1
|
Knight EJ, Altschuler TS, Molholm S, Murphy JW, Freedman EG, Foxe JJ. It's all in the timing: delayed feedback in autism may weaken predictive mechanisms during contour integration. J Neurophysiol 2024; 132:628-642. [PMID: 38958283 PMCID: PMC11427042 DOI: 10.1152/jn.00058.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/31/2024] [Accepted: 06/16/2024] [Indexed: 07/04/2024] Open
Abstract
Humans rely on predictive and integrative mechanisms during visual processing to efficiently resolve incomplete or ambiguous sensory signals. Although initial low-level sensory data are conveyed by feedforward connections, feedback connections are believed to shape sensory processing through automatic conveyance of statistical probabilities based on prior exposure to stimulus configurations. Individuals with autism spectrum disorder (ASD) show biases in stimulus processing toward parts rather than wholes, suggesting their sensory processing may be less shaped by statistical predictions acquired through prior exposure to global stimulus properties. Investigations of illusory contour (IC) processing in neurotypical (NT) adults have established a well-tested marker of contour integration characterized by a robust modulation of the visually evoked potential (VEP)-the IC-effect-that occurs over lateral occipital scalp during the timeframe of the visual N1 component. Converging evidence strongly supports the notion that this IC-effect indexes a signal with significant feedback contributions. Using high-density VEPs, we compared the IC-effect in 6- to 17-yr-old children with ASD (n = 32) or NT development (n = 53). Both groups of children generated an IC-effect that was equivalent in amplitude. However, the IC-effect notably onset 21 ms later in ASD, even though initial VEP afference was identical across groups. This suggests that feedforward information predominated during perceptual processing for 15% longer in ASD compared with NT children. This delay in the feedback-dependent IC-effect, in the context of known developmental differences between feedforward and feedback fibers, suggests a potential pathophysiological mechanism of visual processing in ASD, whereby ongoing stimulus processing is less shaped by visual feedback.NEW & NOTEWORTHY Children with autism often present with an atypical visual perceptual style that emphasizes parts or details over the whole. Using electroencephalography (EEG), this study identifies delays in the visual feedback from higher-order sensory brain areas to primary sensory regions. Because this type of visual feedback is thought to carry information about prior sensory experiences, individuals with autism may have difficulty efficiently using prior experience or putting together parts into a whole to help make sense of incoming new visual information. This provides empirical neural evidence to support theories of disrupted sensory perception mechanisms in autism.
Collapse
Affiliation(s)
- Emily J Knight
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, Department of Neuroscience, The Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States
- Development and Behavioral Pediatrics, Golisano Children's Hospital, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States
| | - Ted S Altschuler
- The Cognitive Neurophysiology Laboratory, Department of Pediatrics and Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States
- Program in Cognitive Neuroscience, Departments of Psychology & Biology, City College of the City University of New York, New York, United States
| | - Sophie Molholm
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, Department of Neuroscience, The Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States
- The Cognitive Neurophysiology Laboratory, Department of Pediatrics and Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States
- Program in Cognitive Neuroscience, Departments of Psychology & Biology, City College of the City University of New York, New York, United States
| | - Jeremy W Murphy
- The Cognitive Neurophysiology Laboratory, Department of Pediatrics and Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States
- Program in Cognitive Neuroscience, Departments of Psychology & Biology, City College of the City University of New York, New York, United States
- Department of Neuroscience, Brown University, Providence, Rhode Island, United States
| | - Edward G Freedman
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, Department of Neuroscience, The Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States
| | - John J Foxe
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, Department of Neuroscience, The Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States
- The Cognitive Neurophysiology Laboratory, Department of Pediatrics and Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States
- Program in Cognitive Neuroscience, Departments of Psychology & Biology, City College of the City University of New York, New York, United States
| |
Collapse
|
2
|
Knight EJ, Altschuler TS, Molholm S, Murphy JW, Freedman EG, Foxe JJ. It's all in the timing: Delayed feedback in autism may weaken predictive mechanisms during contour integration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.16.575908. [PMID: 38293016 PMCID: PMC10827178 DOI: 10.1101/2024.01.16.575908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Humans rely on predictive mechanisms during visual processing to efficiently resolve incomplete or ambiguous sensory signals. While initial low-level sensory data are conveyed by feedforward connections, feedback connections are believed to shape sensory processing through conveyance of statistical predictions based on prior exposure to stimulus configurations. Individuals with autism spectrum disorder (ASD) show biases in stimulus processing toward parts rather than wholes, suggesting their sensory processing may be less shaped by statistical predictions acquired through prior exposure to global stimulus properties. Investigations of illusory contour (IC) processing in neurotypical (NT) adults have established a well-tested marker of contour integration characterized by a robust modulation of the visually evoked potential (VEP) - the IC-effect - that occurs over lateral occipital scalp during the timeframe of the N1 component. Converging evidence strongly supports the notion that this IC-effect indexes a signal with significant feedback contributions. Using high-density VEPs, we compared the IC-effect in 6-17-year-old children with ASD (n=32) or NT development (n=53). Both groups of children generated an IC-effect that was equivalent in amplitude. However, the IC-effect notably onset 21ms later in ASD, even though timing of initial VEP afference was identical across groups. This suggests that feedforward information predominated during perceptual processing for 15% longer in ASD compared to NT children. This delay in the feedback dependent IC-effect, in the context of known developmental differences between feedforward and feedback fibers, suggests a potential pathophysiological mechanism of visual processing in ASD, whereby ongoing stimulus processing is less shaped by statistical prediction mechanisms.
Collapse
Affiliation(s)
- Emily J. Knight
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Development and Behavioral Pediatrics, Golisano Children’s Hospital, University of Rochester, Rochester, New York, USA
| | - Ted S. Altschuler
- The Cognitive Neurophysiology Laboratory, Department of Pediatrics and Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
- Program in Cognitive Neuroscience, Departments of Psychology & Biology, City College of the City University of New York, New York, USA
| | - Sophie Molholm
- The Cognitive Neurophysiology Laboratory, Department of Pediatrics and Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
- Program in Cognitive Neuroscience, Departments of Psychology & Biology, City College of the City University of New York, New York, USA
| | - Jeremy W. Murphy
- The Cognitive Neurophysiology Laboratory, Department of Pediatrics and Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
- Program in Cognitive Neuroscience, Departments of Psychology & Biology, City College of the City University of New York, New York, USA
- Department of Neuroscience, Brown University, Providence, Rhode Island, USA
| | - Edward G. Freedman
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - John J. Foxe
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- The Cognitive Neurophysiology Laboratory, Department of Pediatrics and Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
- Program in Cognitive Neuroscience, Departments of Psychology & Biology, City College of the City University of New York, New York, USA
| |
Collapse
|
3
|
Arthur T, Brosnan M, Harris D, Buckingham G, Wilson M, Williams G, Vine S. Investigating how Explicit Contextual Cues Affect Predictive Sensorimotor Control in Autistic Adults. J Autism Dev Disord 2023; 53:4368-4381. [PMID: 36063311 PMCID: PMC10539449 DOI: 10.1007/s10803-022-05718-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2022] [Indexed: 12/21/2022]
Abstract
Research suggests that sensorimotor difficulties in autism could be reduced by providing individuals with explicit contextual information. To test this, we examined autistic visuomotor control during a virtual racquetball task, in which participants hit normal and unexpectedly-bouncy balls using a handheld controller. The probability of facing each type of ball was varied unpredictably over time. However, during cued trials, participants received explicit information about the likelihood of facing each uncertain outcome. When compared to neurotypical controls, autistic individuals displayed poorer task performance, atypical gaze profiles, and more restricted swing kinematics. These visuomotor patterns were not significantly affected by contextual cues, indicating that autistic people exhibit underlying differences in how prior information and environmental uncertainty are dynamically modulated during movement tasks.
Collapse
Affiliation(s)
- Tom Arthur
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, St Luke's Campus, Heavitree Road, Exeter, EX1 2LU, UK.
- Centre for Applied Autism Research, Department of Psychology, University of Bath, Bath, BA2 7AY, UK.
| | - Mark Brosnan
- Centre for Applied Autism Research, Department of Psychology, University of Bath, Bath, BA2 7AY, UK
| | - David Harris
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, St Luke's Campus, Heavitree Road, Exeter, EX1 2LU, UK
| | - Gavin Buckingham
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, St Luke's Campus, Heavitree Road, Exeter, EX1 2LU, UK
| | - Mark Wilson
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, St Luke's Campus, Heavitree Road, Exeter, EX1 2LU, UK
| | - Genevieve Williams
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, St Luke's Campus, Heavitree Road, Exeter, EX1 2LU, UK
| | - Sam Vine
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, St Luke's Campus, Heavitree Road, Exeter, EX1 2LU, UK.
| |
Collapse
|
4
|
Knight EJ, Freedman EG, Myers EJ, Berruti AS, Oakes LA, Cao CZ, Molholm S, Foxe JJ. Severely Attenuated Visual Feedback Processing in Children on the Autism Spectrum. J Neurosci 2023; 43:2424-2438. [PMID: 36859306 PMCID: PMC10072299 DOI: 10.1523/jneurosci.1192-22.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 03/03/2023] Open
Abstract
Individuals on the autism spectrum often exhibit atypicality in their sensory perception, but the neural underpinnings of these perceptual differences remain incompletely understood. One proposed mechanism is an imbalance in higher-order feedback re-entrant inputs to early sensory cortices during sensory perception, leading to increased propensity to focus on local object features over global context. We explored this theory by measuring visual evoked potentials during contour integration as considerable work has revealed that these processes are largely driven by feedback inputs from higher-order ventral visual stream regions. We tested the hypothesis that autistic individuals would have attenuated evoked responses to illusory contours compared with neurotypical controls. Electrophysiology was acquired while 29 autistic and 31 neurotypical children (7-17 years old, inclusive of both males and females) passively viewed a random series of Kanizsa figure stimuli, each consisting of four inducers that were aligned either at random rotational angles or such that contour integration would form an illusory square. Autistic children demonstrated attenuated automatic contour integration over lateral occipital regions relative to neurotypical controls. The data are discussed in terms of the role of predictive feedback processes on perception of global stimulus features and the notion that weakened "priors" may play a role in the visual processing anomalies seen in autism.SIGNIFICANCE STATEMENT Children on the autism spectrum differ from typically developing children in many aspects of their processing of sensory stimuli. One proposed mechanism for these differences is an imbalance in higher-order feedback to primary sensory regions, leading to an increased focus on local object features rather than global context. However, systematic investigation of these feedback mechanisms remains limited. Using EEG and a visual illusion paradigm that is highly dependent on intact feedback processing, we demonstrated significant disruptions to visual feedback processing in children with autism. This provides much needed experimental evidence that advances our understanding of the contribution of feedback processing to visual perception in autism spectrum disorder.
Collapse
Affiliation(s)
- Emily J Knight
- Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
- Development and Behavioral Pediatrics, Golisano Children's Hospital, University of Rochester, Rochester, New York 14642
| | - Edward G Freedman
- Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Evan J Myers
- Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Alaina S Berruti
- Cognitive Neurophysiology Laboratory, Department of Pediatrics and Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Leona A Oakes
- Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
- Cognitive Neurophysiology Laboratory, Department of Pediatrics and Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Cody Zhewei Cao
- Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Sophie Molholm
- Cognitive Neurophysiology Laboratory, Department of Pediatrics and Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461
| | - John J Foxe
- Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
- Cognitive Neurophysiology Laboratory, Department of Pediatrics and Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461
| |
Collapse
|
5
|
Mokhtari S, Parchini P. The application of drawing tasks in studying cognitive functions in autism: a systematic review. INTERNATIONAL JOURNAL OF DEVELOPMENTAL DISABILITIES 2023; 70:1153-1165. [PMID: 39712442 PMCID: PMC11660400 DOI: 10.1080/20473869.2023.2171758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 12/17/2022] [Accepted: 01/18/2023] [Indexed: 12/24/2024]
Abstract
Objective: Cognitive atypicalities are prevalent in autism. This prevalence has exhorted researchers to look for developing the most appropriate evaluation tools, which enable them to study cognitive functions in autism accurately and efficiently. Drawing tasks, due to their numerous advantages, are known as promising tools for examining cognitive functions. Therefore, the aim of this study was to systematically review the characteristics of the drawing tasks used for studying cognitive functions in autism. Method: Using PRISMA guidelines, we identified relevant articles via systematic electronic literature search up to March 2022. Results: A total of 50 articles were eligible to be included in this review. Among this literature, drawing tasks have been mainly used to investigate perceptual functions, social cognition, and imagination in individuals with autism. Executive functions, memory and creativity were also examined by using drawing tasks in a few studies. Conclusion: We discussed the potential of drawing tasks in the assessment of cognitive functions in autism. Moreover, we reviewed how drawing tasks could be improved for application in individuals with autism.
Collapse
Affiliation(s)
- Setareh Mokhtari
- Institute for Cognitive and Brain Sciences (ICBS), Shahid Beheshti University, Tehran, Iran
| | - Pariya Parchini
- Institute for Cognitive and Brain Sciences (ICBS), Shahid Beheshti University, Tehran, Iran
| |
Collapse
|