be partly identified based on PRS, but the current ADHD PRS is useful for research purposes only. This review shows that the ADHD PRS is robust and reliable, associating not only with ADHD but many outcomes and challenges known to be linked to ADHD.
Collapse
Affiliation(s)
| | - Nora de Bode
- Vrije Universiteit Amsterdam, the Netherlands, and Amsterdam UMC, the Netherlands
| | - Tinca J C Polderman
- Vrije Universiteit Amsterdam, the Netherlands, and Amsterdam UMC, the Netherlands.
| |
Collapse
|