1
|
Travis KE, Lazarus MF, Scala M, Marchman VA, Bruckert L, Poblaciones RV, Dubner S, Feldman HM. Skin-to-skin holding in relation to white matter connectivity in infants born preterm. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.03.21.25324424. [PMID: 40166583 PMCID: PMC11957181 DOI: 10.1101/2025.03.21.25324424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Background and Objectives Preterm birth is associated with altered white matter development and long-term neurodevelopmental impairments. Skin-to-skin care (kangaroo care) has well-documented benefits for physiological stability and bonding, but its association with neonatal brain structure remains unclear. This study explored the association between in-hospital skin-to-skin care and neonatal white matter microstructure in frontal and limbic pathways that are linked to stress regulation and socio-emotional development, processes potentially influenced by affective touch during skin-to-skin care. Methods This retrospective study analyzed electronic medical records and diffusion MRI data collected from 86 preterm infants (<32 weeks gestational age) in a single NICU. Skin-to-skin care exposure was quantified as total duration (minutes/instance) and rate (minutes/day) of sessions. Diffusion MRI scans obtained before hospital discharge assessed mean diffusivity (MD) and fractional anisotropy (FA) in the cingulate, anterior thalamic radiations (ATR), and uncinate fasciculus. Hierarchical regression models examined associations between skin-to-skin care and white matter microstructure, adjusting for gestational age, health acuity, postmenstrual age at scan, and MRI coil type. Sensitivity analyses controlled for socioeconomic status and NICU visitation frequency. Results Skin-to-skin care duration was positively associated with MD in the cingulate (B = 0.002, p = 0.016) and ATR (B = 0.002, p = 0.020). Skin-to-skin care rate was also positively linked to MD in the ATR (B = 0.040, p = 0.041). Skin-to-skin care duration and rate were not associated with FA in the cingulate but skin-to-skin duration and rate were negatively associated with FA in the ATR (duration: B = -0.001, p = 0.020; rate: B = -0.017, p = 0.008). No significant associations were found for the uncinate fasciculus. Findings remained robust after adjusting for socioeconomic status and visitation frequency. Discussion This study provides novel evidence linking in-hospital experiences of skin-to-skin care to neonatal white matter development. These findings have important implications for understanding how family-centered neuroprotective practices, such as skin-to-skin care, may affect brain development to improve long-term developmental outcomes.
Collapse
Affiliation(s)
- Katherine E Travis
- Department of Pediatrics, Division of Developmental-Behavioral Pediatrics, Stanford University, Stanford, CA, US
- Burke-Cornell Medical Research Institute, Department of Pediatrics, Weill Medical College, Cornell University, New York, NY
| | - Molly F Lazarus
- Department of Pediatrics, Division of Developmental-Behavioral Pediatrics, Stanford University, Stanford, CA, US
- Burke-Cornell Medical Research Institute, Department of Pediatrics, Weill Medical College, Cornell University, New York, NY
| | - Melissa Scala
- Department of Pediatrics, Division of Neonatology, Stanford University, Stanford, CA, USA
| | - Virginia A Marchman
- Department of Pediatrics, Division of Developmental-Behavioral Pediatrics, Stanford University, Stanford, CA, US
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Lisa Bruckert
- Department of Pediatrics, Division of Developmental-Behavioral Pediatrics, Stanford University, Stanford, CA, US
| | - Rocio Velasco Poblaciones
- Department of Pediatrics, Division of Developmental-Behavioral Pediatrics, Stanford University, Stanford, CA, US
| | - Sarah Dubner
- Department of Pediatrics, Division of Developmental-Behavioral Pediatrics, Stanford University, Stanford, CA, US
| | - Heidi M Feldman
- Department of Pediatrics, Division of Developmental-Behavioral Pediatrics, Stanford University, Stanford, CA, US
| |
Collapse
|
2
|
Schneider K, Alexander N, Jansen A, Nenadić I, Straube B, Teutenberg L, Thomas-Odenthal F, Usemann P, Dannlowski U, Kircher T, Nagels A, Stein F. Brain structural associations of syntactic complexity and diversity across schizophrenia spectrum and major depressive disorders, and healthy controls. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:101. [PMID: 39487121 PMCID: PMC11530549 DOI: 10.1038/s41537-024-00517-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 10/03/2024] [Indexed: 11/04/2024]
Abstract
Deviations in syntax production have been well documented in schizophrenia spectrum disorders (SSD). Recently, we have shown evidence for transdiagnostic subtypes of syntactic complexity and diversity. However, there is a lack of studies exploring brain structural correlates of syntax across diagnoses. We assessed syntactic complexity and diversity of oral language production using four Thematic Apperception Test pictures in a sample of N = 87 subjects (n = 24 major depressive disorder (MDD), n = 30 SSD patients both diagnosed according to DSM-IV-TR, and n = 33 healthy controls (HC)). General linear models were used to investigate the association of syntax with gray matter volume (GMV), fractional anisotropy (FA), axial (AD), radial (RD), and mean diffusivity (MD). Age, sex, total intracranial volume, group, interaction of group and syntax were covariates of no interest. Syntactic diversity was positively correlated with the GMV of the right medial pre- and postcentral gyri and with the FA of the left superior-longitudinal fasciculus (temporal part). Conversely, the AD of the left cingulum bundle and the forceps minor were negatively correlated with syntactic diversity. The AD of the right inferior-longitudinal fasciculus was positively correlated with syntactic complexity. Negative associations were observed between syntactic complexity and the FA of the left cingulum bundle, the right superior-longitudinal fasciculus, and the AD of the forceps minor and the left uncinate fasciculus. Our study showed brain structural correlates of syntactic complexity and diversity across diagnoses and HC. This contributes to a comprehensive understanding of the interplay between linguistic and neural substrates in syntax production in psychiatric disorders and HC.
Collapse
Affiliation(s)
- Katharina Schneider
- Department of English and Linguistics, General Linguistics, University of Mainz, Mainz, Germany.
| | - Nina Alexander
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| | - Andreas Jansen
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| | - Igor Nenadić
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| | - Benjamin Straube
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| | - Lea Teutenberg
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| | - Florian Thomas-Odenthal
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| | - Paula Usemann
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| | - Arne Nagels
- Department of English and Linguistics, General Linguistics, University of Mainz, Mainz, Germany
| | - Frederike Stein
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| |
Collapse
|
3
|
Parlatini V, Itahashi T, Lee Y, Liu S, Nguyen TT, Aoki YY, Forkel SJ, Catani M, Rubia K, Zhou JH, Murphy DG, Cortese S. White matter alterations in Attention-Deficit/Hyperactivity Disorder (ADHD): a systematic review of 129 diffusion imaging studies with meta-analysis. Mol Psychiatry 2023; 28:4098-4123. [PMID: 37479785 PMCID: PMC10827669 DOI: 10.1038/s41380-023-02173-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/23/2023]
Abstract
Aberrant anatomical brain connections in attention-deficit/hyperactivity disorder (ADHD) are reported inconsistently across diffusion weighted imaging (DWI) studies. Based on a pre-registered protocol (Prospero: CRD42021259192), we searched PubMed, Ovid, and Web of Knowledge until 26/03/2022 to conduct a systematic review of DWI studies. We performed a quality assessment based on imaging acquisition, preprocessing, and analysis. Using signed differential mapping, we meta-analyzed a subset of the retrieved studies amenable to quantitative evidence synthesis, i.e., tract-based spatial statistics (TBSS) studies, in individuals of any age and, separately, in children, adults, and high-quality datasets. Finally, we conducted meta-regressions to test the effect of age, sex, and medication-naïvety. We included 129 studies (6739 ADHD participants and 6476 controls), of which 25 TBSS studies provided peak coordinates for case-control differences in fractional anisotropy (FA)(32 datasets) and 18 in mean diffusivity (MD)(23 datasets). The systematic review highlighted white matter alterations (especially reduced FA) in projection, commissural and association pathways of individuals with ADHD, which were associated with symptom severity and cognitive deficits. The meta-analysis showed a consistent reduced FA in the splenium and body of the corpus callosum, extending to the cingulum. Lower FA was related to older age, and case-control differences did not survive in the pediatric meta-analysis. About 68% of studies were of low quality, mainly due to acquisitions with non-isotropic voxels or lack of motion correction; and the sensitivity analysis in high-quality datasets yielded no significant results. Findings suggest prominent alterations in posterior interhemispheric connections subserving cognitive and motor functions affected in ADHD, although these might be influenced by non-optimal acquisition parameters/preprocessing. Absence of findings in children may be related to the late development of callosal fibers, which may enhance case-control differences in adulthood. Clinicodemographic and methodological differences were major barriers to consistency and comparability among studies, and should be addressed in future investigations.
Collapse
Affiliation(s)
- Valeria Parlatini
- Sackler Institute of Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 8AF, London, UK.
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 8AF, London, UK.
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 8AF, London, UK.
| | - Takashi Itahashi
- Medical Institute of Developmental Disabilities Research, Showa University, 6-11-11 Kita-karasuyama, Setagaya-ku, Tokyo, Japan
| | - Yeji Lee
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 8AF, London, UK
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Siwei Liu
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Thuan T Nguyen
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Integrative Sciences and Engineering Programme, National University of Singapore, Singapore, Singapore
| | - Yuta Y Aoki
- Medical Institute of Developmental Disabilities Research, Showa University, 6-11-11 Kita-karasuyama, Setagaya-ku, Tokyo, Japan
- Department of Psychiatry, Aoki Clinic, Tokyo, Japan
| | - Stephanie J Forkel
- Donders Centre for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Centre for Neuroimaging Sciences, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France
- Departments of Neurosurgery, Technical University of Munich School of Medicine, Munich, Germany
| | - Marco Catani
- Sackler Institute of Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 8AF, London, UK
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 8AF, London, UK
| | - Katya Rubia
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 8AF, London, UK
| | - Juan H Zhou
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Integrative Sciences and Engineering Programme, National University of Singapore, Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
| | - Declan G Murphy
- Sackler Institute of Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 8AF, London, UK
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 8AF, London, UK
| | - Samuele Cortese
- Centre for Innovation in Mental Health, School of Psychology, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
- Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, Southampton, UK
- Solent NHS Trust, Southampton, UK
- Hassenfeld Children's Hospital at NYU Langone, New York University Child Study Center, New York, NY, USA
- Division of Psychiatry and Applied Psychology, School of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
4
|
Reduced basal ganglia tissue-iron concentration in school-age children with attention-deficit/hyperactivity disorder is localized to limbic circuitry. Exp Brain Res 2022; 240:3271-3288. [PMID: 36301336 DOI: 10.1007/s00221-022-06484-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 10/10/2022] [Indexed: 11/04/2022]
Abstract
Dopamine-related abnormalities in the basal ganglia have been implicated in attention-deficit/hyperactivity disorder (ADHD). Iron plays a critical role in supporting dopaminergic function, and reduced brain iron and serum ferritin levels have been linked to ADHD symptom severity in children. Furthermore, the basal ganglia is a central brain region implicated in ADHD psychopathology and involved in motor and reward functions as well as emotional responding. The present study repurposed diffusion tensor imaging (DTI) to examine effects of an ADHD diagnosis and sex on iron deposition within the basal ganglia in children ages 8-12 years. We further explored associations between brain iron levels and ADHD symptom severity and affective symptoms. We observed reduced iron levels in children with ADHD in the bilateral limbic region of the striatum, as well as reduced levels of iron-deposition in males in the sensorimotor striatal subregion, regardless of diagnosis. Across the whole sample, iron-deposition increased with age in all regions. Brain-behavior analyses revealed that, across diagnostic groups, lower tissue-iron levels in bilateral limbic striatum correlated with greater ADHD symptom severity, whereas lower tissue-iron levels in the left limbic striatum only correlated with anxious, depressive and affective symptom severity. This study sheds light on the neurobiological underpinnings of ADHD, specifically highlighting the localization of tissue-iron deficiency in limbic regions, and providing support for repurposing DTI for brain iron analyses. Our findings highlight the need for further investigation of iron as a biomarker in the diagnosis and treatment of ADHD and sex differences.
Collapse
|
5
|
Cell Recognition Using BP Neural Network Edge Computing. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:7355233. [PMID: 35935314 PMCID: PMC9296348 DOI: 10.1155/2022/7355233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/27/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022]
Abstract
This exploration is to solve the efficiency and accuracy of cell recognition in biological experiments. Neural network technology is applied to the research of cell image recognition. The cell image recognition problem is solved by constructing an image recognition algorithm. First, with an in-depth understanding of computer functions, as a basic intelligent algorithm, the artificial neural network (ANN) is widely used to solve the problem of image recognition. Recently, the backpropagation neural network (BPNN) algorithm has developed into a powerful pattern recognition tool and has been widely used in image edge detection. Then, the structural model of BPNN is introduced in detail. Given the complexity of cell image recognition, an algorithm based on the ANN and BPNN is used to solve this problem. The BPNN algorithm has multiple advantages, such as simple structure, easy hardware implementation, and good learning effect. Next, an image recognition algorithm based on the BPNN is designed and the image recognition process is optimized in combination with edge computing technology to improve the efficiency of algorithm recognition. The experimental results show that compared with the traditional image pattern recognition algorithm, the recognition accuracy of the designed algorithm for cell images is higher than 93.12%, so it has more advantages for processing the cell image algorithm. The results show that the BPNN edge computing can improve the scientific accuracy of cell recognition results, suggesting that edge computing based on the BPNN has a significant practical value for the research and application of cell recognition.
Collapse
|
6
|
Liang X, Ruan W, Xu Z, Liu J. Analysis of Safe Storage of Network Information Data and Financial Risks Under Blockchain Combined With Edge Computing. JOURNAL OF GLOBAL INFORMATION MANAGEMENT 2022. [DOI: 10.4018/jgim.312580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
To discuss the control of financial risks (FRs) under blockchain (BC) and improve network information security (NIS) and data security, edge computing (EC) combined with BC is proposed to control the risks of the big data (BD) financial system. Firstly, the BC-based financial system is introduced, and the characteristics of BC such as decentralization, tamper-resistant, and smart contract are analyzed. Secondly, the development status of NIS and the characteristics of marginal computing are explained, and the control model of NIS is established. Then, EC is used to encrypt the identity authentication system to ensure data security, and the BC-based FR evaluation model is established. Finally, a questionnaire is designed regarding the NIS model, and the results are analyzed. A simulation experiment is conducted regarding the index evaluation of the BC-based FR evaluation model. The experimental results indicate that network personnel control, environment, and technology have positive effects on NIS, and the impact factors are 0.26, 0.24, and 0.33, respectively.
Collapse
Affiliation(s)
- Xiao Liang
- Shanxi VC/PE Fund Management Co., Ltd., China
| | - Wenxi Ruan
- Taizhou Vocational College of Science and Technology, China
| | - Zheng Xu
- Shenzhen Institute of Information Technology, China
| | - Ji Liu
- University of Sydney, Australia
| |
Collapse
|
7
|
Fu L, Li C, Li Y, Cheng X, Cui X, Jiang J, Ding N, Fang H, Tang T, Ke X. Heritability of abnormalities in limbic networks of autism spectrum disorder children: Evidence from an autism spectrum disorder twin study. Autism Res 2022; 15:628-640. [PMID: 35212461 DOI: 10.1002/aur.2686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 01/31/2022] [Accepted: 02/03/2022] [Indexed: 11/10/2022]
Abstract
Although the limbic system is closely related to emotion and social behaviors, little is known about the integrity of limbic pathways and how genetics influence the anatomical abnormalities of limbic networks in children with autism spectrum disorder (ASD). Therefore, we used an ASD twin study design to evaluate the microstructural integrity and autism-related differences in limbic pathways of young children with ASD and to estimate the heritability of limbic tracts microstructure variance. We obtained diffusion tensor imaging scans from 33 pairs of twins with ASD aged 2-9 years and 20 age-matched typically developing children. The ACE model was used to estimate the relative effects of additive genetic factors (A), shared environmental factors (C) and specific environmental factors (E) on the variability of diffusivity measurements. We found a significant decrease in fractional anisotropy (FA) in the bilateral fornix and uncinate fasciculus (UF), as well as increased mean diffusivity (MD) and radial diffusivity (RD) in the bilateral fornix and right UF of ASD children. Correlation analysis showed that FA, MD, and lateralization indices of UF were correlated with autism diagnostic observation schedule scores. The ACE model revealed that genetic effects may drive some of the variability of microstructure in the bilateral fornix, cingulum, and left UF. In conclusion, in children with ASD, there are abnormalities in the white matter microstructure of the limbic system, which is related to the core symptoms; these abnormalities may be related to the relative contribution of genetic and environmental effects on specific tracts. LAY SUMMARY: Autism spectrum disorder (ASD) children have abnormal white matter structure in limbic system related to ASD symptoms, and genetic factors play an important role in the development of limbic tracts.
Collapse
Affiliation(s)
- Linyan Fu
- Children's Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.,Guangdong Mental Health Center, Guangdong General Hospital & Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Chunyan Li
- Children's Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yun Li
- Children's Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xin Cheng
- Children's Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xiwen Cui
- Children's Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Jiying Jiang
- Children's Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Ning Ding
- Children's Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Hui Fang
- Children's Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Tianyu Tang
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Xiaoyan Ke
- Children's Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
8
|
Bu X, Cao M, Huang X, He Y. The structural connectome in ADHD. PSYCHORADIOLOGY 2021; 1:257-271. [PMID: 38666220 PMCID: PMC10939332 DOI: 10.1093/psyrad/kkab021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 02/05/2023]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) has been conceptualized as a brain dysconnectivity disorder. In the past decade, noninvasive diffusion magnetic resonance imaging (dMRI) studies have demonstrated that individuals with ADHD have alterations in the white matter structural connectome, and that these alterations are associated with core symptoms and cognitive deficits in patients. This review aims to summarize recent dMRI-based structural connectome studies in ADHD from voxel-, tractography-, and network-based perspectives. Voxel- and tractography-based studies have demonstrated disrupted microstructural properties predominantly located in the frontostriatal tracts, the corpus callosum, the corticospinal tracts, and the cingulum bundle in patients with ADHD. Network-based studies have suggested abnormal global and local efficiency as well as nodal properties in the prefrontal and parietal regions in the ADHD structural connectomes. The altered structural connectomes in those with ADHD provide significant signatures for prediction of symptoms and diagnostic classification. These studies suggest that abnormalities in the structural connectome may be one of the neural underpinnings of ADHD psychopathology and show potential for establishing imaging biomarkers in clinical evaluation. However, given that there are inconsistent findings across studies due to sample heterogeneity and analysis method variations, these ADHD-related white matter alterations are still far from informing clinical practice. Future studies with larger and more homogeneous samples are needed to validate the consistency of current results; advanced dMRI techniques can help to generate much more precise estimation of white matter pathways and assure specific fiber configurations; and finally, dimensional analysis frameworks can deepen our understanding of the neurobiology underlying ADHD.
Collapse
Affiliation(s)
- Xuan Bu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Miao Cao
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai 200433, China
| | - Xiaoqi Huang
- Huaxi MR Research Center, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yong He
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
- Chinese Institute for Brain Research, Beijing 102206, China
| |
Collapse
|
9
|
Sam AM, Odom SL, Tomaszewski B, Perkins Y, Cox AW. Employing Evidence-Based Practices for Children with Autism in Elementary Schools. J Autism Dev Disord 2020; 51:2308-2323. [PMID: 32949315 PMCID: PMC8189952 DOI: 10.1007/s10803-020-04706-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The purpose of this study was to test the efficacy of a comprehensive program model originally developed by the National Professional Development Center on Autism Spectrum Disorder (NPDC). Sixty elementary schools with 486 participants were randomly assigned to an NPDC and services as usual condition (SAU). Significantly greater changes in program quality occurred in the inclusive NPDC programs as compared with the SAU schools. Teachers in NPDC schools reported using more evidence-based practices (EBPs) and implemented EBPs with significantly greater fidelity than teachers in SAU schools. Autistic students in NPDC schools had significantly higher total attainment of educational goals than students in SAU schools, and the two groups made equivalent progress on standardized assessment outcomes across the school year.
Collapse
Affiliation(s)
- Ann M Sam
- Frank Porter Graham Child Development Institute, University of North Carolina at Chapel Hill, 517 S. Greensboro Street, CB 8040, Carrboro, NC, 27510, USA
| | - Samuel L Odom
- Frank Porter Graham Child Development Institute, University of North Carolina at Chapel Hill, 517 S. Greensboro Street, CB 8040, Carrboro, NC, 27510, USA.
| | - Brianne Tomaszewski
- Frank Porter Graham Child Development Institute, University of North Carolina at Chapel Hill, 517 S. Greensboro Street, CB 8040, Carrboro, NC, 27510, USA
| | - Yolanda Perkins
- Frank Porter Graham Child Development Institute, University of North Carolina at Chapel Hill, 517 S. Greensboro Street, CB 8040, Carrboro, NC, 27510, USA
| | - Ann W Cox
- Frank Porter Graham Child Development Institute, University of North Carolina at Chapel Hill, 517 S. Greensboro Street, CB 8040, Carrboro, NC, 27510, USA
| |
Collapse
|