1
|
Novel Epigenetic Biomarkers in Pregnancy-Related Disorders and Cancers. Cells 2019; 8:cells8111459. [PMID: 31752198 PMCID: PMC6912400 DOI: 10.3390/cells8111459] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/08/2019] [Accepted: 11/14/2019] [Indexed: 12/11/2022] Open
Abstract
As the majority of cancers and gestational diseases are prognostically stage- and grade-dependent, the ultimate goal of ongoing studies in precision medicine is to provide early and timely diagnosis of such disorders. These studies have enabled the development of various new diagnostic biomarkers, such as free circulating nucleic acids, and detection of their epigenetic changes. Recently, extracellular vesicles including exosomes, microvesicles, oncosomes, and apoptotic bodies have been recognized as powerful diagnostic tools. Extracellular vesicles carry specific proteins, lipids, DNAs, mRNAs, and miRNAs of the cells that produced them, thus reflecting the function of these cells. It is believed that exosomes, in particular, may be the optimal biomarkers of pathological pregnancies and cancers, especially those that are frequently diagnosed at an advanced stage, such as ovarian cancer. In the present review, we survey and critically appraise novel epigenetic biomarkers related to free circulating nucleic acids and extracellular vesicles, focusing especially on their status in trophoblasts (pregnancy) and neoplastic cells (cancers).
Collapse
|
2
|
Li H, Du B, Jiang F, Guo Y, Wang Y, Zhang C, Zeng X, Xie Y, Ouyang S, Xian Y, Chen M, Liu W, Sun X. Noninvasive prenatal diagnosis of β-thalassemia by relative haplotype dosage without analyzing proband. Mol Genet Genomic Med 2019; 7:e963. [PMID: 31566929 PMCID: PMC6825866 DOI: 10.1002/mgg3.963] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 07/30/2019] [Accepted: 08/04/2019] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND β-thalassemia is one of the most common monogenic diseases in the world. Southeast China is a highly infected area affected by four β-thalassemia mutation types (HBB:c.-78A>G, HBB:c.52A>T, HBB:c.126_129delCTTT, and HBB:c.316-197C>T). Relative haplotype dosage (RHDO), a haplotype-based approach, has shown promise as an application for noninvasive prenatal diagnosis (NIPD); however, additional family members (such as the proband) are required for haplotype construction. The abovementioned circumstances make RHDO-based NIPD cost prohibitive; additionally, the genetic information of the proband is not always available. Thus, it is necessary to find a practical method to solve these problems. METHODS Targeted sequencing was applied to sequence parental genomic DNA and cell-free fetal DNA (cffDNA). Parental haplotypes were constructed with the SHAPEIT software based on the 1000 Genomes Project (1000G) Phase 3 v5 Southern Han Chinese (CHS) haplotype dataset. Single-nucleotide polymorphisms (SNPs) in the target region were called and classified, and the fetal mutation inheritance status was deduced using the RHDO method. RESULTS Construction of the parental haplotypes and detection of the inherited parental mutations were successfully achieved in five families, despite a suspected recombination event. The status of the affected fetuses is consistent with the results of traditional reverse dot blot (RDB) diagnosis. CONCLUSION This research introduced SHAPEIT into the classical RHDO workflow and proved that it is applicable to construct parental haplotypes without information from other family members.
Collapse
Affiliation(s)
- Haoxian Li
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Bole Du
- GuangZhou JingKe Biotech Co., Ltd, Guangzhou, China
| | - Fuman Jiang
- GuangZhou JingKe Biotech Co., Ltd, Guangzhou, China
| | - Yulai Guo
- GuangZhou JingKe Biotech Co., Ltd, Guangzhou, China
| | - Yang Wang
- GuangZhou JingKe Biotech Co., Ltd, Guangzhou, China
| | | | | | - Yuhuan Xie
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shuming Ouyang
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yexing Xian
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Min Chen
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Fetal Medicine and Prenatal Diagnosis, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Weiqiang Liu
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaofang Sun
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
3
|
Mackie FL, Hemming K, Allen S, Morris RK, Kilby MD. The accuracy of cell-free fetal DNA-based non-invasive prenatal testing in singleton pregnancies: a systematic review and bivariate meta-analysis. BJOG 2016; 124:32-46. [DOI: 10.1111/1471-0528.14050] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2016] [Indexed: 12/18/2022]
Affiliation(s)
- FL Mackie
- Centre for Women's & Newborn Health and the Institute of Metabolism and Systems Research; University of Birmingham; Birmingham UK
| | - K Hemming
- Public Health, Epidemiology and Biostatistics; Institute of Applied Health Sciences; University of Birmingham; Birmingham UK
| | - S Allen
- West Midlands Regional Genetics Laboratory; Birmingham Women's Hospital NHS Foundation Trust; Birmingham UK
| | - RK Morris
- Centre for Women's & Newborn Health and the Institute of Metabolism and Systems Research; University of Birmingham; Birmingham UK
- Fetal Medicine Centre; Birmingham Women's Hospital NHS Foundation Trust; Birmingham UK
| | - MD Kilby
- Centre for Women's & Newborn Health and the Institute of Metabolism and Systems Research; University of Birmingham; Birmingham UK
- Fetal Medicine Centre; Birmingham Women's Hospital NHS Foundation Trust; Birmingham UK
| |
Collapse
|
4
|
Perlado S, Bustamante-Aragonés A, Donas M, Lorda-Sánchez I, Plaza J, Rodríguez de Alba M. Fetal Genotyping in Maternal Blood by Digital PCR: Towards NIPD of Monogenic Disorders Independently of Parental Origin. PLoS One 2016; 11:e0153258. [PMID: 27078875 PMCID: PMC4831728 DOI: 10.1371/journal.pone.0153258] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 03/26/2016] [Indexed: 12/14/2022] Open
Abstract
PURPOSE To date, non-invasive prenatal diagnosis (NIPD) of monogenic disorders has been limited to cases with a paternal origin. This work shows a validation study of the Droplet Digital PCR (ddPCR) technology for analysis of both paternally and maternally inherited fetal alleles. For the purpose, single nucleotide polymorphisms (SNPs) were studied with the only intention to mimic monogenic disorders. METHODS NIPD SNP genotyping was performed by ddPCR in 55 maternal plasma samples. In 19 out of 55 cases, inheritance of the paternal allele was determined by presence/absence criteria. In the remaining 36, determination of the maternally inherited fetal allele was performed by relative mutation dosage (RMD) analysis. RESULTS ddPCR exhibited 100% accuracy for detection of paternal alleles. For diagnosis of fetal alleles with maternal origin by RMD analysis, the technology showed an accuracy of 96%. Twenty-nine out of 36 were correctly diagnosed. There was one FP and six maternal plasma samples that could not be diagnosed. DISCUSSION In this study, ddPCR has shown to be capable to detect both paternal and maternal fetal alleles in maternal plasma. This represents a step forward towards the introduction of NIPD for all pregnancies independently of the parental origin of the disease.
Collapse
Affiliation(s)
- Sara Perlado
- Department of Genetics, IIS-Fundación Jiménez Díaz UAM, CIBERER, Madrid, Spain
| | | | - Marta Donas
- Department of Genetics, IIS-Fundación Jiménez Díaz UAM, CIBERER, Madrid, Spain
| | | | - Javier Plaza
- Department of Obstetrics & Gynecology, Fundación Jiménez Díaz-IIS, Madrid, Spain
| | | |
Collapse
|
5
|
Abstract
Prenatal diagnosis and screening have undergone rapid development in recent years, with advances in molecular technology driving the change. Noninvasive prenatal testing (NIPT) for Down syndrome as a highly sensitive screening test is now available worldwide through the commercial sector with many countries moving toward implementation into their publically funded maternity systems. Noninvasive prenatal diagnosis (NIPD) can now be performed for definitive diagnosis of some recessive and X-linked conditions, rather than just paternally inherited dominant and de novo conditions. NIPD/T offers pregnant couples greater choice during their pregnancy as these safer methods avoid the risk of miscarriage associated with invasive testing. As the cost of sequencing falls and technology develops further, there may well be potential for whole exome and whole genome sequencing of the unborn fetus using cell-free DNA in the maternal plasma. How such assays can or should be implemented into the clinical setting remain an area of significant debate, but it is clear that the progress made to date for safer prenatal testing has been welcomed by expectant couples and their healthcare professionals.
Collapse
|
6
|
van den Oever JME, Bijlsma EK, Feenstra I, Muntjewerff N, Mathijssen IB, Bakker E, van Belzen MJ, Boon EMJ. Noninvasive prenatal diagnosis of Huntington disease: detection of the paternally inherited expanded CAG repeat in maternal plasma. Prenat Diagn 2015; 35:945-9. [DOI: 10.1002/pd.4593] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 01/23/2015] [Accepted: 03/08/2015] [Indexed: 11/11/2022]
Affiliation(s)
| | - Emilia K. Bijlsma
- Department of Clinical Genetics; Leiden University Medical Center; Leiden The Netherlands
| | - Ilse Feenstra
- Department of Human Genetics; Radboud University Medical Center; Nijmegen The Netherlands
| | - Nienke Muntjewerff
- Department of Clinical Genetics; Maastricht University Medical Center; Maastricht The Netherlands
| | - Inge B. Mathijssen
- Department of Clinical Genetics; Academic Medical Center; Amsterdam The Netherlands
| | - Egbert Bakker
- Department of Clinical Genetics; Leiden University Medical Center; Leiden The Netherlands
| | - Martine J. van Belzen
- Department of Clinical Genetics; Leiden University Medical Center; Leiden The Netherlands
| | - Elles M. J. Boon
- Department of Clinical Genetics; Leiden University Medical Center; Leiden The Netherlands
| |
Collapse
|
7
|
Non-Invasive Prenatal Diagnosis in the Management of Preimplantation Genetic Diagnosis Pregnancies. J Clin Med 2014; 3:913-22. [PMID: 26237485 PMCID: PMC4449636 DOI: 10.3390/jcm3030913] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 05/27/2014] [Accepted: 06/25/2014] [Indexed: 11/17/2022] Open
Abstract
Prenatal diagnosis (PD) is recommended in pregnancies after a Preimplantation Genetic Diagnosis (PGD). However, conventional PD entails a risk of fetal loss which makes PGD patients reluctant to undergo obstetric invasive procedures. The presence of circulating fetal DNA in maternal blood allows performing a non-invasive prenatal diagnosis (NIPD) without risk for the pregnancy outcome. This work shows the introduction of NIPD for confirmation of PGD results in eight pregnancies. In those pregnancies referred to PGD for an X-linked disorder (six out of eight), fetal sex determination in maternal blood was performed to confirm fetal sex. One pregnancy referred to PGD for Marfan syndrome and one referred for Huntington disease (HD) were also analyzed. In seven out of eight cases, PGD results were confirmed by NIPD in maternal blood. No results were obtained in the HD pregnancy. NIPD in PGD pregnancies can be a reliable alternative for couples that after a long process feel reluctant to undergo PD due to the risk of pregnancy loss.
Collapse
|
8
|
Abstract
Determining a genetic diagnosis prenatally permits patients to make informed reproductive decisions and to be counseled about possible fetal outcomes. Therefore, it is important for the provider to be aware of the spectrum of genetic conditions and to use appropriate testing modality to obtain specific diagnosis. This article reviews genetic techniques available for prenatal diagnosis such as preimplantation genetic testing, chromosomal microarray, non-invasive prenatal screening, and next-generation sequencing. Chromosomal microarray has emerged as the first diagnostic test for evaluation of multiple congenital anomalies and developmental delay as most of the next-generation sequencing methods do not detect copy-number variants (CNVs). Exome sequencing and whole genome sequencing are time-consuming, so if this needs to be done to obtain an accurate genetic diagnosis, allow sufficient time.
Collapse
|
9
|
Longoni M, Marangi G, Zollino M. Utility and Challenges of Next Generation Sequencing in Pediatric Disorders. CURRENT PEDIATRICS REPORTS 2014. [DOI: 10.1007/s40124-014-0039-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
10
|
Benn P. Non-Invasive Prenatal Testing Using Cell Free DNA in Maternal Plasma: Recent Developments and Future Prospects. J Clin Med 2014; 3:537-65. [PMID: 26237390 PMCID: PMC4449688 DOI: 10.3390/jcm3020537] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 04/11/2014] [Accepted: 04/14/2014] [Indexed: 01/09/2023] Open
Abstract
Recent advances in molecular genetic technologies have facilitated non-invasive prenatal testing (NIPT) through the analysis of cell-free fetal DNA in maternal plasma. NIPT can be used to identify monogenic disorders including the identification of autosomal recessive disorders where the maternally inherited mutation needs to be identified in the presence of an excess of maternal DNA that contains the same mutation. In the future, simultaneous screening for multiple monogenic disorders is anticipated. Several NIPT methods have been developed to screen for trisomy. These have been shown to be effective for fetal trisomy 21, 18 and 13. Although the testing has been extended to sex chromosome aneuploidy, robust estimates of the efficacy are not yet available and maternal mosaicism for gain or loss of an X-chromosome needs to be considered. Using methods based on the analysis of single nucleotide polymorphisms, diandric triploidy can be identified. NIPT is being developed to identify a number of microdeletion syndromes including α-globin gene deletion. NIPT is a profoundly important development in prenatal care that is substantially advancing the individual patient and public health benefits achieved through conventional prenatal screening and diagnosis.
Collapse
Affiliation(s)
- Peter Benn
- Department of Genetics and Developmental Biology, Human Genetics Laboratory, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030-3808, USA.
| |
Collapse
|
11
|
Bustamante-Aragones A, Gonzalez-Gonzalez C, de Alba MR, Ainse E, Ramos C. Noninvasive prenatal diagnosis using ccffDNA in maternal blood: state of the art. Expert Rev Mol Diagn 2014; 10:197-205. [DOI: 10.1586/erm.09.86] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
12
|
Lench N, Barrett A, Fielding S, McKay F, Hill M, Jenkins L, White H, Chitty LS. The clinical implementation of non-invasive prenatal diagnosis for single-gene disorders: challenges and progress made. Prenat Diagn 2014; 33:555-62. [PMID: 23592512 DOI: 10.1002/pd.4124] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Recently, we have witnessed the rapid translation into clinical practice of non-invasive prenatal testing for the common aneuploidies, most notably within the United States and China. This represents a lucrative market with testing being driven by companies developing and offering their services. These tests are currently aimed at women with high/medium-risk pregnancies identified by serum screening and/or ultrasound scanning. Uptake has been impressive, albeit limited to the commercial sector. However, non-invasive prenatal diagnosis (NIPD) for single-gene disorders has attracted less interest, no doubt because this represents a much smaller market opportunity and in the majority of cases has to be provided on a bespoke, patient or disease-specific basis. The methods and workflows are labour-intensive and not readily scalable. Nonetheless, there exists a significant need for NIPD of single-gene disorders, and the continuing advances in technology and data analysis should facilitate the expansion of the NIPD test repertoire. Here, we review the progress that has been made to date, the different methods and platform technologies, the technical challenges, and assess how new developments may be applied to extend testing to a wider range of genetic disorders.
Collapse
Affiliation(s)
- Nicholas Lench
- NE Thames Regional Genetics Service, Great Ormond Street Hospital for Children, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Romão RM, Levi JE, Carvalho HBD, Francisco RPV, Amorim Filho AGD, Zugaib M. Use of cell-free fetal nucleic acids in maternal blood for prenatal diagnosis: the reality of this scenario in Brazil. Rev Assoc Med Bras (1992) 2013; 58:615-9. [PMID: 23090235 DOI: 10.1590/s0104-42302012000500021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 05/20/2012] [Indexed: 12/13/2022] Open
Abstract
The discovery of cell-free fetal nucleic acids in the plasma of pregnant women has allowed the development of new, noninvasive prenatal diagnostic tests for the determination of fetal gender and Rh. These tests have been implemented in the public health system in several countries of Europe for over five years. The new possibilities for diagnostic use of these technologies are the detection of fetal chromosomal aneuploidies, monogenic fetal disorders, and placental-related disorders, subjects that have been intensively studied by several groups around the world. The aim of this review was to assess the Brazilian research and clinical scenarios regarding the utilization of commercially available tests that use these plasma markers, stressing the advantages, both economic and safety-related, that non-invasive tests have when compared to those currently used in the Brazilian public health system.
Collapse
Affiliation(s)
- Renata Moscolini Romão
- Department of Obstetrics and Gynecology, Universidade de São Paulo, São Paulo, SP, Brazil.
| | | | | | | | | | | |
Collapse
|
14
|
Gahan PB. Circulating nucleic acids in plasma and serum: applications in diagnostic techniques for noninvasive prenatal diagnosis. Int J Womens Health 2013; 5:177-86. [PMID: 23637563 PMCID: PMC3634397 DOI: 10.2147/ijwh.s34442] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The analysis of fetal nucleic acids in maternal blood 13 years ago has led to the initiation of noninvasive methods for the early determination of fetal gender, rhesus D status, and a number of aneuploid disorders and hemoglobinopathies. Subsequently, a comparatively large quantity of fetal DNA and RNA has been demonstrated in amniotic fluid as well as small amounts in premature infant saliva. The DNA and RNA in amniotic fluid has permitted an analysis of core transcriptomes, whilst the DNA and RNA in saliva allows the early detection and treatment monitoring of fetal developmental problems. These aspects are discussed together with the methodology and limits of analysis for noninvasive prenatal diagnosis in predictive, preventive, and personalized medicine.
Collapse
Affiliation(s)
- Peter B Gahan
- Anatomy and Human Sciences Department, King’s College London, London Bridge, London, UK
| |
Collapse
|
15
|
de Die-Smulders CEM, de Wert GMWR, Liebaers I, Tibben A, Evers-Kiebooms G. Reproductive options for prospective parents in families with Huntington's disease: clinical, psychological and ethical reflections. Hum Reprod Update 2013; 19:304-15. [PMID: 23377865 DOI: 10.1093/humupd/dms058] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Huntington's disease (HD) is an autosomal dominant neurodegenerative late onset disorder. This review of reproductive options aims to increase reproductive confidence and to prevent suffering in relation to family planning around HD and possibly other late onset neurodegenerative disorders. METHODS Selected relevant literature and own views and experiences as clinical geneticists, psychologists and ethicists have been used. RESULTS Possible options, with emphasis on prenatal diagnosis (PD) and preimplantation genetic diagnosis (PGD) to prevent the transmission of HD to the next generation, are described and discussed. They are formally presented in a decision tree, taking into account the presence or absence of a fully penetrant allele (FPA), a reduced penetrant allele (RPA) or an intermediate allele (IA). A table compares invasive and non-invasive PD and PGD. From a psychological perspective, the complex process of counselling and decision-making regarding reproductive options is discussed. Special attention is paid to the decision to avoid the transmission of the mutation and to the confrontation and coping of a mutation-free child growing up with a parent developing disease symptoms. From an ethical point of view, reflections on both PD and PGD are brought forward taking into account the difference between FPA, RPA and IA, direct testing or exclusion testing and taking into account the welfare of the child in the context of medically assisted reproduction. CONCLUSION Recommendations and suggestions for good clinical practice in the reproductive care for HD families are formulated.
Collapse
Affiliation(s)
- C E M de Die-Smulders
- Department of Clinical Genetics, Maastricht University Medical Centre, Joseph Bechlaan 113, Maastricht, The Netherlands.
| | | | | | | | | |
Collapse
|
16
|
Hill M, Barrett AN, White H, Chitty LS. Uses of cell free fetal DNA in maternal circulation. Best Pract Res Clin Obstet Gynaecol 2012; 26:639-54. [DOI: 10.1016/j.bpobgyn.2012.03.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 03/28/2012] [Indexed: 12/21/2022]
|
17
|
Romão RM, Levi JE, de Carvalho MHB, Vieira Francisco RP, de Amorim Filho AG, Zugaib M. Utilização de ácidos nucleicos fetais livres no plasma materno para o diagnóstico pré-natal: Realidade do Brasil neste cenário. Rev Assoc Med Bras (1992) 2012. [DOI: 10.1016/s0104-4230(12)70258-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
18
|
Bustamante-Aragonés A, Rodríguez de Alba M, Perlado S, Trujillo-Tiebas MJ, Arranz JP, Díaz-Recasens J, Troyano-Luque J, Ramos C. Non-invasive prenatal diagnosis of single-gene disorders from maternal blood. Gene 2012; 504:144-9. [DOI: 10.1016/j.gene.2012.04.045] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 03/06/2012] [Accepted: 04/18/2012] [Indexed: 11/28/2022]
|
19
|
Rodríguez de Alba M, Bustamante-Aragonés A, Perlado S, Trujillo-Tiebas MJ, Díaz-Recasens J, Plaza-Arranz J, Ramos C. Noninvasive prenatal diagnosis of monogenic disorders. Expert Opin Biol Ther 2012; 12 Suppl 1:S171-9. [DOI: 10.1517/14712598.2012.674509] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
20
|
Lim JH, Kim MJ, Kim SY, Kim HO, Song MJ, Kim MH, Park SY, Yang JH, Ryu HM. Non-invasive prenatal detection of achondroplasia using circulating fetal DNA in maternal plasma. J Assist Reprod Genet 2010; 28:167-72. [PMID: 20963478 DOI: 10.1007/s10815-010-9489-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Accepted: 09/20/2010] [Indexed: 11/28/2022] Open
Abstract
PURPOSE To perform a reliable non-invasive detection of the fetal achondroplasia using maternal plasma. METHODS We developed a quantitative fluorescent-polymerase chain reaction (QF-PCR) method suitable for detection of the FGFR3 mutation (G1138A) causing achondroplasia. This method was applied in a non-invasive detection of the fetal achondroplasia using circulating fetal-DNA (cf-DNA) in maternal plasma. Maternal plasmas were obtained at 27 weeks of gestational age from women carrying an achondroplasia fetus or a normal fetus. RESULTS Two percent or less achondroplasia DNA was reliably detected by QF-PCR. In a woman carrying a normal fetus, analysis of cf-DNA showed only one peak of the wild-type G allele. In a woman expected an achondroplasia fetus, analysis of cf-DNA showed the two peaks of wild-type G allele and mutant-type A allele and accurately detected the fetal achondroplasia. CONCLUSIONS The non-invasive method using maternal plasma and QF-PCR may be useful for diagnosis of the fetal achondroplasia.
Collapse
Affiliation(s)
- Ji Hyae Lim
- Laboratory of Medical Genetics, Medical Research Institute, Cheil General Hospital and Women's Healthcare Center, Seoul, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|